Articles | Volume 38, issue 1
https://doi.org/10.5194/angeo-38-17-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-17-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Overshoot dependence on the cross-shock potential
Michael Gedalin
CORRESPONDING AUTHOR
Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Xiaoyan Zhou
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, USA
Christopher T. Russell
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, USA
Vassilis Angelopoulos
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, USA
Related authors
M. Gedalin, Y. Kushinsky, and M. Balikhin
Ann. Geophys., 33, 1011–1017, https://doi.org/10.5194/angeo-33-1011-2015, https://doi.org/10.5194/angeo-33-1011-2015, 2015
Short summary
Short summary
The magnetic profile of a laminar collisionless shock is described within two-fluid plasma theory. This description is valid only for the upstream part of the shock, before the ions begin to gyrate strongly. The emerging structure is fairly universal in a wide range of shock angles and mainly depends on the ratio of the dissipative to the dispersive length.
Homayon Aryan, Jacob Bortnik, Jinxing Li, James Michael Weygand, Xiangning Chu, and Vassilis Angelopoulos
Ann. Geophys., 40, 531–544, https://doi.org/10.5194/angeo-40-531-2022, https://doi.org/10.5194/angeo-40-531-2022, 2022
Short summary
Short summary
In this study, we use a multipoint analysis of conjugate magnetospheric and ionospheric observations to investigate the magnetospheric and ionospheric responses to fast flow bursts that are associated with different space weather conditions. The results show that ionospheric currents are connected to the magnetospheric flows for different space weather conditions. The connection is more apparent and global for flows that are associated with a geomagnetically active condition.
Alexander Lukin, Anton Artemyev, Evgeny Panov, Rumi Nakamura, Anatoly Petrukovich, Robert Ergun, Barbara Giles, Yuri Khotyaintsev, Per Arne Lindqvist, Christopher Russell, and Robert Strangeway
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-76, https://doi.org/10.5194/angeo-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
We have collected statistics of 81 fast plasma flow events in the magnetotail with clear MMS observations of kinetic Alfven waves (KAWs). We show that KAWs electric field magnitudes correlates with thermal/subthermal electron flux anisotropy: wider energy range of electron anisotropic population corresponds to higher KAWs’ electric field intensity. These results indicate on an important role of KAWs in production of thermal field-aligned electron population of the Earth’s magnetotail.
Chen Zeng, Suping Duan, Chi Wang, Lei Dai, Stephen Fuselier, James Burch, Roy Torbert, Barbara Giles, and Christopher Russell
Ann. Geophys., 38, 123–135, https://doi.org/10.5194/angeo-38-123-2020, https://doi.org/10.5194/angeo-38-123-2020, 2020
Short summary
Short summary
Oxygen ions are an important element in the mass and energy transport in the magnetospheric dynamic process during intense substorms (AE > 500 nT). We did this work to better understand the O+ at the dusk flank magnetopause varying with solar wind conditions and AE index during intense substorms. The results show the O+ abundance at the duskside magnetopause has a corresponding relation to that in the duskside near-Earth plasma sheet.
Ying Zou, Brian M. Walsh, Yukitoshi Nishimura, Vassilis Angelopoulos, J. Michael Ruohoniemi, Kathryn A. McWilliams, and Nozomu Nishitani
Ann. Geophys., 37, 215–234, https://doi.org/10.5194/angeo-37-215-2019, https://doi.org/10.5194/angeo-37-215-2019, 2019
Short summary
Short summary
Magnetopause reconnection is a process whereby the Sun explosively transfers energy to the Earth. Whether the process is spatially patchy or spatially continuous and extended has been under long debate. We use space–ground coordination to overcome the limitations of previous studies and reliably interpret spatial extent. Our result strongly indicates that both patchy and extended reconnection is possible and, interestingly, that extended reconnection grows from a localized patch via spreading.
Ching-Chang Cheng, Christopher T. Russell, Ian R. Mann, Eric Donovan, and Wolfgang Baumjohann
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-116, https://doi.org/10.5194/angeo-2018-116, 2018
Preprint withdrawn
Short summary
Short summary
The comparison of geomagnetic active and quite events of double substorm onsets responsive to IMF variations shows that the occurrence sequence of all required substorm signatures looks the same and not different for small and large Kp. Double substorm onsets responsive to IMF variations can be characterized with two-stage magnetic dipolarizations in the magnetotail, two auroral breakups of which the first occurring at lower latitudes than the second, and two consecutive Pi2-Ps6 band pulsations.
Galina Korotova, David Sibeck, Scott Thaller, John Wygant, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 36, 1319–1333, https://doi.org/10.5194/angeo-36-1319-2018, https://doi.org/10.5194/angeo-36-1319-2018, 2018
Short summary
Short summary
We employ multipoint observations of the Van Allen Probes, THEMIS, GOES and Cluster to present case and statistical studies of the electromagnetic field, plasma and particle response to interplanetary (IP) shocks observed by Wind. We perform a statistical study of Ey variations of the electric field and associated plasma drift flow velocities for 60 magnetospheric events during the passage of interplanetary shocks.
Binbin Tang, Wenya Li, Chi Wang, Lei Dai, Yuri Khotyaintsev, Per-Arne Lindqvist, Robert Ergun, Olivier Le Contel, Craig Pollock, Christopher Russell, and James Burch
Ann. Geophys., 36, 879–889, https://doi.org/10.5194/angeo-36-879-2018, https://doi.org/10.5194/angeo-36-879-2018, 2018
Short summary
Short summary
The Kelvin–Helmholtz waves are believed to be an effective way to transport solar wind mass and energy into Earth's magnetosphere. In this study, we show that the ion-scale flux rope generated at the trailing edge of Kelvin–Helmholtz waves by multiple X-line reconnection could be directly related to this transfer process. The lower hybrid drift waves detected at the edges of the flux rope can also contribute to this process and then affect the revolution of the flux rope.
Christina Chu, Hui Zhang, David Sibeck, Antonius Otto, QiuGang Zong, Nick Omidi, James P. McFadden, Dennis Fruehauff, and Vassilis Angelopoulos
Ann. Geophys., 35, 443–451, https://doi.org/10.5194/angeo-35-443-2017, https://doi.org/10.5194/angeo-35-443-2017, 2017
Short summary
Short summary
Hot flow anomalies (HFAs) at Earth's bow shock were identified in Time History of Events and Macroscale Interactions During Substorms (THEMIS) satellite data from 2007 to 2009. The events were classified as young or mature and regular or spontaneous hot flow anomalies (SHFAs). HFA–SHFA occurrence decreases with distance upstream from the bow shock. HFAs are more prevalent for radial interplanetary magnetic fields and solar wind speeds from 550 to 600 kms−1.
David Fischer, Werner Magnes, Christian Hagen, Ivan Dors, Mark W. Chutter, Jerry Needell, Roy B. Torbert, Olivier Le Contel, Robert J. Strangeway, Gernot Kubin, Aris Valavanoglou, Ferdinand Plaschke, Rumi Nakamura, Laurent Mirioni, Christopher T. Russell, Hannes K. Leinweber, Kenneth R. Bromund, Guan Le, Lawrence Kepko, Brian J. Anderson, James A. Slavin, and Wolfgang Baumjohann
Geosci. Instrum. Method. Data Syst., 5, 521–530, https://doi.org/10.5194/gi-5-521-2016, https://doi.org/10.5194/gi-5-521-2016, 2016
Short summary
Short summary
This paper describes frequency and timing calibration, modeling and data processing and calibration for MMS magnetometers, resulting in a merged search choil and fluxgate data product.
Galina Korotova, David Sibeck, Mark Engebretson, John Wygant, Scott Thaller, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 34, 985–998, https://doi.org/10.5194/angeo-34-985-2016, https://doi.org/10.5194/angeo-34-985-2016, 2016
M. Gedalin, Y. Kushinsky, and M. Balikhin
Ann. Geophys., 33, 1011–1017, https://doi.org/10.5194/angeo-33-1011-2015, https://doi.org/10.5194/angeo-33-1011-2015, 2015
Short summary
Short summary
The magnetic profile of a laminar collisionless shock is described within two-fluid plasma theory. This description is valid only for the upstream part of the shock, before the ions begin to gyrate strongly. The emerging structure is fairly universal in a wide range of shock angles and mainly depends on the ratio of the dissipative to the dispersive length.
P. Kajdič, X. Blanco-Cano, N. Omidi, K. Meziane, C. T. Russell, J.-A. Sauvaud, I. Dandouras, and B. Lavraud
Ann. Geophys., 31, 2163–2178, https://doi.org/10.5194/angeo-31-2163-2013, https://doi.org/10.5194/angeo-31-2163-2013, 2013
F. Plaschke, H. Hietala, and V. Angelopoulos
Ann. Geophys., 31, 1877–1889, https://doi.org/10.5194/angeo-31-1877-2013, https://doi.org/10.5194/angeo-31-1877-2013, 2013
J. Liang, F. Jiang, E. Donovan, E. Spanswick, V. Angelopoulos, and R. Strangeway
Ann. Geophys., 31, 1077–1101, https://doi.org/10.5194/angeo-31-1077-2013, https://doi.org/10.5194/angeo-31-1077-2013, 2013
Cited articles
Ariad, D. and Gedalin, M.: The role pickup ions play in the termination
shock, J. Geophys. Res., 118, 2854–2862, https://doi.org/10.1002/jgra.50170, 2013. a
Balikhin, M. A., Zhang, T. L., Gedalin, M., Ganushkina, N. Y., and Pope, S. A.:
Venus Express observes a new type of shock with pure kinematic relaxation,
Geophys. Res. Lett., 35, L01103, https://doi.org/10.1029/2007GL032495, 2008. a, b, c
Burgess, D.: Simulations of backstreaming ion beams formed at oblique shocks
by direct reflection, Ann. Geophys., 5, 133–146, 1987. a
Burgess, D., Hellinger, P., Gingell, I., and Trávníček, P. M.:
Microstructure in two- and three-dimensional hybrid simulations of
perpendicular collisionless shocks, J. Plasma Phys., 82, 905820401,
https://doi.org/10.1017/S0022377816000660, 2016. a
Dimmock, A. P., Balikhin, M. A., Krasnoselskikh, V. V., Walker, S. N., Bale,
S. D., and Hobara, Y.: A statistical study of the cross-shock electric
potential at low Mach number, quasi-perpendicular bow shock crossings using
Cluster data, J. Geophys. Res., 117, 02210, https://doi.org/10.1029/2011JA017089,
2012. a, b, c
Edmiston, J. P. and Kennel, C. F.: A parametric survey of the first critical
Mach number for a fast MHD shock, J. Plasma Phys., 32, 429–441, https://doi.org/10.1017/S002237780000218X,
1984. a, b
Eselevich, V. G., Borodkova, N. L., Eselevich, M. V., Zastenker, G. N.,
Šafránkova, Y., Nemecek, Z., and Přech, L.: Fine structure
of the interplanetary shock front according to measurements of the ion flux
of the solar wind with high time resolution, Cosmic Res., 55, 30–45,
https://doi.org/10.1134/S0010952517010038, 2017. a
Farris, M., Russell, C., and Thomsen, M.: Magnetic structure of the low beta,
quasi-perpendicular shock, J. Geophys. Res., 98, 15285–15294, https://doi.org/10.1029/93JA00958, 1993. a
Gedalin, M.: Ion reflection at the shock front revisited, J. Geophys. Res.h,
101, 4871–4878, https://doi.org/10.1029/95JA03669, 1996. a
Gedalin, M.: Collisionless relaxation of non-gyrotropic downstream ion
distributions: dependence on shock parameters, J. Plasma Phys., 81,
905810603, https://doi.org/10.1017/S0022377815001154, 2015. a, b, c
Gedalin, M.: Downstream plasma parameters in laminar shocks from ion
kinetics, Phys. Plasmas, 23, 102904, https://doi.org/10.1063/1.4966240,
2016a. a
Gedalin, M.: Transmitted, reflected, quasi-reflected, and multiply reflected
ions in low-Mach number shocks, J. Geophys. Res., 121, 10754–10767,
https://doi.org/10.1002/2016JA023395, 2016b. a, b, c, d
Gedalin, M. and Dröge, W.: Ion dynamics in quasi-perpendicular
collisionless interplanetary shocks: a case study, Front. Phys., 1,
29, https://doi.org/10.3389/fphy.2013.00029, 2013. a
Gedalin, M., Liverts, M., and Balikhin, M. A.: Distribution of escaping ions
produced by non-specular reflection at the stationary quasi-perpendicular
shock front, J. Geophys. Res., 113, 05101, https://doi.org/10.1029/2007JA012894,
2008. a, b
Gedalin, M., Friedman, Y., and Balikhin, M.: Collisionless relaxation of
downstream ion distributions in low-Mach number shocks, Phys. Plasmas, 22,
072301, https://doi.org/10.1063/1.4926452, 2015. a, b, c
Gedalin, M., Zhou, X., Russell, C. T., Drozdov, A., and Liu, T. Z.: Ion
dynamics and the shock profile of a low-Mach number shock, J.
Geophys. Res., 141, 8913–8923, https://doi.org/10.1029/2018JA025945, 2018. a
Giacalone, J.: The efficient acceleration of thermal protons by perpendicular
shocks, Astrophys. J. Lett., 628, L37–L40, https://doi.org/10.1086/432510, 2005. a
Gingell, I., Schwartz, S. J., Burgess, D., Johlander, A., Russell, C. T.,
Burch, J. L., Ergun, R. E., Fuselier, S., Gershman, D. J., Giles, B. L.,
Goodrich, K. A., Khotyaintsev, Y. V., Lavraud, B., Lindqvist, P. A.,
Strangeway, R. J., Trattner, K., Torbert, R. B., Wei, H., and Wilder, F.:
MMS observations and hybrid simulations of surface ripples at a marginally
quasi-parallel shock, J. Geophys. Res., 77, 11003–11017, https://doi.org/10.1002/2017JA024538, 2017. a
Goodrich, C. C. and Scudder, J. D.: The adiabatic energy change of plasma
electrons and the frame dependence of the cross-shock potential at
collisionless magnetosonic shock waves, J. Geophys. Res., 89, 6654–6662,
https://doi.org/10.1029/JA089iA08p06654, 1984. a
Greenstadt, E. W., Scarf, F. L., Russell, C. T., Formisano, V., and Neugebauer,
M.: Structure of the quasi-perpendicular laminar bow shock, J. Geophys.
Res., 80, 502–514, https://doi.org/10.1029/JA080i004p00502, 1975. a
Greenstadt, E. W., Scarf, F. L., Russell, C. T., Gosling, J. T.,
Bame, S. J., Paschmann, G., Parks, G. K., Anderson, K. A.,
Anderson, R. R., and Gurnett, D. A.: A macroscopic profile of the
typical quasi-perpendicular bow shock – ISEE 1 and 2, J. Geophys. Res., 85,
2124–2130, https://doi.org/10.1029/JA085iA05p02124, 1980. a
Johlander, A., Schwartz, S. J., Vaivads, A., Khotyaintsev, Y. V., Gingell, I.,
Peng, I. B., Markidis, S., Lindqvist, P. A., Ergun, R. E., Marklund, G. T.,
Plaschke, F., Magnes, W., Strangeway, R. J., Russell, C. T., Wei, H.,
Torbert, R. B., Paterson, W. R., Gershman, D. J., Dorelli, J. C., Avanov,
L. A., Lavraud, B., Saito, Y., Giles, B. L., Pollock, C. J., and Burch,
J. L.: Rippled quasiperpendicular shock observed by the Magnetospheric
Multiscale Spacecraft, Phys. Rev. Lett., 117, 165101,
https://doi.org/10.1103/PhysRevLett.117.165101, 2016. a
Kajdič, P., Blanco-Cano, X., Aguilar-Rodriguez, E., Russell, C. T., Jian,
L. K., and Luhmann, J. G.: Waves upstream and downstream of interplanetary
shocks driven by coronal mass ejections, J. Geophys. Res., 117, A06103,
https://doi.org/10.1029/2011JA017381, 2012. a, b
Kennel, C. F.: Critical Mach numbers in classical magnetohydrodynamics,
J. Geophys. Res., 92, 13427–13437, https://doi.org/10.1029/JA092iA12p13427, 1987. a, b
Kucharek, H., Möbius, E., Scholer, M., Mouikis, C., Kistler, L., Horbury,
T., Balogh, A., Rème, H., and Bosqued, J.: On the origin of
field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft
observations by Cluster, Ann. Geophys., 22, 2301–2308,
https://doi.org/10.5194/angeo-22-2301-2004, 2004. a
Lee, M. A., Shapiro, V. D., and Sagdeev, R. Z.: Pickup ion energization by
shock surfing, J. Geophys. Res., 101, 4777, https://doi.org/10.1029/95JA03570, 1996. a
Livesey, W. A., Kennel, C. F., and Russell, C. T.: ISEE-1 and -2 observations
of magnetic field strength overshoots in quasi-perpendicular bow shocks,
Geophys. Res. Lett., 9, 1037–1040, https://doi.org/10.1029/GL009i009p01037, 1982. a
Mellott, M. M. and Greenstadt, E. W.: The structure of oblique subcritical bow
shocks – ISEE 1 and 2 observations, J. Geophys. Res., 89, 2151–2161,
https://doi.org/10.1029/JA089iA04p02151, 1984. a
Mellott, M. M. and Livesey, W. A.: Shock overshoots revisited, J.
Geophys. Res., 92, 13661, https://doi.org/10.1029/JA092iA12p13661, 1987. a
Ofman, L. and Gedalin, M.: Two-dimensional hybrid simulations of
quasi-perpendicular collisionless shock dynamics: Gyrating downstream ion
distributions, J. Geophys. Res., 118, 1828–1836,
https://doi.org/10.1029/2012JA018188, 2013. a
Ofman, L., Balikhin, M., Russell, C. T., and Gedalin, M.: Collisionless
relaxation of ion distributions downstream of laminar quasi-perpendicular
shocks, J. Geophys. Res., 114, 09106, https://doi.org/10.1029/2009JA014365, 2009. a
Oka, M., Terasawa, T., Saito, Y., and Mukai, T.: Field-aligned beam
observations at the quasi-perpendicular bow shock: Generation and shock angle
dependence, J. Geophys. Res., 110, A05101, https://doi.org/10.1029/2004JA010688,
2005. a
Pope, S. A., Gedalin, M., and Balikhin, M. A.: The first direct observational
confirmation of kinematic collisionless relaxation in very-low Mach number
shocks near the Earth, J. Geophys. Res., 165, 3–15, https://doi.org/10.1029/2018JA026223, 2019. a, b, c
Russell, C., Hoppe, M., Livesey, W., and Gosling, J.: ISEE-1 and-2 observations
of laminar bow shocks- Velocity and thickness, Geophys. Res. Lett., 9, 1171, https://doi.org/10.1029/GL009i010p01171,
1982a. a
Russell, C. T., Hoppe, M. M., and Livesey, W. A.: Overshoots in planetary bow
shocks, Nature, 296, 45–48, https://doi.org/10.1029/GL009i010p01171, 1982b. a
Russell, C. T., Jian, L. K., Blanco-Cano, X., and Luhmann, J. G.: STEREO
observations of upstream and downstream waves at low Mach number shocks,
Geophys. Res. Lett., 36, 03106, https://doi.org/10.1029/2008GL036991, 2009. a, b
Scholer, M., Kucharek, H., and Kato, C.: On ion injection at quasiparallel
shocks, Phys. Plasmas, 9, 4293–4300, https://doi.org/10.1063/1.1508441, 2002.
a
Schwartz, S. J., Thomsen, M. F., Bame, S. J., and Stansberry, J.: Electron
heating and the potential jump across fast mode shocks, J. Geophys. Res.,
93, 12923–12931, https://doi.org/10.1029/JA093iA11p12923, 1988. a
Sckopke, N., Paschmann, G., Bame, S. J., Gosling, J. T., and Russell,
C. T.: Evolution of ion distributions across the nearly perpendicular bow
shock – Specularly and non-specularly reflected-gyrating ions, J. Geophys.
Res., 88, 6121–6136, https://doi.org/10.1029/JA088iA08p06121, 1983. a
Scudder, J. D., Aggson, T. L., Mangeney, A., Lacombe, C., and Harvey,
C. C.: The resolved layer of a collisionless, high beta, supercritical,
quasi-perpendicular shock wave, I – Rankine-Hugoniot geometry, currents, and
stationarity, J. Geophys. Res., 91, 11019–11052,
https://doi.org/10.1029/JA091iA10p11019, 1986. a, b
SPEDAS: SPEDAS software, available at: http://spedas.org/blog, last access: 3 January 2019.
Wilson, L. B. I., Koval, A., Szabo, A., Breneman, A., Cattell, C. A., Goetz,
K., Kellogg, P. J., Kersten, K., Kasper, J. C., Maruca, B. A., and Pulupa,
M.: Observations of electromagnetic whistler precursors at supercritical
interplanetary shocks, Geophys. Res. Lett., 39, L08109,
https://doi.org/10.1029/2012GL051581, 2012. a
Wilson, L. B., Sibeck, D. G., Breneman, A. W., Contel, O. L., Cully, C.,
Turner, D. L., Angelopoulos, V., and Malaspina, D. M.: Quantified energy
dissipation rates in the terrestrial bow shock: 1. Analysis techniques and
methodology, J. Geophys. Res., 119, 6455–6474, https://doi.org/10.1002/2014JA019929,
2014. a
Wilson III, L. B., Koval, A., Szabo, A., Stevens, M. L., Kasper, J. C.,
Cattell, C. A., and Krasnoselskikh, V. V.: Revisiting the structure of
low-Mach number, low-beta, quasi-perpendicular shocks, J. Geophys. Res., 81,
2097, https://doi.org/10.1002/2017JA024352, 2017. a
Zank, G., Pauls, H., Cairns, I., and Webb, G.: Interstellar pickup ions and
quasi-perpendicular shocks: Implications for the termination shock and
interplanetary shocks, J. Geophys. Res., 101, 457–477, https://doi.org/10.1029/95JA02860, 1996. a
Zilbersher, D. and Gedalin, M.: Pickup ion dynamics at the structured
quasi-perpendicular shock, Plan. Sp. Sci., 45, 693–703,
https://doi.org/10.1016/S0032-0633(97)00030-5, 1997. a
Short summary
High-resolution measurements of the magnetic profiles of collisionless shocks in space show that large amplitude oscillations appear on the high-magnetic field side. The positions and relative amplitude of these oscillations are shown theoretically to vary in accordance with the potential jump at the shock crossing. The theoretically predicted variety is confirmed by observations.
High-resolution measurements of the magnetic profiles of collisionless shocks in space show that...