Articles | Volume 38, issue 1
https://doi.org/10.5194/angeo-38-123-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-123-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Magnetospheric Multiscale observations of energetic oxygen ions at the duskside magnetopause during intense substorms
Chen Zeng
State Key Laboratory of Space Weather, National Space Science Center,
Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Suping Duan
CORRESPONDING AUTHOR
State Key Laboratory of Space Weather, National Space Science Center,
Chinese Academy of Sciences, Beijing, China
Chi Wang
CORRESPONDING AUTHOR
State Key Laboratory of Space Weather, National Space Science Center,
Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
State Key Laboratory of Space Weather, National Space Science Center,
Chinese Academy of Sciences, Beijing, China
Stephen Fuselier
Southwest Research Institute, San Antonio, TX, USA
Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
James Burch
Southwest Research Institute, San Antonio, TX, USA
Roy Torbert
Space Science Center, University of New Hampshire, Durham, NH, USA
Barbara Giles
NASA, Goddard Space Flight Center, Greenbelt, MD, USA
Christopher Russell
Department of Earth and Space Sciences, University of California Los Angeles, IGPP/EPSS, Los Angeles,
CA, USA
Related authors
No articles found.
Xiao Liu, Jiyao Xu, Jia Yue, You Yu, Paulo P. Batista, Vania F. Andrioli, Zhengkuan Liu, Tao Yuan, Chi Wang, Ziming Zou, Guozhu Li, and James M. Russell III
Earth Syst. Sci. Data, 13, 5643–5661, https://doi.org/10.5194/essd-13-5643-2021, https://doi.org/10.5194/essd-13-5643-2021, 2021
Short summary
Short summary
Based on the gradient balance wind theory and the SABER observations, a dataset of monthly mean zonal wind has been developed at heights of 18–100 km and latitudes of 50° Sndash;50° N from 2002 to 2019. The dataset agrees with the zonal wind from models (MERRA2, UARP, HWM14) and observations by meteor radar and lidar at seven stations. The dataset can be used to study seasonal and interannual variations and can serve as a background for wave studies of tides and planetary waves.
Zhaohai He, Jiyao Xu, Ilan Roth, Chi Wang, and Lei Dai
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-4, https://doi.org/10.5194/angeo-2021-4, 2021
Revised manuscript not accepted
Short summary
Short summary
We presented sharp descent in proton fluxes is accompanied by the corresponding depression of SYM-H index, with a one-to-one correspondence, regardless of the storm intensity in our previous work [Xu et al., 2019]. This paper is a further study of the possible mechanisms, and to quantitified evaluate the effect of full adiabatic changes. Inner belt is not very stable as previous announced especially for the out zone of the inner belt. It is necessary to survey characteristics of protons.
Alexander Lukin, Anton Artemyev, Evgeny Panov, Rumi Nakamura, Anatoly Petrukovich, Robert Ergun, Barbara Giles, Yuri Khotyaintsev, Per Arne Lindqvist, Christopher Russell, and Robert Strangeway
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-76, https://doi.org/10.5194/angeo-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
We have collected statistics of 81 fast plasma flow events in the magnetotail with clear MMS observations of kinetic Alfven waves (KAWs). We show that KAWs electric field magnitudes correlates with thermal/subthermal electron flux anisotropy: wider energy range of electron anisotropic population corresponds to higher KAWs’ electric field intensity. These results indicate on an important role of KAWs in production of thermal field-aligned electron population of the Earth’s magnetotail.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Michael Gedalin, Xiaoyan Zhou, Christopher T. Russell, and Vassilis Angelopoulos
Ann. Geophys., 38, 17–26, https://doi.org/10.5194/angeo-38-17-2020, https://doi.org/10.5194/angeo-38-17-2020, 2020
Short summary
Short summary
High-resolution measurements of the magnetic profiles of collisionless shocks in space show that large amplitude oscillations appear on the high-magnetic field side. The positions and relative amplitude of these oscillations are shown theoretically to vary in accordance with the potential jump at the shock crossing. The theoretically predicted variety is confirmed by observations.
Claudia M. N. Candido, Jiankui Shi, Inez S. Batista, Fabio Becker-Guedes, Emília Correia, Mangalathayil A. Abdu, Jonathan Makela, Nanan Balan, Narayan Chapagain, Chi Wang, and Zhengkuan Liu
Ann. Geophys., 37, 657–672, https://doi.org/10.5194/angeo-37-657-2019, https://doi.org/10.5194/angeo-37-657-2019, 2019
Short summary
Short summary
This study concerns postmidnight ionospheric irregularities observed during low solar activity conditions. We analyze data from digisondes and optical imaging systems located in an equatorial region over Brazil. The results show that they occur under unfavorable and unexpected conditions. This work can be useful for space weather forecasting during low solar activity.
Xiaoying Sun, Weining William Liu, and Suping Duan
Ann. Geophys., 37, 289–297, https://doi.org/10.5194/angeo-37-289-2019, https://doi.org/10.5194/angeo-37-289-2019, 2019
Ching-Chang Cheng, Christopher T. Russell, Ian R. Mann, Eric Donovan, and Wolfgang Baumjohann
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-116, https://doi.org/10.5194/angeo-2018-116, 2018
Preprint withdrawn
Short summary
Short summary
The comparison of geomagnetic active and quite events of double substorm onsets responsive to IMF variations shows that the occurrence sequence of all required substorm signatures looks the same and not different for small and large Kp. Double substorm onsets responsive to IMF variations can be characterized with two-stage magnetic dipolarizations in the magnetotail, two auroral breakups of which the first occurring at lower latitudes than the second, and two consecutive Pi2-Ps6 band pulsations.
Shiyong Huang, Pufan Zhao, Jiansen He, Zhigang Yuan, Meng Zhou, Huishan Fu, Xiaohua Deng, Ye Pang, Dedong Wang, Xiongdong Yu, Haimeng Li, Roy Torbert, and James Burch
Ann. Geophys., 36, 1275–1283, https://doi.org/10.5194/angeo-36-1275-2018, https://doi.org/10.5194/angeo-36-1275-2018, 2018
Binbin Tang, Wenya Li, Chi Wang, Lei Dai, Yuri Khotyaintsev, Per-Arne Lindqvist, Robert Ergun, Olivier Le Contel, Craig Pollock, Christopher Russell, and James Burch
Ann. Geophys., 36, 879–889, https://doi.org/10.5194/angeo-36-879-2018, https://doi.org/10.5194/angeo-36-879-2018, 2018
Short summary
Short summary
The Kelvin–Helmholtz waves are believed to be an effective way to transport solar wind mass and energy into Earth's magnetosphere. In this study, we show that the ion-scale flux rope generated at the trailing edge of Kelvin–Helmholtz waves by multiple X-line reconnection could be directly related to this transfer process. The lower hybrid drift waves detected at the edges of the flux rope can also contribute to this process and then affect the revolution of the flux rope.
Shangchun Teng, Xin Tao, Wen Li, Yi Qi, Xinliang Gao, Lei Dai, Quanming Lu, and Shui Wang
Ann. Geophys., 36, 867–878, https://doi.org/10.5194/angeo-36-867-2018, https://doi.org/10.5194/angeo-36-867-2018, 2018
Short summary
Short summary
This paper performs a statistical study of the spatial distribution and source region size along a filed line of both rising tone and falling tone whistler waves based on the Van Allen Probes data. The results suggest that both types of chorus waves are generated near the equatorial plane, roughly consistent with previous theoretical estimates. The work should be useful to further understand the generation mechanism of chorus waves.
David Fischer, Werner Magnes, Christian Hagen, Ivan Dors, Mark W. Chutter, Jerry Needell, Roy B. Torbert, Olivier Le Contel, Robert J. Strangeway, Gernot Kubin, Aris Valavanoglou, Ferdinand Plaschke, Rumi Nakamura, Laurent Mirioni, Christopher T. Russell, Hannes K. Leinweber, Kenneth R. Bromund, Guan Le, Lawrence Kepko, Brian J. Anderson, James A. Slavin, and Wolfgang Baumjohann
Geosci. Instrum. Method. Data Syst., 5, 521–530, https://doi.org/10.5194/gi-5-521-2016, https://doi.org/10.5194/gi-5-521-2016, 2016
Short summary
Short summary
This paper describes frequency and timing calibration, modeling and data processing and calibration for MMS magnetometers, resulting in a merged search choil and fluxgate data product.
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
L. Dai, C. Wang, V. Angelopoulos, and K.-H. Glassmeier
Ann. Geophys., 33, 1147–1153, https://doi.org/10.5194/angeo-33-1147-2015, https://doi.org/10.5194/angeo-33-1147-2015, 2015
Short summary
Short summary
Magnetic reconnection is a ubiquitous process that drives global-scale dynamics in plasmas. For reconnection to proceed, both ion and electrons must be unfrozen in a localized diffusion region. By analyzing in situ measurements, we show that the non-gyrotropic ion pressure is mainly responsible for breaking the ion frozen-in condition in reconnection. The reported non-gyrotropic ion pressure tensor can specify the reconnection electric field that controls how quickly reconnection proceeds.
I. Richter, C. Koenders, H.-U. Auster, D. Frühauff, C. Götz, P. Heinisch, C. Perschke, U. Motschmann, B. Stoll, K. Altwegg, J. Burch, C. Carr, E. Cupido, A. Eriksson, P. Henri, R. Goldstein, J.-P. Lebreton, P. Mokashi, Z. Nemeth, H. Nilsson, M. Rubin, K. Szegö, B. T. Tsurutani, C. Vallat, M. Volwerk, and K.-H. Glassmeier
Ann. Geophys., 33, 1031–1036, https://doi.org/10.5194/angeo-33-1031-2015, https://doi.org/10.5194/angeo-33-1031-2015, 2015
Short summary
Short summary
We present a first report on magnetic field measurements made in the coma of comet 67P/C-G in its low-activity state. The plasma environment is dominated by quasi-coherent, large-amplitude, compressional magnetic field oscillations around 40mHz, differing from the observations at strongly active comets where waves at the cometary ion gyro-frequencies are the main feature. We propose a cross-field current instability associated with the newborn cometary ions as a possible source mechanism.
P. Kajdič, X. Blanco-Cano, N. Omidi, K. Meziane, C. T. Russell, J.-A. Sauvaud, I. Dandouras, and B. Lavraud
Ann. Geophys., 31, 2163–2178, https://doi.org/10.5194/angeo-31-2163-2013, https://doi.org/10.5194/angeo-31-2163-2013, 2013
J. J. Zhang, C. Wang, B. B. Tang, and H. Li
Ann. Geophys., 31, 489–501, https://doi.org/10.5194/angeo-31-489-2013, https://doi.org/10.5194/angeo-31-489-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetopause, cusp, and boundary layers
Investigation of the occurrence of significant deviations in the magnetopause location: Solar wind and foreshock effects
Magnetopause as conformal mapping
Dayside magnetopause reconnection and flux transfer events under radial interplanetary magnetic field (IMF): BepiColombo Earth-flyby observations
Plasma transport into the duskside magnetopause caused by Kelvin–Helmholtz vortices in response to the northward turning of the interplanetary magnetic field observed by THEMIS
Statistical analysis of magnetopause crossings at lunar distances
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
EGUsphere, https://doi.org/10.5194/egusphere-2024-2956, https://doi.org/10.5194/egusphere-2024-2956, 2024
Short summary
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind - the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
Yasuhito Narita, Simon Toepfer, and Daniel Schmid
Ann. Geophys., 41, 87–91, https://doi.org/10.5194/angeo-41-87-2023, https://doi.org/10.5194/angeo-41-87-2023, 2023
Short summary
Short summary
Magnetopause is a shielding boundary of planetary magnetic field. Many mathematical models have been proposed to describe or to reproduce the magnetopause location, but they are restricted to the real-number functions. In this work, we analytically develop a magnetopause model in the complex-number domain, which is advantageous in deforming the magnetopause shape in a conformal (angle-preserving) way, and is suited to compare different models or map one model onto another.
Weijie Sun, James A. Slavin, Rumi Nakamura, Daniel Heyner, Karlheinz J. Trattner, Johannes Z. D. Mieth, Jiutong Zhao, Qiu-Gang Zong, Sae Aizawa, Nicolas Andre, and Yoshifumi Saito
Ann. Geophys., 40, 217–229, https://doi.org/10.5194/angeo-40-217-2022, https://doi.org/10.5194/angeo-40-217-2022, 2022
Short summary
Short summary
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's Earth flyby. FTE-type flux ropes are a well-known feature of magnetic reconnection on the magnetopause, and they can be used to constrain the location of reconnection X-lines. Our study suggests that the magnetopause X-line passed BepiColombo from the north as it traversed the magnetopause. Moreover, our results also strongly support coalescence creating larger flux ropes by combining smaller ones.
Guang Qing Yan, George K. Parks, Chun Lin Cai, Tao Chen, James P. McFadden, and Yong Ren
Ann. Geophys., 38, 263–273, https://doi.org/10.5194/angeo-38-263-2020, https://doi.org/10.5194/angeo-38-263-2020, 2020
Short summary
Short summary
We present (1) K–H vortices in direct response to the northward turning of the interplanetary magnetic field (IMF); (2) solar wind transport into the magnetosphere caused by the K–H vortices, involving both ion and electron fluxes; and (3) typical portraits of the ion and electron fluxes in the regions of plasma transport. The unique characteristics may complement existing observations and enhance our understanding of the K–H vortices and transport process.
Johannes Z. D. Mieth, Dennis Frühauff, and Karl-Heinz Glassmeier
Ann. Geophys., 37, 163–169, https://doi.org/10.5194/angeo-37-163-2019, https://doi.org/10.5194/angeo-37-163-2019, 2019
Short summary
Short summary
The magnetopause (MP) is the primary interaction region between solar wind and the magnetic field of planet Earth and understanding of its behaviour also helps to better understand space weather. One famous model of the MP is the Shue et al. model, designed for the dayside and near-Earth situation. We take data of the ARTEMIS mission orbiting the moon and compare the MP position and shape to the model. We find differences in the location prediction but good agreement for the MP normal direction.
Cited articles
Birn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J.,
Belian, R. D., and Hesse, M.: Substorm ion injections: Geosynchronous
observations and test particle orbits in three-dimensional dynamic MHD
fields, J. Geophys. Res., 102, 2325–2341,
https://doi.org/10.1029/96JA03032, 1997.
Bouhram, M., Klecker, B., Paschmann, G., Haaland, S., Hasegawa, H., Blagau, A., Rème, H., Sauvaud, J.-A., Kistler, L. M., and Balogh, A.: Survey of energetic O+ ions near the dayside mid-latitude magnetopause with Cluster, Ann. Geophys., 23, 1281–1294, https://doi.org/10.5194/angeo-23-1281-2005, 2005.
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L.: Magnetospheric
Multiscale Overview and Science Objectives, Space Sci. Rev.,
199, 5–21, https://doi.org/10.1007/s11214-015-0164-9, 2016.
Daglis, I. A. and Axford, W. I.: Fast ionospheric response to enhanced
activity in geospace: Ion feeding of the inner magnetotail, J.
Geophys. Res., 101, 5047–5065,
https://doi.org/10.1029/95JA02592, 1996.
Daglis, I. A., Paschalidis, N. P., Sarris, E. T., Axford, W. I., Kremser, G.,
Wilken, B., and Gloeckler, G.: Statistical features of the substorm
expansion phase as observed by AMPTE/CCE spacecraft, in: Magnetospheric
Substorms, edited by: Kan, J. R., Potemra,
T. A., Kokubun, S., and Iijima, T., Geophys. Monogr. Ser, Vol. 64, AGU, Washington, D.C., 323–332,
https://doi.org/10.1029/GM064p0323, 1991.
Daglis, I. A., Livi, S., Sarris, E. T., and Wilken, B.: Energy density of
ionospheric and solar wind origin ions in the near-Earth magnetotail during
substorms, J. Geophys. Res., 99, 5691–5703,
https://doi.org/10.1029/93JA02772, 1994.
Dai, L., Wygant, J. R., Cattell, C. A., Thaller, S., Kersten, K., Breneman,
A., Tang, X., Friedel, R. H., Claudepierre, S. G., and Tao, X.: Evidence for
injection of relativistic electrons into the Earth's outer radiation belt
via intense substorm electric fields, Geophys. Res. Lett., 41, 1133–1141,
https://doi.org/10.1002/2014GL059228, 2014.
Dai, L., Wang, C., Duan, S., He, Z., Wygant, J. R., Cattell, C. A., Tao, X.,
Su, Z., Kletzing, C., Baker, D. N., Li, X., Malaspina, D., Blake, J. B.,
Fennell, J., Claudepierre, S., Turner, D. L., Reeves, G. D., Funsten, H. O.,
Spence, H. E., Angelopoulos, V., Fruehauff, D., Chen, L., Thaller, S.,
Breneman, A., and Tang, X.: Near-Earth injection of MeV electrons associated
with intense dipolarization electric fields: Van Allen Probes observations,
Geophys. Res. Lett., 42, 6170–6179,
https://doi.org/10.1002/2015GL064955, 2015.
Duan, S. P., Liu, Z. X., Liang, J., Zhang, Y. C., and Chen, T.: Multiple
magnetic dipolarizations observed by THEMIS during a substorm, Ann.
Geophys., 29, 331–339, https://doi.org/10.5194/angeo-29-331-2011, 2011.
Duan, S. P., Dai, L., Wang, C., Liang, J., Lui, A. T. Y., Chen, L. J., He,
Z. H., Zhang, Y. C., and Angelopoulos, V.: Evidence of kinetic Alfvén
eigenmode in the near-Earth magnetotail during substorm expansion phase, J.
Geophys. Res.-Space, 121, 4316–4330,
https://doi.org/10.1002/2016JA022431, 2016.
Duan, S., Dai, L., Wang, C., He, Z., Cai, C., Zhang, Y. C., Dandouras, I.,
Reme, H., André, M., and Khotyaintsev, Y. V.: Oxygen Ions O+
Energized by Kinetic Alfvén Eigenmode During Dipolarizations of Intense
Substorms, J. Geophys. Res.-Space, 122,
11256–11273, https://doi.org/10.1002/2017JA024418, 2017.
Ebihara, Y., Fok, M.-C., Immel, T. J., and Brandt, P. C.: Rapid decay of
storm time ring current due to pitch angle scattering in curved field
line, J. Geophys. Res., 116, A03218, https://doi.org/10.1029/2010JA016000,
2011.
Elliott, H. A., Comfort, R. H., Craven, P. D., Chandler, M. O., and Moore,
T. E.: Solar wind influence on the oxygen content of ion outflow in the
high-altitude polar cap during solar minimum conditions, J. Geophys.
Res., 106, 6067–6084, https://doi.org/10.1029/2000JA003022, 2001.
Ergun, R. E., Tucker, S., Westfall, J., Goodrich, K. A., Malaspina, D. M.,
Summers, D., Wallace, J., Karlsson, M., Mack, J., Brennan, N., Pyke, B.,
Withnell, P., Torbert, R., Macri, J., Rau, D., Dors, I., Needell, J.,
Lindqvist, P.-A., Olsson, G., and Cully, C. M.: The Axial Double Probe and
Fields Signal Processing for the MMS Mission, Space Sci. Rev.,
199, 167–188, https://doi.org/10.1007/s11214-014-0115-x, 2016.
Fok, M., Moore, T. E., Brandt, P. C., Delcourt, D. C., Slinker, S. P., and
Fedder, J. A.: Impulsive enhancements of oxygen ions during substorms,
J. Geophys. Res., 111, A10222,
https://doi.org/10.1029/2006JA011839, 2006.
Fuselier, S. A., Klumpar, D. M., Peterson, W. K., and Shelley, E. G.: Direct
injection of ionospheric O+ into the dayside low latitude boundary
layer, Geophys. Res. Lett., 16, 1121–1124,
https://doi.org/10.1029/GL016i010p01121, 1989.
Fuselier, S. A., Klumpar, D. M., and Shelley, E. G.: Ion Reflection and
transmission during reconnection at the Earth's subsolar magnetopause,
Geophys. Res. Lett., 18, 139–142,
https://doi.org/10.1029/90GL02676, 1991.
Fuselier, S. A., Burch, J. L., Cassak, P. A., Goldstein, J., Gomez, R. G.,
Goodrich, K., Lewis, W. S., Malaspina, D., Mukherjee, J., Nakamura, R.,
Petrinec, S. M., Russell, C. T., Strangeway, R. J., Torbert, R. B.,
Trattner, K. J., and Valek, P.: Magnetospheric ion influence on magnetic
reconnection at the duskside magnetopause, Geophys. Res. Lett.,
43, 1435–1442, https://doi.org/10.1002/2015GL067358, 2016a.
Fuselier, S. A., Lewis, W. S., Schiff, C., Ergun, R., Burch, J. L.,
Petrinec, S. M., and Trattner, K. J.: Magnetospheric Multiscale Science
Mission Profile and Operations, Space Sci. Rev., 199, 77–103,
https://doi.org/10.1007/s11214-014-0087-x, 2016b.
Fuselier, S. A., Trattner, K. J., Petrinec, S. M., Denton, M. H.,
Toledo-Redondo, S., André, M., Aunai, N., Chappell, C. R., Glocer, A.,
Haaland, S., Hesse, M., Kistler, L. M., Lavraud, B., Li, W., Moore, T. E.,
Graham, D., Alm, L., Tenfjord, P., Dargent, J., Vines, S. K., Nykyri, K.,
Burch, J. L., and Strangeway, R. J.: Mass-loading the Earth's dayside
magnetopause boundary layer and its effect on magnetic reconnection,
Geophys. Res. Lett., 46, 6204–6213, https://doi.org/10.1029/2019GL082384, 2019.
Ganushkina, N. Yu., Pulkkinen, T. I., and Fritz, T.: Role of substorm-associated impulsive electric fields in the ring current development during storms, Ann. Geophys., 23, 579–591, https://doi.org/10.5194/angeo-23-579-2005, 2005.
Goddard Space Flight Center: Coordinated Data Analysis Web (CDAWeb), available at: http://cdaweb.gsfc.nasa.gov/, last access: 25 January 2020.
Kim, K. C., Lee, D.-Y., Lee, E. S., Choi, C. R., Kim, K. H., Moon, Y.
J., Cho, K. S., Park, Y. D., and Han, W. Y.: A new perspective on the role
of the solar wind dynamic pressure in the ring current particle loss through
the magnetopause, J. Geophys. Res., 110, A09223,
https://doi.org/10.1029/2005JA011097, 2005.
Kronberg, E. A., Haaland, S. E., Daly, P. W., Grigorenko, E. E., Kistler, L.
M., Fränz, M., and Dandouras, I.: Oxygen and hydrogen ion abundance in
the near-Earth magnetosphere: Statistical results on the response to the
geomagnetic and solar wind activity conditions, J. Geophys. Res., 117,
A12208, https://doi.org/10.1029/2012JA018071, 2012.
Kronberg, E. A., Ashour-Abdalla, M., Dandouras, I., Delcourt, D. C.,
Grigorenko, E. E., Kistler, L. M., Kuzichev, I. V., Liao, J., Maggiolo, R.,
Malova, H. V., Orlova, K. G., Peroomian, V., Shklyar, D. R., Shprits, Y. Y.,
Welling, D. T., and Zelenyi, L. M.: Circulation of Heavy Ions and Their
Dynamical Effects in the Magnetosphere: Recent Observations and Models,
Space Sci. Rev., 184, 173–235,
https://doi.org/10.1007/s11214-014-0104-0, 2014.
Kronberg, E. A., Grigorenko, E. E., Haaland, S. E., Daly, P. W., Delcourt,
D. C., Luo, H., Kistler, L. M., and Dandouras, I.: Distribution of energetic
oxygen and hydrogen in the near-Earth plasma sheet, J. Geophys.
Res.-Space, 120, 3415–3431,
https://doi.org/10.1002/2014JA020882, 2015.
Lennartsson, W. and Shelley, E. G.: Survey of 0.1- to 16-keV/e plasma
sheet ion composition, J. Geophys. Res., 91, 3061–3076,
https://doi.org/10.1029/JA091iA03p03061, 1986.
Li, X., Hudson, M., Chan, A., and Roth, I.: Loss of ring current
O+ ions due to interaction with Pc 5 waves, J. Geophys.
Res., 98, 215–231, https://doi.org/10.1029/92JA01540, 1993.
Liao, J., Kistler, L. M., Mouikis, C. G., Klecker, B., Dandouras, I.,
and Zhang, J.-C.: Statistical study of O+ transport from the cusp to
the lobes with Cluster CODIF data, J. Geophys. Res., 115, A00J15,
https://doi.org/10.1029/2010JA015613, 2010.
Lindqvist, P.-A., Olsson, G., Torbert, R. B., King, B., Granoff, M., Rau,
D., Needell, G., Turco, S., Dors, I., Beckman, P., Macri, J., Frost, C.,
Salwen, J., Eriksson, A., Åhlén, L., Khotyaintsev, Y. V., Porter,
J., Lappalainen, K., Ergun, R. E., Wermeer, W., and Tucker, S.: The
Spin-Plane Double Probe Electric Field Instrument for MMS, Space Science
Reviews, 199(1–4), 137–165, https://doi.org/10.1007/s11214-014-0116-9,
2016.
Liu, Y. H., Mouikis, C. G., Kistler, L. M., Wang, S., Roytershteyn, V.,
and Karimabadi, H.: The heavy ion diffusion region in magnetic reconnection
in the Earth's magnetotail, J. Geophys. Res.-Space, 120, 3535–3551, https://doi.org/10.1002/2015JA020982, 2015.
Lui, A. T. Y., Liou, K., Nosé, M., Ohtani, S., Williams, D. J., Mukai,
T., Tsuruda, K., and Kokubun, S.: Near-Earth dipolarization: Evidence for a
non-MHD process, Geophys. Res. Lett., 26, 2905–2908,
https://doi.org/10.1029/1999GL003620, 1999.
Luo, H., Kronberg, E. A., Nykyri, K., Trattner, K. J., Daly, P. W., Chen, G.
X., Du, A. M., and Ge, Y. S.: IMF dependence of energetic oxygen and
hydrogen ion distributions in the near-Earth magnetosphere: Dawn-Dusk
Asymmetry of Energetic Ions, J. Geophys. Res.-Space,
122, 5168–5180, https://doi.org/10.1002/2016JA023471, 2017.
MMS Science Data Center: MMS SDC, available at: https://lasp.colorado.edu/mms/sdc/public/, last access: 25 January 2020.
Nosé, M., Lui, A. T. Y., Ohtani, S., Mauk, B. H., McEntire, R. W.,
Williams, D. J., Mukai, T., and Yumoto, K.: Acceleration of oxygen ions of
ionospheric origin in the near-Earth magnetotail during substorms, J. Geophys. Res.-Space, 105, 7669–7677,
https://doi.org/10.1029/1999JA000318, 2000.
Ohtani, S., Nosé, M., Christon, S. P., and Lui, A. T. Y.: Energetic
O+ and H+ ions in the plasma sheet: Implications for the transport
of ionospheric ions, J. Geophys. Res.-Space, 116,
A10211, https://doi.org/10.1029/2011JA016532, 2011.
Ono, Y., Nosé, M., Christon, S. P., and Lui, A. T. Y.: The role of
magnetic field fluctuations in nonadiabatic acceleration of ions during
dipolarization, J. Geophys. Res.-Space, 114, A05209,
https://doi.org/10.1029/2008JA013918, 2009.
Phan, T. D., Dunlop, M. W., Paschmann, G., Klecker, B., Bosqued, J. M., Rème, H., Balogh, A., Twitty, C., Mozer, F. S., Carlson, C. W., Mouikis, C., and Kistler, L. M.: Cluster observations of continuous reconnection at the magnetopause under steady interplanetary magnetic field conditions, Ann. Geophys., 22, 2355–2367, https://doi.org/10.5194/angeo-22-2355-2004, 2004.
Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y.,
Omoto, T., Avanov, L., Barrie, A., Coffey, V., Dorelli, J., Gershman, D.,
Giles, B., Rosnack, T., Salo, C., Yokota, S., Adrian, M., Aoustin, C.,
Auletti, C., Aung, S., Bigio, V., Cao, N., Chandler, M., Chornay, D.,
Christian, K., Clark, G., Collinson, G., Corris, T., De Los Santos, A.,
Devlin, R., Diaz, T., Dickerson, T., Dickson, C., Diekmann, A., Diggs, F.,
Duncan, C., Figueroa-Vinas, A., Firman, C., Freeman, M., Galassi, N.,
Garcia, K., Goodhart, G., Guererro, D., Hageman, J., Hanley, J., Hemminger,
E., Holland, M., Hutchins, M., James, T., Jones, W., Kreisler, S., Kujawski,
J., Lavu, V., Lobell, J., LeCompte, E., Lukemire, A., MacDonald, E.,
Mariano, A., Mukai, T., Narayanan, K., Nguyan, Q., Onizuka, M., Paterson,
W., Persyn, S., Piepgrass, B., Cheney, F., Rager, A., Raghuram, T., Ramil,
A., Reichenthal, L., Rodriguez, H., Rouzaud, J., Rucker, A., Saito, Y.,
Samara, M., Sauvaud, J.-A., Schuster, D., Shappirio, M., Shelton, K., Sher,
D., Smith, D., Smith, K., Smith, S., Steinfeld, D., Szymkiewicz, R.,
Tanimoto, K., Taylor, J., Tucker, C., Tull, K., Uhl, A., Vloet, J., Walpole,
P., Weidner, S., White, D., Winkert, G., Yeh, P.-S., and Zeuch, M.: Fast
Plasma Investigation for Magnetospheric Multiscale, Space Sci. Rev.,
199, 331–406, https://doi.org/10.1007/s11214-016-0245-4, 2016.
Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn,
D., Fischer, D., Le, G., Leinweber, H. K., Leneman, D., Magnes, W., Means,
J. D., Moldwin, M. B., Nakamura, R., Pierce, D., Plaschke, F., Rowe, K. M.,
Slavin, J. A., Strangeway, R. J., Torbert, R., Hagen, C., Jernej, I.,
Valavanoglou, A., and Richter, I.: The Magnetospheric Multiscale
Magnetometers, Space Sci. Rev., 199, 189–256,
https://doi.org/10.1007/s11214-014-0057-3, 2016.
Shue, J.-H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K.,
Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R.,
and Kawano, H.: Magnetopause location under extreme solar wind conditions,
J. Geophys. Res.-Space, 103, 17691–17700,
https://doi.org/10.1029/98JA01103, 1998.
Sonnerup, B. U., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel,
G., Bame, S. J., Asbridge, J. R., Gosling, J. T., and Russell, C.
T.: Evidence for magnetic field reconnection at the Earth's magnetopause, J.
Geophys. Res., 86, 10049–10067,
https://doi.org/10.1029/JA086iA12p10049, 1981.
Slapak, R., Nilsson, H., Westerberg, L. G., and Eriksson, A.: Observations
of oxygen ions in the dayside magnetosheath associated with southward
IMF, J. Geophys. Res., 117, A07218, https://doi.org/10.1029/2012JA017754,
2012.
Slapak, R., Nilsson, H., Westerberg, L. G., and Larsson, R.: O+ transport in the dayside magnetosheath and its dependence on the IMF direction, Ann. Geophys., 33, 301–307, https://doi.org/10.5194/angeo-33-301-2015, 2015.
Tang, B. and Wang, C.: Large scale current systems developed from substorm
onset: Global MHD results, Science China Technological Sciences, 61,
389–396, https://doi.org/10.1007/s11431-017-9132-y, 2018.
Wang, S., Kistler, L. M., Mouikis, C. G., Liu, Y., and Genestreti, K. J.:
Hot magnetospheric O+ and cold ion behavior in magnetopause
reconnection: Cluster observations, J. Geophys. Res.-Space, 119, 9601–9623, https://doi.org/10.1002/2014JA020402, 2014.
Welling, D. T., Jordanova, V. K., Zaharia, S. G., Glocer, A., and Toth, G.:
The effects of dynamic ionospheric outflow on the ring current, J. Geophys.
Res., 116, A00J19, https://doi.org/10.1029/2010JA015642, 2011.
Winglee, R. M. and Harnett, E.: Influence of heavy ionospheric ions on
substorm onset, J. Geophys. Res., 116, A11212,
https://doi.org/10.1029/2011JA016447, 2011.
Winglee, R. M., Lewis, W., and Lu, G.: Mapping of the heavy ion outflows as
seen by IMAGE and multifluid global modeling for the 17 April 2002 storm, J.
Geophys. Res., 110, A12S24, https://doi.org/10.1029/2004JA010909, 2005.
Yau, A. W. and André, M.: Sources of Ion Outflow in the High Latitude
Ionosphere, Space Sci. Rev., 80, 1–25,
https://doi.org/10.1023/A:1004947203046, 1997.
Yau, A. W., Howarth, A., Peterson, W. K., and Abe, T.: Transport of
thermal-energy ionospheric oxygen (O+) ions between the ionosphere and
the plasma sheet and ring current at quiet times preceding magnetic
storms, J. Geophys. Res., 117, A07215,
https://doi.org/10.1029/2012JA017803, 2012.
Yu, Y. and Ridley, A. J.: Exploring the influence of
ionospheric O+ outflow on magnetospheric dynamics: dependence on the
source location, J. Geophys. Res.-Space, 118, 1711–1722,
https://doi.org/10.1029/2012JA018411, 2013.
Young, D. T., Burch, J. L., Gomez, R. G., De Los Santos, A., Miller, G. P.,
Wilson, P., Paschalidis, N., Fuselier, S. A., Pickens, K., Hertzberg, E.,
Pollock, C. J., Scherrer, J., Wood, P. B., Donald, E. T., Aaron, D., Furman,
J., George, D., Gurnee, R. S., Hourani, R. S., Jacques, A., Johnson, T.,
Orr, T., Pan, K. S., Persyn, S., Pope, S., Roberts, J., Stokes, M. R.,
Trattner, K. J., and Webster, J. M.: Hot Plasma Composition Analyzer for the
Magnetospheric Multiscale Mission, Space Sci. Rev., 199,
407–470, https://doi.org/10.1007/s11214-014-0119-6, 2016.
Zeng, C., Duan, S., Wang, C., Dai, L., Fuselier, S., Burch, J., Torbert,
R. B., and Giles, B. L.: Statistical study of oxygen ions abundance and
spatial distribution in the dayside magnetopause boundary layer: MMS
observations, J. Geophys. Res.-Space, in review, 2020.
Zong, Q.-G., Wilken, B., Fu, S. Y., Fritz, T. A., Korth, A., Hasebe,
N., Williams, D. J., and Pu, Z.-Y.: Ring current oxygen ions escaping into
the magnetosheath, J. Geophys. Res., 106, 25541–25556,
https://doi.org/10.1029/2000JA000127, 2001.
Short summary
Oxygen ions are an important element in the mass and energy transport in the magnetospheric dynamic process during intense substorms (AE > 500 nT). We did this work to better understand the O+ at the dusk flank magnetopause varying with solar wind conditions and AE index during intense substorms. The results show the O+ abundance at the duskside magnetopause has a corresponding relation to that in the duskside near-Earth plasma sheet.
Oxygen ions are an important element in the mass and energy transport in the magnetospheric...