Articles | Volume 38, issue 6
https://doi.org/10.5194/angeo-38-1267-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-1267-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multipoint observations of compressional Pc5 pulsations in the dayside magnetosphere and corresponding particle signatures
Institute for Physical Science and Technology (IPST), University of Maryland, College Park, MD, USA
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Russian Academy of Sciences, Troitsk, Moscow, Russia
David Sibeck
NASA Goddard Space Flight Center (GSFC), Code 674, Greenbelt, MD, USA
Mark Engebretson
Department of Physics, Augsburg University, Minneapolis, MN,
USA
Michael Balikhin
Department of Automatic Control and Systems Engineering, University of
Sheffield, Sheffield, UK
Scott Thaller
Laboratory for Atmospheric and Space Physics (LASP), University of Colorado, Boulder, CO, USA
Craig Kletzing
Department of Physics and Astronomy, Iowa University, Iowa City, IA,
USA
Harlan Spence
Institute for the Study of Earth, Oceans, and Space (EOS), University of New Hampshire, Durham, NH, USA
Robert Redmon
Solar and Terrestrial Physics division, National Geophysical Data Center (NGDC/NOAA), Boulder, CO, USA
Related authors
Galina Korotova, David Sibeck, Scott Thaller, John Wygant, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 36, 1319–1333, https://doi.org/10.5194/angeo-36-1319-2018, https://doi.org/10.5194/angeo-36-1319-2018, 2018
Short summary
Short summary
We employ multipoint observations of the Van Allen Probes, THEMIS, GOES and Cluster to present case and statistical studies of the electromagnetic field, plasma and particle response to interplanetary (IP) shocks observed by Wind. We perform a statistical study of Ey variations of the electric field and associated plasma drift flow velocities for 60 magnetospheric events during the passage of interplanetary shocks.
Galina Korotova, David Sibeck, Mark Engebretson, John Wygant, Scott Thaller, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 34, 985–998, https://doi.org/10.5194/angeo-34-985-2016, https://doi.org/10.5194/angeo-34-985-2016, 2016
G. I. Korotova, D. G. Sibeck, K. Tahakashi, L. Dai, H. E. Spence, C. A. Kletzing, J. R. Wygant, J. W. Manweiler, P. S. Moya, K.-J. Hwang, and R. J. Redmon
Ann. Geophys., 33, 955–964, https://doi.org/10.5194/angeo-33-955-2015, https://doi.org/10.5194/angeo-33-955-2015, 2015
Short summary
Short summary
We studied localized Pc 4 pulsations in the pre-midnight inner magnetosphere observed by Van Allen Probe B on May 1 2013. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes result from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
EGUsphere, https://doi.org/10.5194/egusphere-2024-2956, https://doi.org/10.5194/egusphere-2024-2956, 2024
Short summary
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind - the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Livia R. Alves, Márcio E. S. Alves, Ligia A. da Silva, Vinicius Deggeroni, Paulo R. Jauer, and David G. Sibeck
Ann. Geophys., 41, 429–447, https://doi.org/10.5194/angeo-41-429-2023, https://doi.org/10.5194/angeo-41-429-2023, 2023
Short summary
Short summary
We derive the wave–particle interaction time (IT) equation considering the effects of special relativity theory for whistler-mode chorus waves and relativistic electrons in Earth's radiation belt. Results show that IT has a non-linear dependence on the wave group velocity, electrons' energy, and initial pitch angle. Our results show that the interaction time is generally longer when applying the complete relativistic approach compared to a non-relativistic calculation.
Galina Korotova, David Sibeck, Scott Thaller, John Wygant, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 36, 1319–1333, https://doi.org/10.5194/angeo-36-1319-2018, https://doi.org/10.5194/angeo-36-1319-2018, 2018
Short summary
Short summary
We employ multipoint observations of the Van Allen Probes, THEMIS, GOES and Cluster to present case and statistical studies of the electromagnetic field, plasma and particle response to interplanetary (IP) shocks observed by Wind. We perform a statistical study of Ey variations of the electric field and associated plasma drift flow velocities for 60 magnetospheric events during the passage of interplanetary shocks.
Minna Palmroth, Heli Hietala, Ferdinand Plaschke, Martin Archer, Tomas Karlsson, Xóchitl Blanco-Cano, David Sibeck, Primož Kajdič, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, and Lucile Turc
Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, https://doi.org/10.5194/angeo-36-1171-2018, 2018
Short summary
Short summary
Magnetosheath jets are high-velocity plasma structures that are commonly observed within the Earth's magnetosheath. Previously, they have mainly been investigated with spacecraft observations, which do not allow us to infer their spatial sizes, temporal evolution, or origin. This paper shows for the first time their dimensions, evolution, and origins within a simulation whose dimensions are directly comparable to the Earth's magnetosphere. The results are compared to previous observations.
Yaireska M. Collado-Vega, Virginia L. Kalb, David G. Sibeck, Kyoung-Joo Hwang, and Lutz Rastätter
Ann. Geophys., 36, 1117–1129, https://doi.org/10.5194/angeo-36-1117-2018, https://doi.org/10.5194/angeo-36-1117-2018, 2018
Short summary
Short summary
This paper describes an algorithm that automatically detects vortices around the Earth's magnetosphere using the velocity field from simulated data. It also describes how the tool can be used to analyze further properties of the vortices including the velocity changes within their motion across the magnetosheath. Vortices developed at the magnetopause boundary contribute to the process of mass, momentum and energy transfer from the solar wind into the Earth's magnetosphere.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Run Shi, Wen Li, Qianli Ma, Seth G. Claudepierre, Craig A. Kletzing, William S. Kurth, George B. Hospodarsky, Harlan E. Spence, Geoff D. Reeves, Joseph F. Fennell, J. Bernard Blake, Scott A. Thaller, and John R. Wygant
Ann. Geophys., 36, 781–791, https://doi.org/10.5194/angeo-36-781-2018, https://doi.org/10.5194/angeo-36-781-2018, 2018
Christina Chu, Hui Zhang, David Sibeck, Antonius Otto, QiuGang Zong, Nick Omidi, James P. McFadden, Dennis Fruehauff, and Vassilis Angelopoulos
Ann. Geophys., 35, 443–451, https://doi.org/10.5194/angeo-35-443-2017, https://doi.org/10.5194/angeo-35-443-2017, 2017
Short summary
Short summary
Hot flow anomalies (HFAs) at Earth's bow shock were identified in Time History of Events and Macroscale Interactions During Substorms (THEMIS) satellite data from 2007 to 2009. The events were classified as young or mature and regular or spontaneous hot flow anomalies (SHFAs). HFA–SHFA occurrence decreases with distance upstream from the bow shock. HFAs are more prevalent for radial interplanetary magnetic fields and solar wind speeds from 550 to 600 kms−1.
Galina Korotova, David Sibeck, Mark Engebretson, John Wygant, Scott Thaller, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 34, 985–998, https://doi.org/10.5194/angeo-34-985-2016, https://doi.org/10.5194/angeo-34-985-2016, 2016
Zheng Xiang, Binbin Ni, Chen Zhou, Zhengyang Zou, Xudong Gu, Zhengyu Zhao, Xianguo Zhang, Xiaoxin Zhang, Shenyi Zhang, Xinlin Li, Pingbing Zuo, Harlan Spence, and Geoffrey Reeves
Ann. Geophys., 34, 493–509, https://doi.org/10.5194/angeo-34-493-2016, https://doi.org/10.5194/angeo-34-493-2016, 2016
Short summary
Short summary
We used 14 satellites(GOES, POES, THEMIS, RBSP, FENGYUN, REPTile) measurement to investigate the loss mechanisms of a electron dropout event during a intense solar wind dynamic pressure pulse. The observations demonstrated that magnetopause shadowing and atmospheric loss both play important roles in electron flux dropout. Moreover, substrom injections and convection strongly enhanced the energetic electron fluxes, which may delay other than avoid the occurrence of electron flux dropout.
V. A. Pilipenko, D. Yu. Klimushkin, P. N. Mager, M. J. Engebretson, and O. V. Kozyreva
Ann. Geophys., 34, 241–248, https://doi.org/10.5194/angeo-34-241-2016, https://doi.org/10.5194/angeo-34-241-2016, 2016
Short summary
Short summary
Many independent observations have shown that long-period electromagnetic waves (with periods of several minutes) are preferably observed inside the auroral oval. Here we examine theoretically the possibility of Alfven wave generation by fluctuating large-scale field-aligned currents which couple outer space and the auroral ionosphere. The elaborated model indeed confirms the feasibility of an additional mechanism of long-period wave excitation which can operate at auroral latitudes.
M. Gedalin, Y. Kushinsky, and M. Balikhin
Ann. Geophys., 33, 1011–1017, https://doi.org/10.5194/angeo-33-1011-2015, https://doi.org/10.5194/angeo-33-1011-2015, 2015
Short summary
Short summary
The magnetic profile of a laminar collisionless shock is described within two-fluid plasma theory. This description is valid only for the upstream part of the shock, before the ions begin to gyrate strongly. The emerging structure is fairly universal in a wide range of shock angles and mainly depends on the ratio of the dissipative to the dispersive length.
G. I. Korotova, D. G. Sibeck, K. Tahakashi, L. Dai, H. E. Spence, C. A. Kletzing, J. R. Wygant, J. W. Manweiler, P. S. Moya, K.-J. Hwang, and R. J. Redmon
Ann. Geophys., 33, 955–964, https://doi.org/10.5194/angeo-33-955-2015, https://doi.org/10.5194/angeo-33-955-2015, 2015
Short summary
Short summary
We studied localized Pc 4 pulsations in the pre-midnight inner magnetosphere observed by Van Allen Probe B on May 1 2013. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes result from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.
R. J. Boynton, M. A. Balikhin, and S. A. Billings
Ann. Geophys., 33, 405–411, https://doi.org/10.5194/angeo-33-405-2015, https://doi.org/10.5194/angeo-33-405-2015, 2015
Short summary
Short summary
Data-based models have been derived to forecast the >0.8MeV and >2MeV electron fluxes at geostationary Earth orbit. The models employ solar wind parameters as inputs to provide an estimate of the average electron flux for the following day, i.e. the 1-day-ahead forecast. The identified models are shown to provide a reliable forecast for both >0.8MeV and >2MeV electron fluxes and are capable of providing real-time warnings of when the electron fluxes will be dangerously high.
V. Pilipenko, V. Belakhovsky, M. J. Engebretson, A. Kozlovsky, and T. Yeoman
Ann. Geophys., 33, 395–404, https://doi.org/10.5194/angeo-33-395-2015, https://doi.org/10.5194/angeo-33-395-2015, 2015
Short summary
Short summary
Irregular broadband pulsations and narrow-band Pc5 waves are found to be a ubiquitous element of ULF activity in the dayside high-latitude region. To identify the ionospheric projections of the cusp, we use the width of return signal of the SuperDARN radar. The spatial structure of broadband Pc5-6 pulsation spectral power has been found to have a localized latitudinal peak, not under the cusp proper as was previously thought, but several degrees southward from the equatorward cusp boundary.
J. Marin, V. Pilipenko, O. Kozyreva, M. Stepanova, M. Engebretson, P. Vega, and E. Zesta
Ann. Geophys., 32, 319–331, https://doi.org/10.5194/angeo-32-319-2014, https://doi.org/10.5194/angeo-32-319-2014, 2014
F. R. Cardoso, W. D. Gonzalez, D. G. Sibeck, M. Kuznetsova, and D. Koga
Ann. Geophys., 31, 1853–1866, https://doi.org/10.5194/angeo-31-1853-2013, https://doi.org/10.5194/angeo-31-1853-2013, 2013
Y. M. Collado-Vega, R. L. Kessel, D. G. Sibeck, V. L. Kalb, R. A. Boller, and L. Rastaetter
Ann. Geophys., 31, 1463–1483, https://doi.org/10.5194/angeo-31-1463-2013, https://doi.org/10.5194/angeo-31-1463-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Waves and instabilities
Reflection of low-frequency fast magnetosonic waves at the local two-ion cutoff frequency: observation in the plasmasphere
Electron mirror branch: observational evidence from “historical” AMPTE-IRM and Equator-S measurements
An excitation mechanism for discrete chorus elements in the magnetosphere
Geng Wang, Mingyu Wu, Guoqiang Wang, Sudong Xiao, Irina Zhelavskaya, Yuri Shprits, Yuanqiang Chen, Zhengyang Zou, Zhonglei Gao, Wen Yi, and Tielong Zhang
Ann. Geophys., 39, 613–625, https://doi.org/10.5194/angeo-39-613-2021, https://doi.org/10.5194/angeo-39-613-2021, 2021
Short summary
Short summary
We investigate the reflection of magnetosonic (MS) waves at the local two-ion cutoff frequency in the outer plasmasphere, which is rarely reported. The observed wave signals demonstrate the reflection at the local two-ion cutoff frequency. From simulations, the waves with small incident angles are more likely to penetrate the thin layer where the group velocity reduces significantly before reflection. These results may help to predict the global distribution of MS waves.
Rudolf A. Treumann and Wolfgang Baumjohann
Ann. Geophys., 36, 1563–1576, https://doi.org/10.5194/angeo-36-1563-2018, https://doi.org/10.5194/angeo-36-1563-2018, 2018
Short summary
Short summary
Historical AMPTE-IRM and Equator-S (Eq-S) observations of magnetic mirror modes in the magnetosheath already support the probably coexistence of ion and electron branches on the mirror mode.
Peter Bespalov and Olga Savina
Ann. Geophys., 36, 1201–1206, https://doi.org/10.5194/angeo-36-1201-2018, https://doi.org/10.5194/angeo-36-1201-2018, 2018
Short summary
Short summary
A VLF chorus is a very intense electromagnetic plasma wave that is naturally excited as a succession of discrete emissions near the magnetic equatorial plane outside the plasmasphere. We introduce a mechanism of chorus excitation under conditions when known mechanisms become ineffective. This kind of excitation is related to the amplification of short electromagnetic pulses from the noise level even in a stable plasma. Obtained results can explain some important features of the chorus emissions.
Cited articles
Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain
Jr., W. R., Dotan, Y., Fennell, J. F., Fuentes, F. H., Galvan, R. M.,
George, J. S., Henderson, M. G., Lalic, M., Lin, A. Y., Looper, M. D.,
Mabry, D. J., Mazur, J. E., McCarthy, B., Nguyen, C. Q., O'Brien, T. P.,
Perez, M. A., Redding, M. T., Roeder, J. L., Salvaggio, D. J., Sorensen, G.
A., Spence, H. E., Yi, S., and Zakrzewski, M. P.: The Magnetic Electron Ion
Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes
(RBSP) Spacecraft, Space Sci. Rev., 179, 383–421,
https://doi.org/10.1007/s11214-013-9991-8, 2013.
Chen, L. and Hasegawa, A.: Kinetic theory of geomagnetic pulsations.1.
Internal excitations by energetic particles, J. Geophys. Res., 96,
1503–1512, https://doi.org/10.1029/90JA02346, 1991.
Cheng, C. Z. and Lin, C. S.: Eigenmode analysis of compressional waves in
the magnetosphere, Geophys. Res. Lett., 8, 884–887,
https://doi.org/10.1029/GL014i008p00884, 1987.
Cheng, C. Z. and Qian, O.: Theory of ballooning-mirror mode
instabilities for anisotropic pressure plasmas in the magnetosphere, J.
Geophys. Res., 99, 11193–11210, https://doi.org/10.1029/94JA00657, 1994.
Coleman Jr., P. J.: Geomagnetic storms at ATS 1, in: Intercorrelated
Satellite observations related to solar events, edited by: Manno, V. and Page, D. E., Intercorrelated Satellite Observations Related to Solar Events,
Astrophysics and Space Science Library, Vol 19, Springer, Dordrecht,
https://doi.org/10.1007/978-94-010-3278-0_18, 1970.
Constantinescu, O. D., Glassmeier, K.-H., Plaschke, F., Auster, U.,
Angelopoulos, V., Baumjohann, W., Fornaçon, K.-H., Georgescu, E.,
Larson. D., Magnes, W., McFadden, J. P., Nakamura, R., and Narita, Y.:
THEMIS observations of dusk side compressional Pc5 pulsations, J. Geophys.
Res., 114, A00C25, https://doi.org/10.1029/2008JA013519, 2009.
Cummings, W. D., O'Sullivan, R. J., and Coleman Jr., P. J.: Standing Alfvén
waves in the magnetosphere, J. Geophys. Res., 74, 778–793,
https://doi.org/10.1029/JA074i003p00778, 1969.
Dai, L., Takahashi, K., Wygant, J. R., Chen, L., Bonnell, J., Cattell, C.
A., Thaller, S., Kletzing, C., Smith, C. W., MacDowall, R. J., Baker, D. N.,
Blake, J. B., Fennell, J., Claudepierre, S., Funsten, H. O., Reeves, G. D., and
Spence, H. E.: Excitation of poloidal standing Alfven waves through drift
resonance wave-particle interaction, Geophys. Res. Lett., 40, 4127–4132,
https://doi.org/10.1002/grl.50800, 2013.
Elkington, S. R., Hudson, M .K., and Chan, A. A.: Resonant acceleration and
diffusion of outer zone electrons in an asymmetric geomagnetic field, J.
Geophys. Res., 108, 1116, https://doi.org/10.1029/2001JA009202, 2003.
Engebretson, M., Glassmeier, K.-H., Stellmacher, M., Hughes, W. J.,
amd Lühr, H.: The dependence of high-latitude PcS wave power on solar wind
velocity and on the phase of high-speed solar wind streams, J. Geophys.
Res., 103, 26271–26283, https://doi.org/10.1029/97JA03143, 1998.
Guo, X. C., Wang, C., and Hu, Y. Q.: Global MHD simulation of the
Kelvin-Helmholtz instability at the magnetopause for northward
interplanetary magnetic field, J. Geophys. Res., 115, A10218,
https://doi.org/10.1029/2009JA015193, 2010.
Hedgecock, P. C.: Giant Pc5 pulsations in the outer magnetosphere: A study
of HEOS-1 data, Planet. Space Sci., 24, 921–935,
https://doi.org/10.1016/0032-0633(76)90003-9, 1976.
Higbie, P. R., Baker, D. N., Zwickl, R. D., Bellian, R. D., Asbridge, J. R.,
Fennell, J. F., Wilken, B., and Arthur, C. W.: The Global Pc5 Event of
November 14–15, 1979, J. Geophys. Res., 87, 2337–2345,
https://doi.org/10.1029/JA087iA04p02337, 1982.
Higuchi, T., Kokubun, S., and Ohtani, S.: Harmonic structure of
compressional Pc5 pulsations at synchronous orbit, Geophys. Res. Lett., 13,
1101, https://doi.org/10.1029/GL013i011p01101, 1986.
Kepko, L. and Spence, H. E.: Observations of discrete, global
magnetospheric oscillations directly driven by solar wind density
variations, J. Geophys. Res., 108, 1257, https://doi.org/10.1029/2002JA009676, 2003.
Kivelson, M. G. and Southwood, D. J.: Charged particle behavior in
low-frequency geomagnetic pulsations, 4. Compressional waves, J. Geophys.
Res., 90, 1486–1498, https://doi.org/10.1029/JA090iA02p01486, 1985.
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B.,
Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., Connerney, J.,
Crawford, D., Dolan, J. S., Dvorsky R., Hospodarsky, G. B., Howard, J.,
Jordanova, V., Johnson, R. A., Kirchner, D. L., Mokrzycki, B., Needell, G.,
Odom, J., Mark, D., Pfaff Jr., Phillips, J. R., Piker, C. W., Remington, S.
L., Rowland, D., Santolik, O., Schnurr, R., Sheppard, D., Smith, C. W.,
Thorne, R. M., and Tyler, J.: The Electric and Magnetic Field Instrument
Suite and Integrated Science (EMFISIS) on RBSP, Space Sci. Rev., 179,
127–181, https://doi.org/10.1007/s11214-013-9993-6, 2013.
Korotova, G. I., Sibeck, D. G., Angelopoulos, V., and Walsh, W.: Themis
observations of compressional poloidal pulsations in the dawnside
magnetosphere: a case study, J. Geophys. Res., 118, 7665–7673,
https://doi.org/10.1002/2013JA019360, 2013.
Kokubun, S.: Statistical characteristics of Pc5 waves at geostationary
orbit, J. Geomag. Geoelectr., 37, 759–779,
https://doi.org/10.5636/jgg.37.759, 1985.
Kremser, G., Korth, A., Feier, J. A., Wilken, B., Gurevich, A. V., and
Amata, E.: Observations of quasi-periodic flux variations of energetic ions
and electron associated with Pc5 geomagnetic pulsations, J. Geophys. Res.,
86, 3345–3356, https://doi.org/10.1029/JA086iA05p03345, 1981.
Lanzerotti, L. J., Hasegawa, A., and Maclennan, C. G.: Drift mirror
instability in the magnetosphere: Particle and field oscillations and
electron heating, J. Geophys. Res., 74, 5565–5578, https://doi.org/10.1029/JA074i024p05565, 1969.
Lin, C. S., Parks, G. K., and Winckler J. R.: The 2-to12-min quasi-periodic
variation of 50-to 1000-keV trapped electron fluxes, J. Geophys. Res.,
81, 4517–4523, https://doi.org/10.1029/JA081i025p04517, 1976.
Lin, C. S. and Parks, G. K.: The coupling of Alfven and compressional waves,
J. Geophys. Res., 83, 2628–2636, https://doi.org/10.1029/JA083iA06p02628,
1978.
Liu, H., Zong, Q.-G., Zhou, X. Z., Fu, S. Y., Rankin, R., Wang, L.-H., Yuan
C. J., Wang, Y. F., Baker, D. N., Blake, J. B., and Kletzing, C. A.:
Compressional ULF wave modulation of energetic particles in the inner
magnetosphere, J. Geophys. Res., 121,
6262–6276, https://doi.org/10.1002/2016JA022706, 2016.
Lin, R. P., Anderson, K. A., Ashford, S., Carlson, C., Curtis, D.,
Ergun, R., Larson, D., McFadden, J., McCarthy, M., Parks, G. K.,
Rème, H., Bosqued, J. M., Coutelier, J., Cotin, F., Wenzel, K.-P.,
Sanderson, T. R., Henrion, J., Ronnet, J. C., and Paschmann, G.: A
three-dimensional (3-D) plasma and energetic particle experiment for the
Wind spacecraft of the ISTP/GGS mission, Space Sci. Rev., 71, 125–153,
https://doi.org/10.1007/BF00751328, 1995.
Lepping, R.P., Acuna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J. A.,
Schatfen, K. H., Mariani, E., Ness, N. E., Neubauer, E. M., Whang, Y. C.,
Byrnes J. B., Kennon R. S., Panetta, P. V., Scheifele J., and Worley, E. M.:
The WIND Magnetic field investigation, Space Sci. Rev., 71, 207–229,
https://doi.org/10.1007/BF00751330, 1995.
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and
Ukhorskiy, A.: Science objectives and rationale for the radiation belt storm
probes mission, Space Sci. Rev., 179, 3–27, https://doi.org/10.1007/s11214-012-9908-y,
2012.
Mitchell, D. G., Lanzerotti, L. J., Kim, C. K., Stokes, M., Ho, G., Cooper, S.,
Ukhorskiy, A., Manweiler, J. W., Jaskulek, J., Haggerty, D. K., Brandt, P.,
Sitnov, M., Keika, K., Hayes, J. R., Brown, L. E., Gurnee, R. S., Hutcheson,
J. C., Nelson, K. S., Paschalidis, N., Rossano, E., and Kerem, S.: Radiation belt
storm probes ion composition experiment (RBSPICE), Space Sci. Rev.,
179, 263–308, https://doi.org/10.1007/s11214-013-9965-x, 2013.
Motoba, T., Kikuchi, T., Okuzawa, T., and Yumoto, K.: Dynamical response of
the magnetosphere-ionosphere system to a solar wind dynamic pressure
oscillation, J. Geophys. Res., 108, 1206, https://doi.org/10.1029/ 2002JA009696,
2003.
Nagano, H. and Araki, T.: Long-duration Pc5 pulsations observed by
geostationary satellites, Geophys. Res. Lett., 10, 908–911, https://doi.org/10.1029/GL010i009p00908, 1983.
Pokhotelov, O. A., Pilipenko, V. A., Nezlina, I. M., Woch, J., and Kremser,
G.: Excitation of high β plasma instabilities at the geostationary
orbit: Theory and observations, Planet. Space Sci., 34, 695–712,
https://doi.org/10.1016/0032-0633(86)90124-8, 1986.
Samson, J. C., Harrold, B. G., Ruohoniemi, J. M., Greenwald, R. A., and
Walker, A. D. M.: Field line resonance associated with MHD waveguides in the
magnetosphere, Geophys. Res. Lett., 19, 441–444,
https://doi.org/10.1029/92GL00116, 1992.
Sarris, T. E., Liu, W., Li, X., Kabin, K., Talaat, E. R., Rankin, R.,
Angelopoulos, V., Bonnell, J., and Glassmeier, K.-H.: THEMIS observations of
the spatial extent and pressure-pulse excitation of field line resonances,
Geophys. Res. Lett., 37, L15104, https://doi.org/10.1029/2010GL044125, 2010.
Singer, H. J., Matheson, L., Grubb, R., Newman, A., and Bouwer, S. D.:
Monitoring space weather with the GOES magnetometers, in: SPIE Conference
Proceedings, edited by: Washwell, E. R., vol. 2812, GOES-8 and
Beyond SPIE, Bellingham, WA, USA, 299–308, 1996.
Shen, X.-C., Shi, Q., Wang, B., Zhang, H., Hudson, M. K., Nishimura, Y.,
Hartinger, M. D., Tian, A., Zong, Q. G., Rae, I. J., and
Degeling, A. W.: Dayside magnetospheric and ionospheric responses to a
foreshock transient on 25 June 2008: 1. FLR observed by satellite and
ground-based magnetometers, J. Geophys. Res.,
123, 6335–6346, https://doi.org/10.1029/2018JA025349, 2018.
Southwood, D. J., Dungey, J. W., and Etherington, R. J.: Bounce resonance
interaction between pulsations and trapped particles, Planet. Space Sci.,
17, 349–361, https://doi.org/10.1016/0032-0633(69)90068-3, 1969.
Southwood, D. J.: The behaviour of ULF waves and particles in the
magnetosphere, Planet. Space Sci., 21, 53–65,
https://doi.org/10.1016/0032-0633(73)90019-6, 1973.
Southwood, D. J.: Low Frequency Pulsation Generation by Energetic Particles,
Advances in Earth and Planetary Sciences, vol 11. Springer, Dordrecht,
75–88, https://doi.org/10.1007/978-94-009-8426-4_5, 1981.
Southwood, D. J. and Kivelson, M. G.: Mirror instability: 1. Physical
mechanism of linear instability, J. Geophys. Res., 98, 9181–9187,
https://doi.org/10.1029/92JA02837, 1993.
Spence, H. E., Reeves, G. D., Baker, D. N., Blake J. B., Bolton, M.,
Bourdarie, S., Chan, S. G. Claudpierre, S. G., Clemmons, J. H., Cravens, J.
P., Elkington, S. R., Fennell, J. F., Friedel, R. H. W., Funsten, H. O.,
Goldstein, J., Green, J. C., Guthrie, A., Henderson, M. G., Horne, R. B.,
Hudson, M. K., Jahn, J.-M., Jordanova, V. K., Kanekal, S. G., Klatt, B. W.,
Larsen, B. A., Li, X., MacDonald, E. A., Mann, I. R., Niehof, J., O'Brien,
T. P., Onsager, T. G., Salvaggio, D., Skoug, R. M., Smith, S. S., Suther, L.
L., Thomsen, M. F., and Thorne R. M.: Science goals and overview of the
Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA's
Radiation Belt Storm Probes (RBSP) Mission, Space Sci. Rev., 179, 311–336,
https://doi.org/10.1007/s11214013-0007-5, 2013.
Sugiura, M. and Wilson, C. R.: Oscillation of the geomagnetic field lines
and associated magnetic perturbations at conjugate points, J. Geophys. Res.,
69, 1211–1216, https://doi.org/10.1029/JZ069i007p01211, 1964.
Takahashi, K. and Ukhorskiy, A. Y.: Timing analysis of the relationship between solar wind parameters and geosynchronous Pc5 amplitude, J. Geophys. Res., 113, A12204, 1–13, https://doi.org/10.1029/2008JA013327, 2008.
Takahashi, K., McPherron, R. L., and Hughes, W. J.: Multispacecraft
observations of the harmonic structure of Pc3–4 magnetic pulsations, J.
Geophys. Res., 89, 6758–6774, https://doi.org/10.1029/JA089iA08p06758, 1984.
Takahashi, K., Higbie, P. R., and Baker, D. N.: Azimuthal propagation and
frequency characteristic of compressional Pc5 waves observed at
geostationary orbit, J. Geophys. Res., 90, 1473–1485,
https://doi.org/10.1029/JA090iA02p01473, 1985.
Takahashi, K., Fennell, J. F., Amata, E., and Higbie, P. R.: Field-aligned
structure of the storm time Pc5 wave of November 14–15, 1979, J. Geophys.
Res., 92, 5857–5864, https://doi.org/10.1029/JA092iA06p05857, 1987a.
Takahashi, K., Zanetti, L. J., Potemra, T. A., and Acuña, M. H.: A model
for the harmonic of compressional Pc5 waves, Geophys. Res. Let., 14,
363–366, https://doi.org/10.1029/GL014i004p00363, 1987b.
Takahashi, K., Cheng, C. Z., McEntire, R. W., and Kistler, L. M.:
Observation and theory of Pc5 waves with harmonically related transverse and
compressional components, J. Geophys Res., 95, 977–989,
https://doi.org/10.1029/JA095iA02p00977, 1990.
Takahashi, K., Glassmeier, K.-H., Angelopoulos, V., Bonnell, J., Nishimura,
Y., Singer, H. J., and Russell, C. T.: Multisatellite observations of a
giant pulsation event, J. Geophys. Res., 116, A11223,
https://doi.org/10.1029/2011JA016955, 2011.
Vaivads, A., Baumjohann, W., Haerendel, G., Nakamura, R., Kucharek, H.,
Klecker, B., Lessard, M.R., Kistler, L. M., Mukai, T., and Nishida, A:
Compressional Pc5 type pulsations in the morning plasma sheet, Ann.
Geophys., 19, 311–320, https://doi.org/10.1029/2001JA900042, 2001.
Walker, A. D. M., Greenwald, R. A., Korth, A., and Kremser, G.: STARE and GEOS 2
observations of a storm time Pc5 ULF pulsation, J. Geophys. Res., 87,
9135–9146, https://doi.org/10.1029/JA087iA11p09135, 1982.
Wang, B., Nishimura, Y., Hietala, H., Shen, X.-C., Shi, Q., Zhang, H.,
Lyons. L., Zou, Y., Angelopoulos, V., Ebihara, Y., and Weatherwax, A.:
Dayside magnetospheric and ionospheric responses to a foreshock transient on
25 June 2008: 2. 2-D evolution based on dayside auroral imaging, J. Geophys. Res., 123, 6347–6359,
https://doi.org/10.1029/2017JA024846, 2018.
Wygant, J. and Brenemean, A.: RBSP/EFW Home – University of Minnesota, available at: http://www.space.umn.edu/rbspefw-data, last access: 30 January 2020.
Wygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D., Ludlam, M., Turin, P., Harvey, P. R., Hochmann, R., Harps, K., Dalton, G., McCauley, J., Rachelson, W., Gordon, D., Donakowski, B., Shultz, C., Smith, C., Diaz-Aguado, M., Fischer, J., Heavner, S., Berg, P., Malaspina, D. M., Bolton, M. K., Hudson, M., Strangeway, R. J., Baker, D. N., Li, X., Albert, J., Foster, J. C., Chaston, C. C., Mann, I., Donovan, E., Cully, C. M., Cattell, C. A., Krasnoselskikh, V., Kersten, K., Breneman, A., and Tao, J. B.: The electric field and waves instruments on the radiation belt storm probes mission, Space Sci. Rev., 179, 183–220, https://doi.org/10.1007/s11214-013-0013-7, 2013.
Zhang, X. Y., Zong, Q.-G., Wang, Y. F., Zhang, H., Xie, L., Fu, S. Y., Yuan,
C. J., Yue, C., Yang, B., and Pu, Z. Y.: ULF waves excited by
negative/positive solar wind dynamic pressure impulses at geosynchronous
orbit, J. Geophys. Res., 115, A10221, https://doi.org/10.1029/2009JA015016,
2010.
Zhu, X. M. and Kivelson, M. G.: Compressional ULF waves in the outer
magnetosphere: 1. Statistical study. J. Geophys. Res., 96, 19451–19467,
https://doi.org/10.1029/91JA01860, 1991.
Short summary
We used multipoint magnetic field, electric field, plasma, and energetic particle observations to study the spatial, temporal, and spectral characteristics of compressional Pc5 pulsations observed deep within the magnetosphere at the end of a strong magnetic storm. We investigated the mode of the waves and their nodal structure. The energetic particles responded directly to the compressional Pc5 pulsations. We interpret the compressional Pc5 waves in terms of drift-mirror instability.
We used multipoint magnetic field, electric field, plasma, and energetic particle observations...