Articles | Volume 37, issue 5
https://doi.org/10.5194/angeo-37-989-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/angeo-37-989-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Solar cycle, seasonal, and asymmetric dependencies of thermospheric mass density disturbances due to magnetospheric forcing
Andres Calabia
School of Remote Sensing and Geomatics Engineering, Nanjing University
of Information Science and Technology, Nanjing, 210044, China
Shanghai Astronomical Observatory, Chinese Academy of Sciences,
Shanghai, 200030, China
Colorado Center for Astrodynamics Research, University of Colorado
Boulder, Boulder,CO 80309-0431, USA
Shuanggen Jin
CORRESPONDING AUTHOR
School of Remote Sensing and Geomatics Engineering, Nanjing University
of Information Science and Technology, Nanjing, 210044, China
Shanghai Astronomical Observatory, Chinese Academy of Sciences,
Shanghai, 200030, China
Related authors
Rasim Shahzad, Munawar Shah, Ayesha Abbas, Amna Hafeez, Andres Calabia, Angela Melgarejo-Morales, and Najam Abbas Naqvi
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-18, https://doi.org/10.5194/angeo-2022-18, 2022
Revised manuscript not accepted
Short summary
Short summary
The ionospheric satellite signals during geomagnetic storms can severely threaten navigation accuracy. We analyzed vertical Total Electron Content (vTEC) variations from the Global Navigation Satellite System at different latitudes around the world during the geomagnetic storms of June 2015 and August 2018. We also analyzed the vTEC from the Swarm satellites and found similar results to the GNSS retrieved vTEC during different phases of both geomagnetic storms.
Mohamed Darrag, Shuanggen Jin, Andrés Calabia, and Aalaa Samy
Ann. Geophys., 40, 359–377, https://doi.org/10.5194/angeo-40-359-2022, https://doi.org/10.5194/angeo-40-359-2022, 2022
Short summary
Short summary
We investigated the possible widening of the tropical belt along with the probable drivers and impacts based on high-accuracy, high-resolution GNSS RO data (2001–2020). The results show that the tropical belt has significant expansion in the Northern Hemisphere, while the Southern Hemisphere has no significant expansion.
Linlin Li and Shuanggen Jin
Ann. Geophys., 41, 465–481, https://doi.org/10.5194/angeo-41-465-2023, https://doi.org/10.5194/angeo-41-465-2023, 2023
Short summary
Short summary
We used the spherical harmonic function (SHF) and the local spherical symmetry (LSS) assumption methods to calculate the hourly and daily LEO satellite GPS differential code bias (DCB). The SHF method is more stable and precise than the LSS assumption. The daily DCB estimation is more accurate and stable than the hourly DCB due to more observation data. Hourly DCBs have large changes in one day, mainly be attributed to random errors because these error time series have a normal distribution.
Rasim Shahzad, Munawar Shah, Ayesha Abbas, Amna Hafeez, Andres Calabia, Angela Melgarejo-Morales, and Najam Abbas Naqvi
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-18, https://doi.org/10.5194/angeo-2022-18, 2022
Revised manuscript not accepted
Short summary
Short summary
The ionospheric satellite signals during geomagnetic storms can severely threaten navigation accuracy. We analyzed vertical Total Electron Content (vTEC) variations from the Global Navigation Satellite System at different latitudes around the world during the geomagnetic storms of June 2015 and August 2018. We also analyzed the vTEC from the Swarm satellites and found similar results to the GNSS retrieved vTEC during different phases of both geomagnetic storms.
Mohamed Darrag, Shuanggen Jin, Andrés Calabia, and Aalaa Samy
Ann. Geophys., 40, 359–377, https://doi.org/10.5194/angeo-40-359-2022, https://doi.org/10.5194/angeo-40-359-2022, 2022
Short summary
Short summary
We investigated the possible widening of the tropical belt along with the probable drivers and impacts based on high-accuracy, high-resolution GNSS RO data (2001–2020). The results show that the tropical belt has significant expansion in the Northern Hemisphere, while the Southern Hemisphere has no significant expansion.
W. Geng, W. Zhou, and S. Jin
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-M-3-2021, 63–66, https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-63-2021, https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-63-2021, 2021
Qisheng Wang, Shuanggen Jin, and Youjian Hu
Ann. Geophys., 38, 1115–1122, https://doi.org/10.5194/angeo-38-1115-2020, https://doi.org/10.5194/angeo-38-1115-2020, 2020
Short summary
Short summary
In this paper, the receiver differential code bias (DCB) of BDS (BeiDou Navigation Satellite System) is estimated as the changing parameter within 1 d with epoch-by-epoch estimates. The intraday variability of receiver DCB is analyzed from 30 d of Multi-GNSS Experiment observations. In particular, the intraday stability of receiver DCB for the BDS-3 and BDS-2 observations is compared. The result shows that the intraday stability of BDS-3 receiver DCB is better than that of BDS-2 receiver DCB.
Ming Shangguan, Wuke Wang, and Shuanggen Jin
Atmos. Chem. Phys., 19, 6659–6679, https://doi.org/10.5194/acp-19-6659-2019, https://doi.org/10.5194/acp-19-6659-2019, 2019
Short summary
Short summary
A significant warming in the troposphere and cooling in the stratosphere are found in satellite measurements (2002–2017). The newest ERA5 data are first used for analyzing temperature and ozone trends in the UTLS and show the best quality compared to other reanalyses. According to model simulations, the temperature increase in the troposphere and ozone decrease in the NH stratosphere are mainly connected to a surface warming of the ocean and subsequent changes in atmospheric circulation.
N. B. Avsar, S. Jin, and S. H. Kutoglu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W4, 83–85, https://doi.org/10.5194/isprs-archives-XLII-3-W4-83-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W4-83-2018, 2018
G. Gurbuz and S. Jin
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W4, 239–243, https://doi.org/10.5194/isprs-archives-XLII-3-W4-239-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W4-239-2018, 2018
Junhai Li and Shuanggen Jin
Ann. Geophys., 35, 403–411, https://doi.org/10.5194/angeo-35-403-2017, https://doi.org/10.5194/angeo-35-403-2017, 2017
Short summary
Short summary
In this paper, we discuss the higher-order ionospheric effects on electron density estimation. We estimate the higher-order ionospheric effect carefully and obtain some conclusions. The results show that the second-order ionospheric effects cannot be ignored in precise ionospheric electron density estimation. The azimuth, the solar activity, and the occultation time and position are the main effect factors of the high-order ionospheric delay which we should consider.
S. G. Jin, R. Jin, and D. Li
Ann. Geophys., 34, 259–269, https://doi.org/10.5194/angeo-34-259-2016, https://doi.org/10.5194/angeo-34-259-2016, 2016
Short summary
Short summary
The differential code bias (DCB) is one of main errors for high-precision GNSS TEC estimation and positioning applications. In this paper, daily DCBs of the BeiDou System (BDS) are estimated and investigated from multi-GNSS network observations (2013–2014), which are compared with GPS results. The DCB of BDS satellites is a little less stable than GPS results, especially for GEO satellites. Zero-mean condition effects are not the dominant factor for the higher RMS of BDS satellite DCB.
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Magnetospheric effects on the atmosphere
Historical aurora borealis catalog for Anatolia and Constantinople (hABcAC) during the Eastern Roman Empire period: implications for past solar activity
Nafiz Maden
Ann. Geophys., 38, 889–899, https://doi.org/10.5194/angeo-38-889-2020, https://doi.org/10.5194/angeo-38-889-2020, 2020
Short summary
Short summary
Anatolian aurora has been reviewed based on existing catalogs to establish a relationship between the aurora observations and past solar activity. There is no study dealing only with the historical aurora observations recorded in Anatolia and Constantinople. A considerable relationship is revealed between the aurora and past solar activity. High auroral activity around 774/775 and the Medieval grand maximum in the 1100s in Anatolia is quite consistent with the past solar variability.
Cited articles
Bates, D. R.: Some problems concerning the terrestrial atmosphere above 100 km level, P. R. Soc. A., 253, 451–462, 1959.
Bjornsson, H. and Venegas, S. A.: A manual for EOF and SVD analyses of climatic data, MCGill Univ., CCGCR Report No. 97-1,
Montréal, Québec, 52 pp., 1997.
Borovsky, J. E. and Steinberg, J. T.: The “calm before the storm” in
CIR/magnetosphere interactions: Occurrence statistics, solar-wind
statistics, and magnetospheric preconditioning, J. Geophys. Res., 111, A07S10, https://doi.org/10.1029/2005JA011397, 2006.
Bowman, B. R., Tobiska, W. K., Marcos, F. A., Huang, C. Y, Lin, C. S., and Burke,
W. J.: A new empirical thermospheric density model JB2008 using new solar and
geomagnetic indices, AIAA/AAS Astrodynamics Specialist Conference, AIAA 2008–6438, 19 pp., 2008.
Bruinsma, S.: The DTM-2013 thermosphere model, J. Space Weather Space Clim., 5, A1, https://doi.org/10.1051/swsc/2015001, 2015.
Bruinsma, S. and Biancale, R.: Total density retrieval with STAR 2003. On
board evaluation of the STAR accelerometer, in: First CHAMP Mission Results for Gravity, Magnetic and
Atmospheric Studies, edited by: Reigber, Ch., Lühr, H.,
and Schwintzer, P., Springer, Berlin, Heidelberg, New York, 193–200,
2003.
Bruinsma, S., Tamagnan, D., and Biancale, R.: Atmospheric densities derived
from CHAMP/STAR accelerometer observations, Planet. Space Sci., 52, 297–312, 2004.
Bruinsma, S., Forbes, J. M., Nerem, R. S., and Zhang, X.: Thermosphere density
response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP
and GRACE accelerometer data, J. Geophys. Res., 111, A06303, https://doi.org/10.1029/2005JA011284, 2006.
Bruinsma, S. L., and Forbes, J. M.: Large-scale traveling atmospheric
disturbances (LSTADs) in the thermosphere inferred from CHAMP, GRACE, and
SETA accelerometer data, J. Atmos. Sol.-Terr.
Phys., 72, https://doi.org/10.1016/j.jastp.2010.06.010, 2010.
Calabia, A.: Thermospheric neutral density variations from LEO
accelerometers and precise orbits, Ph.D. Dissertation, Chinese Academy of Sciences,
China, 2017.
Calabia, A. and Jin, S. G.: New modes and mechanisms of thermospheric mass
density variations from GRACE accelerometers, J. Geophys. Res.-Space, 121, 11191–11212, 2016.
Calabia, A. and Jin, S. G.: Thermospheric density estimation and responses
to the March 2013 geomagnetic storm from GRACE GPS-determined precise
orbits, J. Atmos. Sol.-Terr. Phys., 154, 167–179, 2017.
Calabia, A. and Jin, S. G.: Supporting Information for “Solar-cycle,
seasonal, and asymmetric dependencies of thermospheric mass density
disturbances due to magnetospheric forcing”,
Zenodo,
https://doi.org/10.5281/zenodo.3234582, last access: 29 May 2019.
Deng, Y., Sheng, C., Yue, X., Huang, Y., Wu, Q., Noto, J., Drob, D. P.,
and Kerr, R. B.: Interhemispheric asymmetry of ionospheric conductance and
neutral dynamics, AGU Fall Meeting Abstracts, Vol. 1, SA23D-06, 2014.
Denton, M. H., Borovsky, J. E, Skoug, R. M., Thomsen, M. F., Lavraud, B.,
Henderson, M. G., McPherron, R. L., Zhang, J. C., and Liemohn, M. W.:
Geomagnetic storms driven by ICME- and CIR-dominated solar wind, J. Geophys.
Res., 111, A07S07, https://doi.org/10.1029/2005JA011436, 2006.
Dungey, J. W.: Interplanetary magnetic fields and the auroral zones, Phys. Rev. Lett., 6,
47–48, 1961.
Ercha, A., Ridley, A. J., Zhang, D., and Xiao, Z.: Analyzing the hemispheric
asymmetry in the thermospheric density response to geomagnetic storms, J. Geophys. Res.,
117, A08317, https://doi.org/10.1029/2011JA017259, 2012.
Forbes, J. M., Gonzalez, R., Marcos, F. A., Revelle, D., and Parish, H.:
Magnetic storm response of lower thermosphere density, J. Geophys. Res., 101, 2313–2319,
1996.
Fuller-Rowell, T. J.: The “thermospheric spoon”: A mechanism for the
semiannual density variation, J. Geophys. Res., 103, 3951–3956, 1998.
Fuller-Rowell, T. J., Codrescu, M. V., Rishbeth, H., Moffett, R. J., and
Quegan, S.: On the seasonal response of the thermosphere and ionosphere to
geomagnetic storms, J. Geophys. Res., 101, 2343–2353, 1996.
Guo, J., Feng, X., Forbes, J. M., Lei, J., Zhang, J., and Tan, C.: On the
relationship between thermosphere density and solar wind parameters during
intense geomagnetic storms, J. Geophys. Res., 115, A12335, https://doi.org/10.1029/2010JA015971, 2010.
Iipponen, J. and Laitinen, T.: A method to predict thermospheric mass
density response to geomagnetic disturbances using time-integrated auroral
electrojet index, J. Geophys. Res.-Space, 120, 5746–5757, 2015.
Jin, S. G., Calabia, A., and Yuan, L.: Thermospheric sensing from GNSS and
accelerometer
on small satellites, Proc. IEEE, 106, 484–495,
https://doi.org/10.1109/JPROC.2018.2796084, 2018.
Kan, J.K., and Lee, L.C.: Energy coupling function and solar
wind-magnetosphere dynamo, Geophys. Res. Lett., 6, 577–580, 1979.
Knipp, D., Kilcommons, L., Hunt, L., Mlynczak, M., Pilipenko, V., Bowman,
B., Deng, Y., and Drake, K.: Thermospheric damping response to
sheath-enhanced geospace storms, Geophys. Res. Lett., 40, 1263–1267, 2013.
Lathuillere, C. and Menvielle, M.: WINDII thermosphere temperature
perturbation for magnetically active situations, J. Geophys. Res., 109, A11304, https://doi.org/10.1029/2004JA010526, 2004.
Lathuillère, C., Menvielle, M., Marchaudon, A., and Bruinsma, S.: A
statistical study of the observed and modeled global thermosphere response
to magnetic activity at middle and low latitudes, J. Geophys. Res., 113, A07311, https://doi.org/10.1029/2007JA012991, 2008.
Lei, J., Thayer, J. P., Burns, A.G., Lu, G., and Deng, Y.: Wind and
temperature effects on thermosphere mass density response to the November
2004 geomagnetic storm, J. Geophys. Res., 115, A05303, https://doi.org/10.1029/2009JA014754, 2010.
Liu, H. and Lühr, H.: Strong disturbance of the upper thermospheric
density due to magnetic storms: CHAMP observations, J. Geophys. Res., 110, A09S29, https://doi.org/10.1029/2004JA010908, 2005.
Liu, H., Lühr, H., Henize, V., and Köhler, W.: Global distribution
of the thermospheric total mass density derived from CHAMP, J. Geophys. Res., 11, A04301, https://doi.org/10.1029/2004JA010741,
2005.
Liu, H., Thayer, J., Zhang, Y., and Lee, W. K.: The non–storm time
corrugated upper thermosphere: What is beyond MSIS?, Space Weather, 15, 746–760, 2017.
Liu, R., Lühr, H., Doornbos, E., and Ma, S.-Y.: Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field, Ann. Geophys., 28, 1633–1645, https://doi.org/10.5194/angeo-28-1633-2010, 2010.
Liu, R., Ma, S.-Y., and Lühr, H.: Predicting storm-time thermospheric mass density variations at CHAMP and GRACE altitudes, Ann. Geophys., 29, 443–453, https://doi.org/10.5194/angeo-29-443-2011, 2011.
Lu, G., Richmond, A. D.,
Emery, B. A.,
Reiff, P. H.,
de la Beaujardière, O.,
Rich, F. J.,
Denig, W. F.,
Kroehl, H. W.,
R. Lyons, L.,
Ruohoniemi, J. M.,
Friis‐Christensen, E.,
Opgenoorth, H.,
Persson, M. A. L.,
Lepping, R. P.,
Rodger, A. S.,
Hughes, T.,
McEwin, A.,
Dennis, S.,
Morris, R.,
Burns, G.,
and Tomlinson, L.: Interhemispheric asymmetry of the high-latitude ionospheric
convection pattern, J. Geophys. Res., 99, 6491–6510, 1994.
Lühr, H., Rother, M., Köhler, W., Ritter, P., and Grunwaldt, L.:
Thermospheric up-welling in the cusp region: Evidence from CHAMP
observations, Geophys. Res. Lett., 31, L06805, https://doi.org/10.1029/2003GL019314, 2004.
Marcos, F. A., Lai, S. T., Huang, C. Y., Lin, C. S., Retterer, J. M., Delay,
S. H., and Sutton, E. K.: Towards next level satellite drag modeling, AIAA
2010–7840, paper presented at the AIAA Atmospheric and Space Environments
Conference, Toronto, Ontario, Canada, 2–5 August, https://doi.org/10.2514/6.2010-7840, 2010.
Müller, S., Lühr, H., and Rentz, S.: Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP, Ann. Geophys., 27, 2087–2099, https://doi.org/10.5194/angeo-27-2087-2009, 2009.
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00
empirical model of the atmosphere: Statistical comparisons and scientific
issues, J. Geophys. Res., 107, 1468, https://doi.org/10.1029/2002JA009430, 2002.
Preisendorfer, R.: Principal component analysis in meteorology and oceanography, Elsevier, Amsterdam, 425 p., 1988.
Qian, L., Burns, A. G., Emery, B. A., Foster, B., Lu, G., Maute, A., Richmond,
A. D., Roble, R. G., Solomon, S. C., and Wang, W.: The NCAR TIE-GCM, in:
Modeling the Ionosphere-Thermosphere System, edited by: Huba, J., Schunk, R., and Khazanov, G., John Wiley & Sons, Ltd,
Chichester, UK, 73–83, 2014.
Rentz, S. and Lühr, H.: Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations, Ann. Geophys., 26, 2807–2823, https://doi.org/10.5194/angeo-26-2807-2008, 2008.
Russell, C. T. and McPherron, R. L.: Semiannual variation of geomagnetic activity, J. Geophys. Res., 78, 92–108, https://doi.org/10.1029/JA078i001p00092, 1973.
Schaefer, R.K., Paxton, L.J., Selby, C., Ogorzalek, B.S., Romeo, G., Wolven,
B.C., and Hsieh, S.-Y.: Observation and modeling of the South Atlantic
Anomaly in low Earth orbit using photometric instrument data, Space Weather,
14, 330–342, 2016.
Sutton, E. K., Forbes, J. M., and Nerem, R. S.: Global thermospheric neutral
density and wind response to the severe 2003 geomagnetic storms from CHAMP
accelerometer data, J. Geophys. Res., 110, A09S40, https://doi.org/10.1029/2004JA010985, 2005.
Sutton, E. K., Forbes, J. M., and Knipp, D. J.: Rapid response of the
thermosphere to variations in Joule heating, J. Geophys. Res., 114, A04319, https://doi.org/10.1029/2008JA013667, 2009.
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity
recovery and climate experiment: Mission overview and early results,
Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004.
Villain, J. P.: Traitement des données brutes de
l'accéléromètre Cactus. Etude des perturbations de moyenne
échelle de la densité thermosphérique Etude des perturbations de
moyenne échelle de la densité thermosphérique, Ann. Geophys., 36, 41–49,
1980.
Weimer, D. R.: Improved ionospheric electrodynamic models and application to
calculating joule heating rates, J. Geophy. Res., 110, A05306, https://doi.org/10.1029/2004JA010884, 2005.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, San Diego, Calif, 676 pp., 1995.
Zhao, H. and Zong, Q.-G.: Seasonal and diurnal variation of geomagnetic
activity: Russell-McPherron effect during different IMF polarity and/or
extreme solar wind conditions, J. Geophys. Res., 117, A11222, https://doi.org/10.1029/2012JA017845, 2012.
Zhou, Y. L., Ma, S. Y., Lühr, H., Xiong, C., and Reigber, C.: An empirical
relation to correct storm-time thermospheric mass density modeled by
NRLMSISE-00 with CHAMP satellite air drag data, Adv. Space Res., 43, 819–828, 2008.
Zhou, Y. L., Ma, S. Y., Liu, R. S., Luehr, H., and Doornbos, E.: Controlling of
merging electric field and IMF magnitude on storm-time changes in
thermospheric mass density, Ann. Geophys., 31, 15–30, https://doi.org/10.5194/angeo-31-15-2013,
2013.
Zou, H., Li, C., Zong, Q., Parks, G.K., Pu, Z., Chen, H., Xie, L., and
Zhang, X.: Short-term variations of the inner radiation belt in the South
Atlantic anomaly, J. Geophys. Res.-Space, 120, 4475–4486, 2015.
Short summary
Atmospheric drag due to mass density distribution, particularly during storm-time, is of great importance for low Earth orbit precise orbit determination, and for the understanding of magnetosphere–ionosphere–thermosphere phenomena. In this paper, we investigate solar cycle, seasonal, and hemispheric asymmetry dependencies of thermospheric mass density disturbances due to magnetospheric forcing, from 10-year (2003–2013) continuous time series of GRACE estimates.
Atmospheric drag due to mass density distribution, particularly during storm-time, is of great...
Special issue