Articles | Volume 38, issue 3
https://doi.org/10.5194/angeo-38-645-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-645-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The fate of O+ ions observed in the plasma mantle: particle tracing modelling and cluster observations
Audrey Schillings
CORRESPONDING AUTHOR
Swedish Institute of Space Physics, Kiruna, Sweden
Division of Space Technology, Luleå University of Technology,
Kiruna, Sweden
Herbert Gunell
Department of Physics, Umeå University, Umeå, Sweden
Belgian Institute for Space Aeronomy, Brussels, Belgium
Hans Nilsson
Swedish Institute of Space Physics, Kiruna, Sweden
Division of Space Technology, Luleå University of Technology,
Kiruna, Sweden
Alexandre De Spiegeleer
Department of Physics, Umeå University, Umeå, Sweden
Yusuke Ebihara
Research Institute for Sustainable Humanosphere, Kyoto University,
611-0011, Gokasho, Uji, Kyoto, Japan
Lars G. Westerberg
Division of Fluid- and Experimental Mechanics, Luleå University
of Technology, Luleå, Sweden
Masatoshi Yamauchi
Swedish Institute of Space Physics, Kiruna, Sweden
Rikard Slapak
EISCAT Scientific Association, Kiruna, Sweden
Related authors
Audrey Schillings, Hans Nilsson, Rikard Slapak, Masatoshi Yamauchi, and Lars-Göran Westerberg
Ann. Geophys., 35, 1341–1352, https://doi.org/10.5194/angeo-35-1341-2017, https://doi.org/10.5194/angeo-35-1341-2017, 2017
Short summary
Short summary
The Earth's atmosphere is constantly losing ions and in particular oxygen ions. This phenomenon is important to understand the atmospheric evolution on a large timescale. In this study, the O+ outflow is estimated during six extreme geomagnetic storms using the European Cluster mission data. These estimations are compared with average magnetospheric conditions and show that during those six extreme storms, the O+ outflow is approximately 2 orders of magnitude higher.
Rikard Slapak, Maria Hamrin, Timo Pitkänen, Masatoshi Yamauchi, Hans Nilsson, Tomas Karlsson, and Audrey Schillings
Ann. Geophys., 35, 869–877, https://doi.org/10.5194/angeo-35-869-2017, https://doi.org/10.5194/angeo-35-869-2017, 2017
Short summary
Short summary
The ion total transports in the near-Earth plasma sheet have been investigated and quantified. Specifically, the net O+ transport is about 1024 s−1 in the earthward direction, which is 1 order of magnitude smaller than the typical O+ ionospheric outflows, strongly indicating that most outflow will eventually escape, leading to significant atmospheric loss. The study also shows that low-velocity flows (< 100 km s−1) dominate the mass transport in the near-Earth plasma sheet.
Rikard Slapak, Audrey Schillings, Hans Nilsson, Masatoshi Yamauchi, Lars-Göran Westerberg, and Iannis Dandouras
Ann. Geophys., 35, 721–731, https://doi.org/10.5194/angeo-35-721-2017, https://doi.org/10.5194/angeo-35-721-2017, 2017
Short summary
Short summary
In this study, we have used Cluster satellite data to quantify the ionospheric oxygen ion (O+) escape into the solar wind and its dependence on geomagnetic activity. During times of high activity, the escape may be 2 orders of magnitude higher than under quiet conditions, strongly suggesting that the escape rate was much higher when the Sun was young. The results are important for future studies regarding atmospheric loss over geological timescales.
Tomas Karlsson, Henriette Trollvik, Savvas Raptis, Hans Nilsson, and Hadi Madanian
Ann. Geophys., 40, 687–699, https://doi.org/10.5194/angeo-40-687-2022, https://doi.org/10.5194/angeo-40-687-2022, 2022
Short summary
Short summary
Magnetic holes are curious localized dropouts of magnetic field strength in the solar wind (the flow of ionized gas continuously streaming out from the sun). In this paper we show that these magnetic holes can cross the bow shock (where the solar wind brake down to subsonic velocity) and enter the region close to Earth’s magnetosphere. These structures may therefore represent a new type of non-uniform solar wind–magnetosphere interaction.
Charlotte Goetz, Herbert Gunell, Fredrik Johansson, Kristie LLera, Hans Nilsson, Karl-Heinz Glassmeier, and Matthew G. G. T. Taylor
Ann. Geophys., 39, 379–396, https://doi.org/10.5194/angeo-39-379-2021, https://doi.org/10.5194/angeo-39-379-2021, 2021
Short summary
Short summary
Boundaries in the plasma around comet 67P separate regions with different properties. Many have been identified, including a new boundary called an infant bow shock. Here, we investigate how the plasma and fields behave at this boundary and where it can be found. The main result is that the infant bow shock occurs at intermediate activity and intermediate distances to the comet. Most plasma parameters behave as expected; however, some inconsistencies indicate that the boundary is non-stationary.
Herbert Gunell, Charlotte Goetz, Elias Odelstad, Arnaud Beth, Maria Hamrin, Pierre Henri, Fredrik L. Johansson, Hans Nilsson, and Gabriella Stenberg Wieser
Ann. Geophys., 39, 53–68, https://doi.org/10.5194/angeo-39-53-2021, https://doi.org/10.5194/angeo-39-53-2021, 2021
Short summary
Short summary
When the magnetised solar wind meets the plasma surrounding a comet, the magnetic field is enhanced in front of the comet, and the field lines are draped around it. This happens because electric currents are induced in the plasma. When these currents flow through the plasma, they can generate waves. In this article we present observations of ion acoustic waves, which is a kind of sound wave in the plasma, detected by instruments on the Rosetta spacecraft near comet 67P/Churyumov–Gerasimenko.
Patrik Krcelic, Stein Haaland, Lukas Maes, Rikard Slapak, and Audrey Schillings
Ann. Geophys., 38, 491–505, https://doi.org/10.5194/angeo-38-491-2020, https://doi.org/10.5194/angeo-38-491-2020, 2020
Short summary
Short summary
In this paper we have used Cluster EDI data in combination with the CODIF cusp dataset from Slapak et al. (2017) to obtain parallel and convection velocities for oxygen ions; 69 % of total oxygen outflow from the high-altitude cusps escapes the magnetosphere on average; 50 % escapes tailward beyond the distant X-line. The oxygen capture-versus-escape ratio is highly dependent on geomagnetic conditions. During active conditions, the majority of oxygen outflow is convected to the plasma sheet.
Hisashi Hayakawa, José M. Vaquero, and Yusuke Ebihara
Ann. Geophys., 36, 1153–1160, https://doi.org/10.5194/angeo-36-1153-2018, https://doi.org/10.5194/angeo-36-1153-2018, 2018
Short summary
Short summary
A record has been found of an "aurora" observed on 27 October 1856 in the Philippines, practically at the magnetic equator. An analysis of this report indicates that it could belong to a "sporadic aurora" because of low magnetic activity at that time. We provide a possible physical mechanism that could explain the appearance of this sporadic, low-latitude aurora, according to the analyses on the observational report and magnetic observations at that time.
Masatoshi Yamauchi and Rikard Slapak
Ann. Geophys., 36, 1–12, https://doi.org/10.5194/angeo-36-1-2018, https://doi.org/10.5194/angeo-36-1-2018, 2018
Short summary
Short summary
Extraction of the solar wind kinetic energy (∆K) by mass loading of escaping O+ is modelled in the exterior cusp and plasma mantle of the Earth. We found ∆K proportional to mass flux of escaping ions and square of solar wind velocity, but independent to the other parameters. The amount is sufficient to power the cusp field-aligned currents, further enhancing ion escape through Joule heating of the ionospheric ions, completing positive feedback to enhance escape with geomagnetic activities.
Audrey Schillings, Hans Nilsson, Rikard Slapak, Masatoshi Yamauchi, and Lars-Göran Westerberg
Ann. Geophys., 35, 1341–1352, https://doi.org/10.5194/angeo-35-1341-2017, https://doi.org/10.5194/angeo-35-1341-2017, 2017
Short summary
Short summary
The Earth's atmosphere is constantly losing ions and in particular oxygen ions. This phenomenon is important to understand the atmospheric evolution on a large timescale. In this study, the O+ outflow is estimated during six extreme geomagnetic storms using the European Cluster mission data. These estimations are compared with average magnetospheric conditions and show that during those six extreme storms, the O+ outflow is approximately 2 orders of magnitude higher.
Rikard Slapak, Maria Hamrin, Timo Pitkänen, Masatoshi Yamauchi, Hans Nilsson, Tomas Karlsson, and Audrey Schillings
Ann. Geophys., 35, 869–877, https://doi.org/10.5194/angeo-35-869-2017, https://doi.org/10.5194/angeo-35-869-2017, 2017
Short summary
Short summary
The ion total transports in the near-Earth plasma sheet have been investigated and quantified. Specifically, the net O+ transport is about 1024 s−1 in the earthward direction, which is 1 order of magnitude smaller than the typical O+ ionospheric outflows, strongly indicating that most outflow will eventually escape, leading to significant atmospheric loss. The study also shows that low-velocity flows (< 100 km s−1) dominate the mass transport in the near-Earth plasma sheet.
Rikard Slapak, Audrey Schillings, Hans Nilsson, Masatoshi Yamauchi, Lars-Göran Westerberg, and Iannis Dandouras
Ann. Geophys., 35, 721–731, https://doi.org/10.5194/angeo-35-721-2017, https://doi.org/10.5194/angeo-35-721-2017, 2017
Short summary
Short summary
In this study, we have used Cluster satellite data to quantify the ionospheric oxygen ion (O+) escape into the solar wind and its dependence on geomagnetic activity. During times of high activity, the escape may be 2 orders of magnitude higher than under quiet conditions, strongly suggesting that the escape rate was much higher when the Sun was young. The results are important for future studies regarding atmospheric loss over geological timescales.
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 1331–1342, https://doi.org/10.5194/angeo-33-1331-2015, https://doi.org/10.5194/angeo-33-1331-2015, 2015
Short summary
Short summary
In a simulation study of the downward current region of the aurora, i.e. where electrons are accelerated upward, double layers are seen to form at low altitude and move upward until they are disrupted at altitudes of ten thousand kilometres or thereabouts. When one double layer is disrupted a new one forms below, and the process repeats itself. The repeated demise and reformation allows ions to flow upward without passing through the double layers that otherwise would have kept them down.
I. Richter, C. Koenders, H.-U. Auster, D. Frühauff, C. Götz, P. Heinisch, C. Perschke, U. Motschmann, B. Stoll, K. Altwegg, J. Burch, C. Carr, E. Cupido, A. Eriksson, P. Henri, R. Goldstein, J.-P. Lebreton, P. Mokashi, Z. Nemeth, H. Nilsson, M. Rubin, K. Szegö, B. T. Tsurutani, C. Vallat, M. Volwerk, and K.-H. Glassmeier
Ann. Geophys., 33, 1031–1036, https://doi.org/10.5194/angeo-33-1031-2015, https://doi.org/10.5194/angeo-33-1031-2015, 2015
Short summary
Short summary
We present a first report on magnetic field measurements made in the coma of comet 67P/C-G in its low-activity state. The plasma environment is dominated by quasi-coherent, large-amplitude, compressional magnetic field oscillations around 40mHz, differing from the observations at strongly active comets where waves at the cometary ion gyro-frequencies are the main feature. We propose a cross-field current instability associated with the newborn cometary ions as a possible source mechanism.
R. Slapak, H. Nilsson, L. G. Westerberg, and R. Larsson
Ann. Geophys., 33, 301–307, https://doi.org/10.5194/angeo-33-301-2015, https://doi.org/10.5194/angeo-33-301-2015, 2015
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 279–293, https://doi.org/10.5194/angeo-33-279-2015, https://doi.org/10.5194/angeo-33-279-2015, 2015
Short summary
Short summary
In this paper, we simulate the plasma on a magnetic field line above the aurora. Initially, about half of the acceleration voltage is concentrated in a thin double layer at a few thousand km altitude. When the voltage is lowered, electrons trapped between the double layer and the magnetic mirror are released. In the process we see formation of electron beams and phase space holes. A temporary reversal of the polarity of the double layer is also seen as well as hysteresis effects in its position.
T. Pitkänen, M. Hamrin, P. Norqvist, T. Karlsson, H. Nilsson, A. Kullen, S. M. Imber, and S. E. Milan
Ann. Geophys., 33, 245–255, https://doi.org/10.5194/angeo-33-245-2015, https://doi.org/10.5194/angeo-33-245-2015, 2015
Short summary
Short summary
An azimuthal velocity shear with a reversal within an earthward magnetotail fast flow is studied using Cluster observations. In addition, ionospheric SuperDARN data and different magnetospheric models (T96 and TF04) are utilized when interpreting the Cluster observations. Untwisting of twisted tail B field lines is a good candidate to explain the observations.
I. A. Barghouthi, H. Nilsson, and S. H. Ghithan
Ann. Geophys., 32, 1043–1057, https://doi.org/10.5194/angeo-32-1043-2014, https://doi.org/10.5194/angeo-32-1043-2014, 2014
H. Gunell, G. Stenberg Wieser, M. Mella, R. Maggiolo, H. Nilsson, F. Darrouzet, M. Hamrin, T. Karlsson, N. Brenning, J. De Keyser, M. André, and I. Dandouras
Ann. Geophys., 32, 991–1009, https://doi.org/10.5194/angeo-32-991-2014, https://doi.org/10.5194/angeo-32-991-2014, 2014
K. Axelsson, T. Sergienko, H. Nilsson, U. Brändström, K. Asamura, and T. Sakanoi
Ann. Geophys., 32, 499–506, https://doi.org/10.5194/angeo-32-499-2014, https://doi.org/10.5194/angeo-32-499-2014, 2014
H. Gunell, J. De Keyser, E. Gamby, and I. Mann
Ann. Geophys., 31, 1227–1240, https://doi.org/10.5194/angeo-31-1227-2013, https://doi.org/10.5194/angeo-31-1227-2013, 2013
R. Slapak, H. Nilsson, and L. G. Westerberg
Ann. Geophys., 31, 1005–1010, https://doi.org/10.5194/angeo-31-1005-2013, https://doi.org/10.5194/angeo-31-1005-2013, 2013
S. Kirkwood, E. Belova, P. Dalin, M. Mihalikova, D. Mikhaylova, D. Murtagh, H. Nilsson, K. Satheesan, J. Urban, and I. Wolf
Ann. Geophys., 31, 333–347, https://doi.org/10.5194/angeo-31-333-2013, https://doi.org/10.5194/angeo-31-333-2013, 2013
K. Axelsson, T. Sergienko, H. Nilsson, U. Brändström, Y. Ebihara, K. Asamura, and M. Hirahara
Ann. Geophys., 30, 1693–1701, https://doi.org/10.5194/angeo-30-1693-2012, https://doi.org/10.5194/angeo-30-1693-2012, 2012
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetospheric configuration and dynamics
Unsupervised classification of simulated magnetospheric regions
The increase in the curvature radius of geomagnetic field lines preceding a classical dipolarization
A multi-fluid model of the magnetopause
Magnetodisc modelling in Jupiter's magnetosphere using Juno magnetic field data and the paraboloid magnetic field model
Maria Elena Innocenti, Jorge Amaya, Joachim Raeder, Romain Dupuis, Banafsheh Ferdousi, and Giovanni Lapenta
Ann. Geophys., 39, 861–881, https://doi.org/10.5194/angeo-39-861-2021, https://doi.org/10.5194/angeo-39-861-2021, 2021
Short summary
Short summary
Spacecraft missions do not always record observations at the highest possible resolution, and the so-called burst mode is switched on only occasionally. It is of paramount importance that processes of interest are sampled in burst mode. At the moment, many missions rely on a scientist in the loop, who decides when to trigger burst mode by looking at the preview data. Our work constitutes a first step towards making this decision automatic to improve mission operations and decrease human bias.
Osuke Saka
Ann. Geophys., 38, 467–479, https://doi.org/10.5194/angeo-38-467-2020, https://doi.org/10.5194/angeo-38-467-2020, 2020
Short summary
Short summary
The first 10 min interval of Pi2 onset is the most active period of substorms composed of field line deformations associated with an increase in curvature radius of flux tubes and their longitudinal expansion. The flux tube deformations were triggered by the ballooning instability of slow magnetoacoustic waves upon arrival of the dipolarization front from the tail. They preceded the classical dipolarization caused by the reduction of cross-tail currents and resulting pileup of the field lines.
Roberto Manuzzo, Francesco Califano, Gerard Belmont, and Laurence Rezeau
Ann. Geophys., 38, 275–286, https://doi.org/10.5194/angeo-38-275-2020, https://doi.org/10.5194/angeo-38-275-2020, 2020
Short summary
Short summary
We investigate the magnetopause stability and mixing using a new three-fluid model aimed at reproducing the system configuration obtained directly from satellite data. This
realisticmodel is a basic starting point for numerical simulations; however, the realistic three-fluid equilibrium presented in this paper should allow this work to be taken a step further and could be applied to other experimental cases in the future.
Ivan A. Pensionerov, Elena S. Belenkaya, Stanley W. H. Cowley, Igor I. Alexeev, Vladimir V. Kalegaev, and David A. Parunakian
Ann. Geophys., 37, 101–109, https://doi.org/10.5194/angeo-37-101-2019, https://doi.org/10.5194/angeo-37-101-2019, 2019
Short summary
Short summary
In the present work we used unique data on the magnetic field in the
Jovian magnetosphere measured by the Juno spacecraft. The data allowed
us to determine optimal parameters of the magnetodisc in the paraboloid
magnetospheric model and find the ways to qualitatively improve the
model.
Cited articles
Abe, T., Whalen, B. A., Yau, A. W., Horita, R. E., Watanabe, S., and Sagawa,
E.: EXOS D (Akebono) suprathermal mass spectrometer observations of the polar
wind, J. Geophys. Res.-Space, 98, 11191–11203, https://doi.org/10.1029/92JA01971,
1993. a
Abudayyeh, H. A., Barghouthi, I. A., Slapak, R., and Nilsson, H.: Centrifugal
acceleration at high altitudes above the polar cap: A Monte Carlo simulation,
J. Geophys. Res.-Space, 120, 6409–6426, https://doi.org/10.1002/2015JA021325, 2015. a, b, c
André, M. and Cully, C. M.: Low-energy ions: A previously hidden solar
system particle population, Geophys. Res. Lett., 39, L03101, https://doi.org/10.1029/2011GL050242, 2012. a
Arvelius, S., Yamauchi, M., Nilsson, H., Lundin, R., Hobara, Y., Rème,
H., Bavassano-Cattaneo, M. B., Paschmann, G., Korth, A., Kistler, L. M., and
Parks, G. K.: Statistics of high-altitude and high-latitude O+ ion
outflows observed by Cluster/CIS, Ann. Geophys., 23, 1909–1916,
https://doi.org/10.5194/angeo-23-1909-2005, 2005. a
Axford, W. I.: The polar wind and the terrestrial helium budget, J. Geophys.
Res., 73, 6855–6859, https://doi.org/10.1029/JA073i021p06855, 1968. a
Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown,
P., Fornaçon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J.,
Musmann, G., Oddy, T., and Schwingenschuh, K.: The Cluster Magnetic Field
Investigation: overview of in-flight performance and initial results, Ann.
Geophys., 19, 1207–1217, https://doi.org/10.5194/angeo-19-1207-2001, 2001. a
Barakat, A. R. and Schunk, R. W.: A three-dimensional model of the
generalized polar wind, J. Geophys. Res.-Space, 111, A12314, https://doi.org/10.1029/2006JA011662, 2006. a
Barghouthi, I. A., Abudayyeh, H. A., Slapak, R., and Nilsson, H.:
O+ and H+ above the polar cap: Observations and
semikinetic simulations, J. Geophys. Res.-Space, 121, 459–474,
https://doi.org/10.1002/2015JA021990, 2016. a
Birdsall, C. K. and Langdon, A.: Plasma Physics via Computer Simulation, IOP Publishing Ltd Techno House, Bristol, England, New York, NY, USA,
ISBN 0 7503 1025 1, 1991. a
Chappell, C. R., Moore, T. E., and Waite Jr., J. H.: The ionosphere as a
fully adequate source of plasma for the earth's magnetosphere, J. Geophys.
Res., 92, 5896–5910, https://doi.org/10.1029/JA092iA06p05896, 1987. a
Cluster Science Archive: Welcome to the cluster science archive, available at: https://csa.esac.esa.int/csa-web/, last access: June 2020. a
Engwall, E., Eriksson, A. I., Cully, C. M., André, M., Puhl-Quinn, P. A.,
Vaith, H., and Torbert, R.: Survey of cold ionospheric outflows in the
magnetotail, Ann. Geophys., 27, 3185–3201, https://doi.org/10.5194/angeo-27-3185-2009,
2009. a
Escoubet, C. P., Fehringer, M., and Goldstein, M.: Introduction: The
Cluster mission, Ann. Geophys., 19, 1197–1200,
https://doi.org/10.5194/angeo-19-1197-2001, 2001. a
Gunell, H., Maggiolo, R., Nilsson, H., Stenberg Wieser, G., Slapak, R.,
Lindkvist, J., Hamrin, M., and De Keyser, J.: Why an intrinsic magnetic field
does not protect a planet against atmospheric escape, Astron. Astrophys.,
614, L3, https://doi.org/10.1051/0004-6361/201832934, 2018. a
Gunell, H., De Spiegeleer, A., and Schillings, A.: ham – a particle tracing
code for Earth's magnetosphere, https://doi.org/10.5281/zenodo.3466771, 2019. a, b
Haaland, S., Paschmann, G., Förster, M., Quinn, J., Torbert, R., Vaith,
H., Puhl-Quinn, P., and Kletzing, C.: Plasma convection in the magnetotail
lobes: statistical results from Cluster EDI measurements, Ann. Geophys., 26,
2371–2382, https://doi.org/10.5194/angeo-26-2371-2008, 2008. a
Haaland, S., Lybekk, B., Svenes, K., Pedersen, A., Förster, M., Vaith,
H., and Torbert, R.: Plasma transport in the magnetotail lobes, Ann.
Geophys., 27, 3577–3590, https://doi.org/10.5194/angeo-27-3577-2009, 2009. a
Haaland, S., Eriksson, A., Engwall, E., Lybekk, B., Nilsson, H., Pedersen,
A., Svenes, K., André, M., Förster, M., Li, K., Johnsen, C., and
Østgaard, N.: Estimating the capture and loss of cold plasma from
ionospheric outflow, J. Geophys. Res.-Space, 117, A07311,
https://doi.org/10.1029/2012JA017679, 2012. a, b, c, d, e
Haaland, S., Lybekk, B., Maes, L., Laundal, K., Pedersen, A., Tenfjord, P.,
Ohma, A., Østgaard, N., Reistad, J., and Snekvik, K.: North–south
asymmetries in cold plasma density in the magnetotail lobes: Cluster
observations, J. Geophys. Res.-Space, 122, 136–149,
https://doi.org/10.1002/2016JA023404, 2017. a
Hoffman, J. H.: Ion composition measurements in the polar region from the
Explorer 31 satellite, Trans. Am. Geophys. Union, 49, 253, 1968. a
Horwitz, J. L., Ho, C. W., Scarbro, H. D., Wilson, G. R., and Moore, T. E.:
Centrifugal acceleration of the polar wind, J. Geophys. Res.-Space, 99,
15051–15064, https://doi.org/10.1029/94JA00924, 1994. a
Kistler, L. M. and Mouikis, C. G.: The inner magnetosphere ion composition
and local time distribution over a solar cycle, J. Geophys. Res.-Space, 121,
2009–2032, https://doi.org/10.1002/2015JA021883, 2016. a
Kistler, L. M., Mouikis, C. G., Cao, X., Frey, H., Klecker, B., Dandouras,
I., Korth, A., Marcucci, M. F., Lundin, R., McCarthy, M., Friedel, R., and
Lucek, E.: Ion composition and pressure changes in storm time and nonstorm
substorms in the vicinity of the near-Earth neutral line, J. Geophys.
Res.-Space, 111, A11222, https://doi.org/10.1029/2006JA011939, 2006. a, b
Krcelic, P., Haaland, S., Maes, L., Slapak, R., and Schillings, A.:
Estimating the fate of oxygen ion outflow from the high-altitude cusp, Ann.
Geophys., 38, 491–505, https://doi.org/10.5194/angeo-38-491-2020, 2020. a
Li, K., Haaland, S., Eriksson, A., André, M., Engwall, E., Wei, Y.,
Kronberg, E. A., Fränz, M., Daly, P. W., Zhao, H., and Ren, Q. Y.: On the
ionospheric source region of cold ion outflow, Geophys. Res. Lett., 39,
L18102, https://doi.org/10.1029/2012GL053297, 2012. a
Liao, J., Kistler, L. M., Mouikis, C. G., Klecker, B., Dandouras, I., and
Zhang, J.-C.: Statistical study of O+ transport from the cusp to
the lobes with Cluster CODIF data, J. Geophys. Res.-Space, 115, A00J15,
https://doi.org/10.1029/2010JA015613, 2010. a, b, c
Liao, J., Kistler, L. M., Mouikis, C. G., Klecker, B., and Dandouras, I.:
Acceleration of O+ from the cusp to the plasma sheet, J. Geophys.
Res.-Space, 120, 1022–1034, https://doi.org/10.1002/2014JA020341, 2015. a, b
Mouikis, C. G., Kistler, L. M., Liu, Y. H., Klecker, B., Korth, A., and
Dandouras, I.: H+ and O+ content of the plasma sheet at
15–19 Re as a function of geomagnetic and solar activity, J. Geophys.
Res.-Space, 115, A00J16, https://doi.org/10.1029/2010JA015978, 2010. a
NASA Goddard Space Flight Center: OMNIWeb Plus, available at: https://omniweb.gsfc.nasa.gov/, last access: June 2020. a
Newell, P. T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F. J.: A
nearly universal solar wind-magnetosphere coupling function inferred from
10 magnetospheric state variables, J. Geophys. Res.-Space, 112, A01206,
https://doi.org/10.1029/2006JA012015, 2007. a
Nilsson, H.: Heavy Ion Energization, Transport, and Loss in the Earth's
Magnetosphere, in: The Dynamic Magnetosphere, edited by: Liu, W. and
Fujimoto, M., Springer Netherlands, Dordrecht, 315–327,
https://doi.org/10.1007/978-94-007-0501-2_17, 2011. a
Nilsson, H., Waara, M., Arvelius, S., Marghitu, O., Bouhram, M., Hobara, Y.,
Yamauchi, M., Lundin, R., Rème, H., Sauvaud, J.-A., Dandouras, I.,
Balogh, A., Kistler, L. M., Klecker, B., Carlson, C. W., Bavassano-Cattaneo,
M. B., and Korth, A.: Characteristics of high altitude oxygen ion
energization and outflow as observed by Cluster: a statistical study, Ann.
Geophys., 24, 1099–1112, https://doi.org/10.5194/angeo-24-1099-2006, 2006. a, b, c, d, e
Nilsson, H., Waara, M., Marghitu, O., Yamauchi, M., Lundin, R., Rème, H.,
Sauvaud, J.-A., Dandouras, I., Lucek, E., Kistler, L. M., Klecker, B.,
Carlson, C. W., Bavassano-Cattaneo, M. B., and Korth, A.: An assessment of
the role of the centrifugal acceleration mechanism in high altitude polar cap
oxygen ion outflow, Ann. Geophys., 26, 145–157,
https://doi.org/10.5194/angeo-26-145-2008, 2008. a
Nilsson, H., Barghouthi, I. A., Slapak, R., Eriksson, A. I., and André,
M.: Hot and cold ion outflow: Spatial distribution of ion heating, J.
Geophys. Res.-Space, 117, A11201, https://doi.org/10.1029/2012JA017974, 2012. a
Norqvist, P., André, M., and Tyrland, M.: A statistical study of ion
energization mechanisms in the auroral region, J. Geophys. Res.-Space, 103,
23459–23473, https://doi.org/10.1029/98JA02076, 1998. a
Peterson, W. K., Collin, H. L., Yau, A. W., and Lennartsson, O. W.:
Polar/Toroidal Imaging Mass – Angle Spectrograph observations of
suprathermal ion outflow during solar minimum conditions, J. Geophys.
Res.-Space, 106, 6059–6066, https://doi.org/10.1029/2000JA003006, 2001. a
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B.,
Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, T., Coeur-Joly, O., Cros,
A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E.,
Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey,
C., Mazelle, C., D'Uston, C., Möbius, E., Kistler, L. M., Crocker, K.,
Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt,
D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N.,
Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P.,
McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E.,
Bavassano-Cattaneo, M. B., Baldetti, P., Bruno, R., Chionchio, G., di Lellis,
A., Marcucci, M. F., Pallocchia, G., Korth, A., Daly, P. W., Graeve, B.,
Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L.,
Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G.,
Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J.-B.,
Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Scudder, J., and Sonnerup,
B.: First multispacecraft ion measurements in and near the Earth's
magnetosphere with the identical Cluster ion spectrometry (CIS) experiment,
Ann. Geophys., 19, 1303–1354, https://doi.org/10.5194/angeo-19-1303-2001, 2001. a
Rosenbauer, H., Grünwaldt, H., Montgomery, M. D., Paschmann, G., and
Sckopke, N.: Heos 2 plasma observations in the distant polar magnetosphere:
The plasma mantle, J. Geophys. Res., 80, 2723–2737,
https://doi.org/10.1029/JA080i019p02723, 1975. a
Schillings, A., Nilsson, H., Slapak, R., Yamauchi, M., and Westerberg, L.-G.:
Relative outflow enhancements during major geomagnetic storms – Cluster
observations, Ann. Geophys., 35, 1341–1352,
https://doi.org/10.5194/angeo-35-1341-2017, 2017. a, b
Schillings, A., Nilsson, H., Slapak, R., Wintoft, P., Yamauchi, M., Wik, M.,
Dandouras, I., and Carr, C. M.: O+ Escape During the Extreme Space
Weather Event of 4–10 September 2017, Space Weather, 16, 1363–1376,
https://doi.org/10.1029/2018SW001881, 2018. a, b
Schunk, R. W. and Sojka, J. J.: A three-dimensional time-dependent model of
the polar wind, J. Geophys. Res.-Space, 94, 8973–8991,
https://doi.org/10.1029/JA094iA07p08973, 1989. a
Schunk, R. W. and Sojka, J. J.: Global ionosphere-polar wind system during
changing magnetic activity, J. Geophys. Res.-Space, 102, 11625–11651,
https://doi.org/10.1029/97JA00292, 1997. a
Sharp, R. D., Johnson, R. G., and Shelley, E. G.: Observation of an
ionospheric acceleration mechanism producing energetic (keV) ions primarily
normal to the geomagnetic field direction, J. Geophys. Res., 82, 3324–3328,
https://doi.org/10.1029/JA082i022p03324, 1977. a
Shelley, E. G., Sharp, R. D., and Johnson, R. G.: Satellite observations of
an ionospheric acceleration mechanism, Geophys. Res. Lett., 3, 654–656,
https://doi.org/10.1029/GL003i011p00654, 1976. a
Slapak, R., Nilsson, H., Waara, M., André, M., Stenberg, G., and
Barghouthi, I. A.: O+ heating associated with strong wave activity
in the high altitude cusp and mantle, Ann. Geophys., 29, 931–944,
https://doi.org/10.5194/angeo-29-931-2011, 2011. a
Slapak, R., Nilsson, H., Westerberg, L. G., and Eriksson, A.: Observations of
oxygen ions in the dayside magnetosheath associated with southward IMF, J.
Geophys. Res.-Space, 117, A07218, https://doi.org/10.1029/2012JA017754, 2012. a
Slapak, R., Schillings, A., Nilsson, H., Yamauchi, M., Westerberg, L.-G., and
Dandouras, I.: Atmospheric loss from the dayside open polar region and its
dependence on geomagnetic activity: implications for atmospheric escape on
evolutionary timescales, Ann. Geophys., 35, 721–731,
https://doi.org/10.5194/angeo-35-721-2017, 2017.
a, b, c, d, e, f, g, h, i, j, k
Strangeway, R. J., Ergun, R. E., Su, Y., Carlson, C. W., and Elphic, R. C.:
Factors controlling ionospheric outflows as observed at intermediate
altitudes, J. Geophys. Res.-Space, 110, A03221, https://doi.org/10.1029/2004JA010829, 2005. a
Tsyganenko, N. A.: Modeling the Earth's magnetospheric magnetic field
confined within a realistic magnetopause, J. Geophys. Res.-Space, 100,
5599–5612, https://doi.org/10.1029/94JA03193, 1995. a, b, c
Vaith, H., Paschmann, G., Quinn, J. M., Förster, M., Georgescu, E.,
Haaland, S. E., Klecker, B., Kletzing, C. A., Puhl-Quinn, P. A., Rème,
H., and Torbert, R. B.: Plasma convection across the polar cap, plasma mantle
and cusp: Cluster EDI observations, Ann. Geophys., 22, 2451–2461,
https://doi.org/10.5194/angeo-22-2451-2004, 2004. a
Waara, M., Slapak, R., Nilsson, H., Stenberg, G., André, M., and
Barghouthi, I. A.: Statistical evidence for O+ energization and
outflow caused by wave-particle interaction in the high altitude cusp and
mantle, Ann. Geophys., 29, 945–954, https://doi.org/10.5194/angeo-29-945-2011, 2011. a
WDC: Geomagnetic Equatorial Dst index Home Page, available at: http://wdc.kugi.kyoto-u.ac.jp/dstdir/, last access: June 2020. a
Weimer, D. R.: An improved model of ionospheric electric potentials including
substorm perturbations and application to the Geospace Environment Modeling
November 24, 1996, event, J. Geophys. Res.-Space, 106, 407–416,
https://doi.org/10.1029/2000JA000604, 2001. a, b
Yau, A. W., Shelley, E. G., Peterson, W. K., and Lenchyshyn, L.: Energetic
auroral and polar ion outflow at DE 1 altitudes: Magnitude, composition,
magnetic activity dependence, and long-term variations, J. Geophys.
Res.-Space, 90, 8417–8432, https://doi.org/10.1029/JA090iA09p08417, 1985. a
Yau, A. W., Peterson, W. K., and Shelley, E. G.: Quantitative Parametrization
of Energetic Ionospheric Ion Outflow, in: book series Geophysical Monograph Series, Modeling Magnetospheric Plasma, Vol. 44, American Geophysical Union (AGU), Washington, D.C., 211–217, https://doi.org/10.1029/GM044p0211, 1988. a
Yau, A. W., Abe, T., and Peterson, W.: The polar wind: Recent observations,
J. Atmos. Sol.-Terr. Phy., 69, 1936–1983, https://doi.org/10.1016/j.jastp.2007.08.010,
2007. a
Short summary
The Earth's atmosphere is constantly losing molecules and charged particles, amongst them oxygen ions or O+. Quantifying this loss provides information about the evolution of the atmosphere on geological timescales. In this study, we investigate the final destination of O+ observed with Cluster satellites in a high-altitude magnetospheric region (plasma mantle) by tracing the particles forward in time using simulations. We find that approximately 98 % of O+ escapes the Earth's magnetosphere.
The Earth's atmosphere is constantly losing molecules and charged particles, amongst them oxygen...