Articles | Volume 37, issue 5
https://doi.org/10.5194/angeo-37-877-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-877-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Low-frequency magnetic variations at the high-β Earth bow shock
Anatoli A. Petrukovich
CORRESPONDING AUTHOR
Space Research Institute of the Russian Academy of Sciences, Moscow, Russia
Olga M. Chugunova
Space Research Institute of the Russian Academy of Sciences, Moscow, Russia
Pavel I. Shustov
Space Research Institute of the Russian Academy of Sciences, Moscow, Russia
Related authors
Alexander Lukin, Anton Artemyev, Evgeny Panov, Rumi Nakamura, Anatoly Petrukovich, Robert Ergun, Barbara Giles, Yuri Khotyaintsev, Per Arne Lindqvist, Christopher Russell, and Robert Strangeway
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-76, https://doi.org/10.5194/angeo-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
We have collected statistics of 81 fast plasma flow events in the magnetotail with clear MMS observations of kinetic Alfven waves (KAWs). We show that KAWs electric field magnitudes correlates with thermal/subthermal electron flux anisotropy: wider energy range of electron anisotropic population corresponds to higher KAWs’ electric field intensity. These results indicate on an important role of KAWs in production of thermal field-aligned electron population of the Earth’s magnetotail.
Marina A. Evdokimova and Anatoli A. Petrukovich
Ann. Geophys., 38, 109–121, https://doi.org/10.5194/angeo-38-109-2020, https://doi.org/10.5194/angeo-38-109-2020, 2020
Anatoli A. Petrukovich, Olga M. Chugunova, and Pavel I. Shustov
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-110, https://doi.org/10.5194/angeo-2018-110, 2018
Manuscript not accepted for further review
Short summary
Short summary
Earth's bow shock in high beta (beta is ratio of thermal
to magnetic pressure) solar wind environment is rare phenomenon.
We survey statistics of beta > 10 shock observations.
Typical solar wind parameters related with high beta are: low speed, high density and very low IMF 1–2 nT.
In this report 22 crossings are studied with spacecraft
separation within 30–200 km. Dominating magnetic waves have frequency 0.1–0.5 Hz Polarization has no stable phase
and is closer to linear.
Egor V. Yushkov, Anton V. Artemyev, Anatoly A. Petrukovich, and Rumi Nakamura
Ann. Geophys., 34, 739–750, https://doi.org/10.5194/angeo-34-739-2016, https://doi.org/10.5194/angeo-34-739-2016, 2016
Short summary
Short summary
In the paper we study flapping wave structures, generated in the neutral plane of the Earth magnetotail. Investigated flapping is an important process of magnetosphere dynamics, connected with magnetic energy transformation and magnetic storm formation. Large separation of Cluster spacecraft allows us to estimate both local and global properties of flapping current sheets, the typical flapping times and propagation directions.
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, and H. V. Malova
Ann. Geophys., 32, 1349–1360, https://doi.org/10.5194/angeo-32-1349-2014, https://doi.org/10.5194/angeo-32-1349-2014, 2014
A. V. Artemyev, I. Y. Vasko, V. N. Lutsenko, and A. A. Petrukovich
Ann. Geophys., 32, 1233–1246, https://doi.org/10.5194/angeo-32-1233-2014, https://doi.org/10.5194/angeo-32-1233-2014, 2014
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 32, 133–146, https://doi.org/10.5194/angeo-32-133-2014, https://doi.org/10.5194/angeo-32-133-2014, 2014
A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 31, 1109–1114, https://doi.org/10.5194/angeo-31-1109-2013, https://doi.org/10.5194/angeo-31-1109-2013, 2013
Alexander Lukin, Anton Artemyev, Evgeny Panov, Rumi Nakamura, Anatoly Petrukovich, Robert Ergun, Barbara Giles, Yuri Khotyaintsev, Per Arne Lindqvist, Christopher Russell, and Robert Strangeway
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-76, https://doi.org/10.5194/angeo-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
We have collected statistics of 81 fast plasma flow events in the magnetotail with clear MMS observations of kinetic Alfven waves (KAWs). We show that KAWs electric field magnitudes correlates with thermal/subthermal electron flux anisotropy: wider energy range of electron anisotropic population corresponds to higher KAWs’ electric field intensity. These results indicate on an important role of KAWs in production of thermal field-aligned electron population of the Earth’s magnetotail.
Marina A. Evdokimova and Anatoli A. Petrukovich
Ann. Geophys., 38, 109–121, https://doi.org/10.5194/angeo-38-109-2020, https://doi.org/10.5194/angeo-38-109-2020, 2020
Anatoli A. Petrukovich, Olga M. Chugunova, and Pavel I. Shustov
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-110, https://doi.org/10.5194/angeo-2018-110, 2018
Manuscript not accepted for further review
Short summary
Short summary
Earth's bow shock in high beta (beta is ratio of thermal
to magnetic pressure) solar wind environment is rare phenomenon.
We survey statistics of beta > 10 shock observations.
Typical solar wind parameters related with high beta are: low speed, high density and very low IMF 1–2 nT.
In this report 22 crossings are studied with spacecraft
separation within 30–200 km. Dominating magnetic waves have frequency 0.1–0.5 Hz Polarization has no stable phase
and is closer to linear.
Egor V. Yushkov, Anton V. Artemyev, Anatoly A. Petrukovich, and Rumi Nakamura
Ann. Geophys., 34, 739–750, https://doi.org/10.5194/angeo-34-739-2016, https://doi.org/10.5194/angeo-34-739-2016, 2016
Short summary
Short summary
In the paper we study flapping wave structures, generated in the neutral plane of the Earth magnetotail. Investigated flapping is an important process of magnetosphere dynamics, connected with magnetic energy transformation and magnetic storm formation. Large separation of Cluster spacecraft allows us to estimate both local and global properties of flapping current sheets, the typical flapping times and propagation directions.
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, and H. V. Malova
Ann. Geophys., 32, 1349–1360, https://doi.org/10.5194/angeo-32-1349-2014, https://doi.org/10.5194/angeo-32-1349-2014, 2014
A. V. Artemyev, I. Y. Vasko, V. N. Lutsenko, and A. A. Petrukovich
Ann. Geophys., 32, 1233–1246, https://doi.org/10.5194/angeo-32-1233-2014, https://doi.org/10.5194/angeo-32-1233-2014, 2014
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 32, 133–146, https://doi.org/10.5194/angeo-32-133-2014, https://doi.org/10.5194/angeo-32-133-2014, 2014
A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 31, 1109–1114, https://doi.org/10.5194/angeo-31-1109-2013, https://doi.org/10.5194/angeo-31-1109-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Bow shock and foreshock
Short large-amplitude magnetic structures (SLAMS) at Mercury observed by MESSENGER
Fine structure and motion of the bow shock and particle energisation mechanisms inferred from Magnetospheric Multiscale (MMS) observations
Foreshock cavitons and spontaneous hot flow anomalies: a statistical study with a global hybrid-Vlasov simulation
Evidence of the nonstationarity of the terrestrial bow shock from multi-spacecraft observations: methodology, results, and quantitative comparison with particle-in-cell (PIC) simulations
A deep insight into the ion foreshock with the help of test particle two-dimensional simulations
Helium in the Earth's foreshock: a global Vlasiator survey
Non-locality of Earth's quasi-parallel bow shock: injection of thermal protons in a hybrid-Vlasov simulation
Comment on “Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation” by Blanco-Cano et al. (2018)
Reflection of the strahl within the foot of the Earth's bow shock
Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation
Tomas Karlsson, Ferdinand Plaschke, Austin N. Glass, and Jim M. Raines
Ann. Geophys., 42, 117–130, https://doi.org/10.5194/angeo-42-117-2024, https://doi.org/10.5194/angeo-42-117-2024, 2024
Short summary
Short summary
The solar wind interacts with the planets in the solar system and creates a supersonic shock in front of them. The upstream region of this shock contains many complicated phenomena. One such phenomenon is small-scale structures of strong magnetic fields (SLAMS). These SLAMS have been observed at Earth and are important in determining the properties of space around the planet. Until now, SLAMS have not been observed at Mercury, but we show for the first time that SLAMS also exist there.
Krzysztof Stasiewicz and Zbigniew Kłos
Ann. Geophys., 40, 315–325, https://doi.org/10.5194/angeo-40-315-2022, https://doi.org/10.5194/angeo-40-315-2022, 2022
Short summary
Short summary
The acceleration, or energisation, of particles is a common and fundamental process throughout the universe. This study presents new observations of the acceleration of protons by waves at the bow shock upstream of the Earth, where the solar wind first encounters Earth’s magnetic field. The results are important, because they provide insight into acceleration processes that can create high-energy particles both near the Earth and at other astrophysical systems.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Christian Mazelle and Bertrand Lembège
Ann. Geophys., 39, 571–598, https://doi.org/10.5194/angeo-39-571-2021, https://doi.org/10.5194/angeo-39-571-2021, 2021
Short summary
Short summary
Nonstationarity of the quasi-perpendicular terrestrial bow shock is analyzed from magnetic field measurements, comparison with 2D particle-in-cell (PIC) simulations, and a careful and accurate methodology in the data processing. The results show evidence of a strong variability of the microstructures of the shock front (foot and ramp), confirming the importance of dissipative effects. These results indicate that these features can be signatures of the shock front self-reformation.
Philippe Savoini and Bertrand Lembège
Ann. Geophys., 38, 1217–1235, https://doi.org/10.5194/angeo-38-1217-2020, https://doi.org/10.5194/angeo-38-1217-2020, 2020
Short summary
Short summary
Numerical simulations have been used to investigate some acceleration mechanisms in order to explain the origin of the energized back-streaming ions observed at the Earth's bow shock. This paper used test particles in two different configurations with self-consistent and fixed shock front profiles. The comparison of these two configurations allows us to analyze, in detail, the impact of the shock front nonstationarity and the role of the built-up electric field in the acceleration process.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Maxime Grandin, Tuomas Koskela, and Minna Palmroth
Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, https://doi.org/10.5194/angeo-38-625-2020, 2020
Short summary
Short summary
The structure and medium-scale dynamics of Earth's bow shock and how charged solar wind particles are reflected by it are studied in order to better understand space weather effects. We use advanced supercomputer simulations to model the shock and reflected ions. We find that the thickness of the shock depends on solar wind conditions but also has small-scale variations. Charged particle reflection is shown to be non-localized. Magnetic fields are important for ion reflection.
Gábor Facskó
Ann. Geophys., 37, 763–764, https://doi.org/10.5194/angeo-37-763-2019, https://doi.org/10.5194/angeo-37-763-2019, 2019
Short summary
Short summary
Blanco-Cano et al. (2018) intended to find a type of transient event in the solar wind before the terrestrial bow shock using a special type of simulation. However, the simulation results cannot reproduce the main features of the event. Based on the remarks described below, I am sure that the features in the simulations are not those types of events. The Vlasiator code simulated proto-SHFAs.
Christopher A. Gurgiolo, Melvyn L. Goldstein, and Adolfo Viñas
Ann. Geophys., 37, 243–261, https://doi.org/10.5194/angeo-37-243-2019, https://doi.org/10.5194/angeo-37-243-2019, 2019
Short summary
Short summary
The reflection of solar wind electrons at the bow shock helps define the physical properties of the foreshock, the region where the interplanetary magnetic field directly connects to the bow shock. We report that the strahl, the field-aligned component of the electron solar wind distribution, appears to be nearly fully reflected at the bow shock and that the reflection occurs in the foot of the shock, implying that mirroring is not the primary cause of the electron reflection.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Cited articles
Axford, W. I., Leer, E., and Skadron, G.: The Acceleration of Cosmic
Rays by Shock Waves, in: International Cosmic Ray Conference, 15th, Plovdiv, Bulgaria, 13–26 August 1977, Conference Papers, Vol. 11, (A79-44583 19-93) Sofia, B'lgarska Akademiia na Naukite, 132–137, 1978. a
Bale, S. D., Mozer, F. S., and Horbury, T. S.: Density-Transition Scale
at Quasiperpendicular Collisionless Shocks, Phys. Rev. Lett., 91,
265004, https://doi.org/10.1103/PhysRevLett.91.265004, 2003. a
Balikhin, M., Gedalin, M., and Petrukovich, A.: New mechanism for
electron heating in shocks., Phys. Rev. Lett., 70, 1259–1262,
https://doi.org/10.1103/PhysRevLett.70.1259, 1993. a
Balikhin, M. A., Woolliscroft, L. J. C., Alleyne, H. St. C., Dunlop, M., and Gedalin, M. A.: Determination of the dispersion of low frequency waves downstream of a quasiperpendicular collisionless shock, Ann. Geophys., 15, 143–151, https://doi.org/10.1007/s00585-997-0143-x, 1997. a, b
Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann, G., Oddy, T., and Schwingenschuh, K.: The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results, Ann. Geophys., 19, 1207–1217, https://doi.org/10.5194/angeo-19-1207-2001, 2001. a
Burgess, D., Lucek, E. A., Scholer, M., Bale, S. D., Balikhin, M. A.,
Balogh, A., Horbury, T. S., Krasnoselskikh, V. V., Kucharek, H.,
Lembège, B., Möbius, E., Schwartz, S. J., Thomsen, M. F., and
Walker, S. N.: Quasi-parallel Shock Structure and Processes, Space Sci. Rev., 118,
205–222, https://doi.org/10.1007/s11214-005-3832-3, 2005. a, b
Coroniti, F. V.: Turbulence structure of high-β
perpendicular fast shocks, J. Geophys. Res., 75, 7007,
https://doi.org/10.1029/JA075i034p07007, 1970. a, b
Crooker, N. U., Siscoe, G. L., Russell, C. T., and Smith, E. J.:
Factors controlling degree of correlation between ISEE 1 and ISEE 3
interplanetary magnetic field measurements, J. Geophys. Res.,
87, 2224–2230, https://doi.org/10.1029/JA087iA04p02224, 1982. a
Czaykowska, A., Bauer, T. M., Treumann, R. A., and Baumjohann, W.: Magnetic field fluctuations across the Earth’s bow shock, Ann. Geophys., 19, 275–287, https://doi.org/10.5194/angeo-19-275-2001, 2001. a, b
Décréau, P. M. E., Fergeau, P., Krasnoselskikh, V., Le Guirriec, E., Lévêque, M., Martin, Ph., Randriamboarison, O., Rauch, J. L., Sené, F. X., Séran, H. C., Trotignon, J. G., Canu, P., Cornilleau, N., de Féraudy, H., Alleyne, H., Yearby, K., Mögensen, P. B., Gustafsson, G., André, M., Gurnett, D. C., Darrouzet, F., Lemaire, J., Harvey, C. C., Travnicek, P., and Whisper experimenters (Table 1): Early results from the Whisper instrument on Cluster: an overview, Ann. Geophys., 19, 1241–1258, https://doi.org/10.5194/angeo-19-1241-2001, 2001. a
Dimmock, A. P., Balikhin, M. A., Walker, S. N., and Pope, S. A.: Dispersion of low frequency plasma waves upstream of the quasi-perpendicular terrestrial bow shock, Ann. Geophys., 31, 1387–1395, https://doi.org/10.5194/angeo-31-1387-2013, 2013. a
Donnert, J., Vazza, F., Brüggen, M., and ZuHone, J.: Magnetic
Field Amplification in Galaxy Clusters and Its Simulation, Space Sci. Rev., 214, 122,
https://doi.org/10.1007/s11214-018-0556-8, 2018. a
Farris, M. H., Petrinec, S. M., and Russell, C. T.: The thickness of the
magnetosheath: Constraints on the polytropic index, Geophys. Res.
Lett., 18, 1821–1824, https://doi.org/10.1029/91GL02090, 1991. a, b
Farris, M. H., Russell, C. T., Thomsen, M. F., and Gosling, J. T.:
ISEE 1 and 2 observations of the high beta shock, J. Geophys.
Res., 97, 19121–19127, https://doi.org/10.1029/92JA01976, 1992. a, b
Formisano, V., Russell, C. T., Means, J. D., Greenstadt, E. W.,
Scarf, F. L., and Neugebauter, M.: Collisionless shock waves in space: A
very high β structure, J. Geophys. Res.,
80, 2013, https://doi.org/10.1029/JA080i016p02013, 1975. a, b
Hobara, Y., Balikhin, M., Krasnoselskikh, V., Gedalin, M., and
Yamagishi, H.: Statistical study of the quasi-perpendicular shock ramp
widths, J. Geophys. Res.-Space, 115, A11106,
https://doi.org/10.1029/2010JA015659, 2010. a
Hubert, D., Perche, C., Harvey, C. C., Lacombe, C., and Russell,
C. T.: Observation of mirror waves downstream of a quasi-perpendicular
shock, Geophys. Res. Lett., 16, 159–162,
https://doi.org/10.1029/GL016i002p00159, 1989. a
Hubert, D., Lacombe, C., Harvey, C. C., Moncuquet, M., Russell,
C. T., and Thomsen, M. F.: Nature, properties, and origin of low-frequency
waves from an oblique shock to the inner magnetosheath, J. Geophys. Res., 103, 26783–26798, https://doi.org/10.1029/98JA01011, 1998. a
Kennel, C. F. and Sagdeev, R. Z.: Collisionless shock waves in high
β plasmas: 1, J. Geophys. Res., 72,
3303–3326, https://doi.org/10.1029/JZ072i013p03303, 1967. a
Kennel, C. F., Edmiston, J. P., and Hada, T.: A quarter century of
collisionless shock research, Washington DC American Geophysical Union
Geophysical Monograph Series, 34, 1–36, https://doi.org/10.1029/GM034p0001, 1985. a, b
Krasnoselskikh, V., Balikhin, M., Walker, S. N., Schwartz, S.,
Sundkvist, D., Lobzin, V., Gedalin, M., Bale, S. D., Mozer, F.,
Soucek, J., Hobara, Y., and Comisel, H.: The Dynamic
Quasiperpendicular Shock: Cluster Discoveries, Space Sci. Rev., 178, 535–598,
https://doi.org/10.1007/s11214-013-9972-y, 2013. a, b, c, d, e
Krasnoselskikh, V. V., Lembège, B., Savoini, P., and Lobzin, V. V.:
Nonstationarity of strong collisionless quasiperpendicular shocks: Theory
and full particle numerical simulations, Phys. Plasmas, 9, 1192–1209,
https://doi.org/10.1063/1.1457465, 2002. a
Krymskii, G. F.: A regular mechanism for the acceleration of charged
particles on the front of a shock wave, Soviet Physics Doklady, 22, 327–328,
1977. a
Lacombe, C., Pantellini, F. G. E., Hubert, D., Harvey, C. C.,
Mangeney, A., Belmont, G., and Russell, C. T.: Mirror and Alfvenic
waves observed by ISEE 1–2 during crossings of the earth's bow shock,
Ann. Geophys., 10, 772–784, 1992. a
Lefebvre, B., Seki, Y., Schwartz, S. J., Mazelle, C., and Lucek,
E. A.: Reformation of an oblique shock observed by Cluster, J. Geophys. Res.-Space, 114, A11107,
https://doi.org/10.1029/2009JA014268, 2009. a, b, c
Markevitch, M. and Vikhlinin, A.: Shocks and cold fronts in galaxy
clusters, Phys. Rep., 443, 1–53, https://doi.org/10.1016/j.physrep.2007.01.001, 2007. a
Petrukovich, A. A., Romanov, S. A., and Klimov, S. L.: Direct
Measurements of AC Plasma Currents in the Outer Magnetosphere, Washington DC
American Geophysical Union Geophysical Monograph Series, 103, 199–204,
https://doi.org/10.1029/GM103p0199, 1998. a
Petrukovich, A. A., Klimov, S. I., Lazarus, A., and Lepping, R. P.:
Comparison of the solar wind energy input to the magnetosphere measured by
Wind and Interball-1, J. Atmos. Sol.-Terr. Phy.,
63, 1643–1647, https://doi.org/10.1016/S1364-6826(01)00039-6, 2001. a
Podladchikova, T., Petrukovich, A., and Yermolaev, Y.: Geomagnetic storm
forecasting service StormFocus: 5 years online, J. Space Weather
Spac., 8, A22, https://doi.org/10.1051/swsc/2018017, 2018. a
Pokhotelov, O. A. and Balikhin, M. A.: Weibel instability in a plasma with nonzero external magnetic field, Ann. Geophys., 30, 1051–1054, https://doi.org/10.5194/angeo-30-1051-2012, 2012. a
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, Th., Coeur-Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey, C., Mazelle, C., d’Uston, C., Möbius, E., Kistler, L. M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P., McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B., Baldetti, P., Bruno, R., Chionchio, G., Di Lellis, A., Marcucci, M. F., Pallocchia, G., Korth, A., Daly, P. W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G., Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J.-B., Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Scudder, J., and Sonnerup, B.: First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 19, 1303–1354, https://doi.org/10.5194/angeo-19-1303-2001, 2001. a
Schwartz, S. J., Henley, E., Mitchell, J., and Krasnoselskikh, V.:
Electron Temperature Gradient Scale at Collisionless Shocks, Phys. Rev. Lett., 107,
215002, https://doi.org/10.1103/PhysRevLett.107.215002, 2011. a
Scudder, J. D., Mangeney, A., Lacombe, C., Harvey, C. C., Aggson,
T. L., Anderson, R. R., Gosling, J. T., Paschmann, G., and Russell,
C. T.: The resolved layer of a collisionless, high β,
supercritical, quasi-perpendicular shock wave 1. Rankine- Hugoniot geometry,
currents, and stationarity, J. Geophys. Res., 91,
11019–11052, https://doi.org/10.1029/JA091iA10p11019, 1986. a, b, c
Vasko, I. Y., Mozer, F. S., Krasnoselskikh, V. V., Artemyev, A. V.,
Agapitov, O. V., Bale, S. D., Avanov, L., Ergun, R., Giles, B.,
Lindqvist, P. A., Russell, C. T., Strangeway, R., and Torbert, R.:
Solitary Waves Across Supercritical Quasi-Perpendicular Shocks, Geophys. Res. Lett., 45, 5809–5817, https://doi.org/10.1029/2018GL077835, 2018. a
Walker, S. N., Alleyne, H. St. C. K., Balikhin, M. A., André, M., and Horbury, T. S.: Electric field scales at quasi-perpendicular shocks, Ann. Geophys., 22, 2291–2300, https://doi.org/10.5194/angeo-22-2291-2004, 2004. a
Wilson, Lynn B., I., Stevens, M. L., Kasper, J. C., Klein, K. G.,
Maruca, B. A., Bale, S. D., Bowen, T. A., Pulupa, M. P., and Salem,
C. S.: The Statistical Properties of Solar Wind Temperature Parameters Near
1 au, Astrophys. J. Suppl. S., 236, 41,
https://doi.org/10.3847/1538-4365/aab71c, 2018. a
Winterhalter, D. and Kivelson, M. G.: Observations of the Earth's bow
shock under high Mach number/high plasma beta solar wind conditions,
Geophys. Res. Lett., 15, 1161–1164, https://doi.org/10.1029/GL015i010p01161,
1988. a
Short summary
Earth's bow shock in solar wind with high thermal and low magnetic pressure is a rare phenomenon. However, such an object is ubiquitous in astrophysical plasmas.
We surveyed statistics of such shock observations since 1995. About 100 crossings were initially identified. In this report 22 crossings from the Cluster project were studied using multipoint analysis, which allowed for the determination of the spatial scales of the shock transition and of the dominant magnetic variations
Earth's bow shock in solar wind with high thermal and low magnetic pressure is a rare...