Articles | Volume 37, issue 3
https://doi.org/10.5194/angeo-37-315-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/angeo-37-315-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Phenomena preceding major earthquakes interconnected through a physical model
Panayiotis A. Varotsos
Department of Physics, Section of Solid State Physics, National and
Kapodistrian University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece
Department of Physics, Solid Earth Physics Institute, National and
Kapodistrian University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece
Department of Physics, Section of Solid State Physics, National and
Kapodistrian University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece
Department of Physics, Solid Earth Physics Institute, National and
Kapodistrian University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece
Efthimios S. Skordas
Department of Physics, Section of Solid State Physics, National and
Kapodistrian University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece
Department of Physics, Solid Earth Physics Institute, National and
Kapodistrian University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece
Related authors
No articles found.
Costas A. Varotsos, Chris G. Tzanis, and Nicholas V. Sarlis
Atmos. Chem. Phys., 16, 2007–2011, https://doi.org/10.5194/acp-16-2007-2016, https://doi.org/10.5194/acp-16-2007-2016, 2016
Short summary
Short summary
It has been recently reported that the current 2015–2016 El Niño could become "one of the strongest on record". To further explore this claim, we performed a new analysis that allows the detection of precursory signals of the strong El Niño events by using a recently developed non-linear dynamics tool. The analysis of the SOI time series shows that the 2015–2016 El Niño would be rather a "moderate to strong" or even a "strong” event and not "one of the strongest on record", as that of 1997–1998.
C. A. Varotsos, S. Lovejoy, N. V. Sarlis, C. G. Tzanis, and M. N. Efstathiou
Atmos. Chem. Phys., 15, 7301–7306, https://doi.org/10.5194/acp-15-7301-2015, https://doi.org/10.5194/acp-15-7301-2015, 2015
Short summary
Short summary
Varotsos et al. (Theor. Appl. Climatol., 114, 725–727, 2013) found that the solar ultraviolet (UV) wavelengths exhibit 1/f-type power-law correlations. In this study, we show that the residues of the spectral solar incident flux with respect to the Planck law over a wider range of wavelengths (i.e. UV-visible) have a scaling regime too.
Cited articles
Bernardi, A., Fraser-Smith, A. C., McGill, P. R., and Villard, O. G.: ULF
magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta
earthquake, Phys. Earth Planet. In., 68, 45–63,
https://doi.org/10.1016/0031-9201(91)90006-4, 1991. a
Burridge, R. and Knopoff, L.: Model and theoretical seismicity, B. Seismol.
Soc. Am., 57, 341–371, 1967. a
Carlson, J. M., Langer, J. S., and Shaw, B. E.: Dynamics of earthquake
faults,
Rev. Mod. Phys., 66, 657–670, https://doi.org/10.1103/RevModPhys.66.657, 1994. a, b
Chen, C.-H., Yeh, T.-K., Liu, J.-Y., Wang, C.-H., Wen, S., Yen, H.-Y., and
Chang, S.-H.: Surface Deformation and Seismic Rebound: Implications and
Applications, Surv. Geophys., 32, 291–313,
https://doi.org/10.1016/j.jseaes.2013.11.009, 2011. a, b
Fan, Y.-Y., Du, X.-B., Zlotnicki, J., Tan, D.-C., An, Z.-H., Chen, J.-Y.,
Zheng, G.-L., Liu, J., and Xie, T.: The Electromagnetic Phenomena Before the
Ms8.0 Wenchuan Earthquake, Chinese J. Geophys., 53, 997–1010,
https://doi.org/10.1002/cjg2.1570, 2010. a
Fraser-Smith, A. C., Bernardi, A., McGill, P. R., Ladd, M. E., Helliwell,
R. A., and Villard, O. G.: Low-frequency magnetic-field measurements near
the epicenter of the Ms-7.1 Loma-Prieta earthquake, Geophys. Res. Lett., 17,
1465, https://doi.org/10.1029/GL017i009p01465, 1990. a
Goldberger, A. L., Amaral, L. A. N., Hausdorff, J. M., Ivanov, P. C., Peng,
C.-K., and Stanley, H. E.: Fractal dynamics in physiology: Alterations with
disease and aging, P. Natl. Acad. Sci. USA, 99, 2466–2472,
https://doi.org/10.1073/pnas.012579499, 2002. a
Han, P., Hattori, K., Xu, G., Ashida, R., Chen, C.-H., Febriani, F., and
Yamaguchi, H.: Further investigations of geomagnetic diurnal variations
associated with the 2011 off the Pacific coast of Tohoku earthquake (Mw
9.0), J. Asian Earth Sci., 114, 321–326,
https://doi.org/10.1016/j.jseaes.2015.02.022, 2015. a, b
Han, P., Hattori, K., Huang, Q., Hirooka, S., and Yoshino, C.:
Spatiotemporal
characteristics of the geomagnetic diurnal variation anomalies prior to the
2011 Tohoku earthquake (Mw 9.0) and the possible coupling of multiple
pre-earthquake phenomena, J. Asian Earth Sci., 129, 13–21,
https://doi.org/10.1016/j.jseaes.2016.07.011, 2016. a, b
Holliday, J. R., Rundle, J. B., Turcotte, D. L., Klein, W., Tiampo, K. F.,
and
Donnellan, A.: Space-Time Clustering and Correlations of Major Earthquakes,
Phys. Rev. Lett., 97, 238501, https://doi.org/10.1103/PhysRevLett.97.238501, 2006. a
Huang, Q.: Retrospective investigation of geophysical data possibly
associated
with the Ms8.0 Wenchuan earthquake in Sichuan, China, J. Asian Earth
Sci., 41, 421–427, https://doi.org/10.1016/j.jseaes.2010.05.014, 2011. a
Kanamori, H.: Quantification of Earthquakes, Nature, 271, 411–414,
https://doi.org/10.1038/271411a0, 1978. a
Lifshitz, I. and Slyozov, V.: The kinetics of precipitation from
supersaturated
solid solutions, J. Phys. Chem. Solids, 19, 35–50,
https://doi.org/10.1016/0022-3697(61)90054-3, 1961. a
Luginbuhl, M., Rundle, J. B., Hawkins, A., and Turcotte, D. L.: Nowcasting
Earthquakes: A Comparison of Induced Earthquakes in Oklahoma and at the
Geysers, California, Pure Appl. Geophys., 175, 49–65,
https://doi.org/10.1007/s00024-017-1678-8, 2018a. a
Luginbuhl, M., Rundle, J. B., and Turcotte, D. L.: Natural Time and
Nowcasting
Earthquakes: Are Large Global Earthquakes Temporally Clustered?, Pure
Appl. Geophys., 175, 661–670, https://doi.org/10.1007/s00024-018-1778-0,
2018b. a
Molchanov, O. A. and Hayakawa, M.: Generation of ULF electromagnetic
emissions
by microfracturing, Geophys. Res. Lett., 22, 3091–3094,
https://doi.org/10.1029/95GL00781, 1995. a
Olami, Z., Feder, H. J. S., and Christensen, K.: Self-organized criticality
in
a continuous, nonconservative cellular automaton modeling earthquakes, Phys.
Rev. Lett., 68, 1244–1247, https://doi.org/10.1103/physrevlett.68.1244, 1992. a
Orihara, Y., Kamogawa, M., and Nagao, T.: Preseismic Changes of the Level
and
Temperature of Confined Groundwater related to the 2011 Tohoku Earthquake,
Sci. Rep., 4, 6907, https://doi.org/10.1038/srep06907, 2014. a, b, c, d
Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Simons, M., and
Stanley, H. E.: Finite-size effects on long-range correlations: Implications
for analyzing DNA sequences, Phys. Rev. E, 47, 3730–3733,
https://doi.org/10.1103/physreve.47.3730, 1993. a, b, c
Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., and
Goldberger, A. L.: Mosaic organization of DNA nucleotides, Phys. Rev. E,
49, 1685–1689, https://doi.org/10.1103/physreve.49.1685, 1994. a, b, c
Ramírez-Rojas, A., Telesca, L., and Angulo-Brown, F.: Entropy of
geoelectrical time series in the natural time domain, Nat. Hazards Earth
Syst. Sci., 11, 219–225, https://doi.org/10.5194/nhess-11-219-2011, 2011. a
Ramírez-Rojas, A., Flores-Márquez, E. L., Sarlis, N. V., and
Varotsos,
P. A.: The Complexity Measures Associated with the Fluctuations of the
Entropy in Natural Time before the Deadly Mexico M8.2 Earthquake on 7
September 2017, Entropy, 20, 477, https://doi.org/10.3390/e20060477, 2018. a, b
Ramos, O., Altshuler, E., and Måløy, K. J.: Quasiperiodic Events in an
Earthquake Model, Phys. Rev. Lett., 96, 098501,
https://doi.org/10.1103/physrevlett.96.098501, 2006. a
Rong, Y., Wang, Q., Ding, X., and Huang, Q.: Non-uniform scaling behavior in
Ultra-Low-Frequency (ULF) geomagnetic signals possibly associated with the
2011 M9.0 Tohoku earthquake, Chinese J. Geophys., 55, 3709,
https://doi.org/10.6038/j.issn.0001-5733.2012.11.018, 2012. a
Rundle, J. B., Turcotte, D. L., Donnellan, A., Grant Ludwig, L., Luginbuhl,
M.,
and Gong, G.: Nowcasting earthquakes, Earth Space Sci., 3, 480–486,
https://doi.org/10.1002/2016EA000185, 2016. a
Rundle, J. B., Luginbuhl, M., Giguere, A., and Turcotte, D. L.: Natural Time,
Nowcasting and the Physics of Earthquakes: Estimation of Seismic Risk to
Global Megacities, Pure Appl. Geophys., 175, 647–660,
https://doi.org/10.1007/s00024-017-1720-x, 2018. a
Sarlis, N. and Varotsos, P.: Magnetic field near the outcrop of an almost
horizontal conductive sheet, J. Geodyn., 33, 463–476,
https://doi.org/10.1016/S0264-3707(02)00008-X, 2002. a
Sarlis, N., Skordas, E., and Varotsos, P.: The change of the entropy in
natural time under time-reversal in the Olami-Feder-Christensen earthquake
model, Tectonophysics, 513, 49–53, https://doi.org/10.1016/j.tecto.2011.09.025,
2011. a, b
Sarlis, N. V., Skordas, E. S., Varotsos, P. A., Nagao, T., Kamogawa, M., and
Uyeda, S.: Spatiotemporal variations of seismicity before major earthquakes
in the Japanese area and their relation with the epicentral locations, P.
Natl. Acad. Sci. USA, 112, 986–989, https://doi.org/10.1073/pnas.1422893112, 2015. a, b, c
Sarlis, N. V., Skordas, E. S., and Varotsos, P. A.: A remarkable change of
the
entropy of seismicity in natural time under time reversal before the
super-giant M9 Tohoku earthquake on 11 March 2011, Europhys.
Lett., 124, 29001, https://doi.org/10.1209/0295-5075/124/29001,
2018a. a, b
Sarlis, N. V., Skordas, E. S., Varotsos, P. A., Ramírez-Rojas, A., and
Flores-Márquez, E. L.: Natural time analysis: On the deadly Mexico M8.2
earthquake on 7 September 2017, Physica A, 506, 625–634,
https://doi.org/10.1016/j.physa.2018.04.098, 2018b. a, b
Telesca, L. and Lovallo, M.: Non-uniform scaling features in central Italy
seismicity: A non-linear approach in investigating seismic patterns and
detection of possible earthquake precursors, Geophys. Res. Lett., 36,
L01308, https://doi.org/10.1029/2008GL036247, 2009. a
Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics, J.
Stat.
Phys., 52, 479–487, https://doi.org/10.1007/BF01016429, 1988. a, b
Tsunomori, F. and Tanaka, H.: Anomalous change of groundwater radon
concentration monitored at Nakaizu well in 2011, Radiat. Meas., 60,
35–41, https://doi.org/10.1016/j.radmeas.2013.11.006, 2014. a
Uyeda, S., Nagao, T., Orihara, Y., Yamaguchi, T., and Takahashi, I.:
Geoelectric potential changes: Possible precursors to earthquakes in Japan,
P. Natl. Acad. Sci. USA, 97, 4561–4566, https://doi.org/10.1073/pnas.97.9.4561,
2000. a
Uyeda, S., Hayakawa, M., Nagao, T., Molchanov, O., Hattori, K., Orihara, Y.,
Gotoh, K., Akinaga, Y., and Tanaka, H.: Electric and magnetic phenomena
observed before the volcano-seismic activity in 2000 in the Izu Island
Region, Japan, P. Natl. Acad. Sci. USA, 99, 7352–7355,
https://doi.org/10.1073/pnas.072208499, 2002. a, b
Uyeda, S., Kamogawa, M., and Tanaka, H.: Analysis of electrical activity and
seismicity in the natural time domain for the volcanic-seismic swarm activity
in 2000 in the Izu Island region, Japan, J. Geophys. Res., 114, B02310,
https://doi.org/10.1029/2007JB005332, 2009a. a, b
Uyeda, S., Nagao, T., and Kamogawa, M.: Short-term earthquake prediction:
Current status of seismo-electromagnetics, Tectonophysics, 470, 205–213,
https://doi.org/10.1016/j.tecto.2008.07.019, 2009b. a
Varotsos, P.: The Physics of Seismic Electric Signals, TERRAPUB, Tokyo, 2005. a
Varotsos, P.: Point defect parameters in β-PbF2 revisited, Solid
State Ionics, 179, 438–441, https://doi.org/10.1016/j.ssi.2008.02.055, 2008. a
Varotsos, P. and Alexopoulos, K.: Physical Properties of the variations of
the
electric field of the earth preceding earthquakes, I, Tectonophysics,
110, 73–98, https://doi.org/10.1016/0040-1951(84)90059-3, 1984a. a, b
Varotsos, P. and Alexopoulos, K.: Physical Properties of the variations of
the
electric field of the earth preceding earthquakes, II, Tectonophysics,
110, 99–125, https://doi.org/10.1016/0040-1951(84)90060-X, 1984b. a, b
Varotsos, P. and Lazaridou, M.: Latest aspects of earthquake prediction in
Greece based on Seismic Electric Signals, Tectonophysics, 188, 321–347,
https://doi.org/10.1016/0040-1951(91)90462-2, 1991. a, b
Varotsos, P., Alexopoulos, K., Nomicos, K., and Lazaridou, M.: Earthquake
prediction and electric signals, Nature, 322, 120,
https://doi.org/10.1038/322120a0, 1986. a
Varotsos, P., Alexopoulos, K., and Lazaridou, M.: Latest aspects of
earthquake
prediction in Greece based on Seismic Electric Signals,II,
Tectonophysics, 224, 1–37, https://doi.org/10.1016/0040-1951(93)90055-O, 1993. a, b
Varotsos, P., Sarlis, N., and Skordas, E.: Scale-specific order parameter
fluctuations of seismicity in natural time before mainshocks, Europhys.
Lett., 96, 59002,
https://doi.org/10.1209/0295-5075/96/59002, 2011. a, b
Varotsos, P. A., Sarlis, N. V., and Skordas, E. S.: Attempt to distinguish
electric signals of a dichotomous nature, Phys. Rev. E, 68, 031106,
https://doi.org/10.1103/PhysRevE.68.031106, 2003a. a
Varotsos, P. A., Sarlis, N. V., and Skordas, E. S.: Electric Fields that
“arrive” before the time derivative of the magnetic field prior to major
earthquakes, Phys. Rev. Lett., 91, 148501,
https://doi.org/10.1103/PhysRevLett.91.148501, 2003b. a
Varotsos, P. A., Sarlis, N. V., Skordas, E. S., and Lazaridou, M. S.: Entropy
in Natural Time Domain, Phys. Rev. E, 70, 011106,
https://doi.org/10.1103/physreve.70.011106, 2004. a, b, c
Varotsos, P. A., Sarlis, N. V., Skordas, E. S., and Lazaridou, M. S.: Natural
entropy fluctuations discriminate similar-looking electric signals emitted
from systems of different dynamics, Phys. Rev. E, 71, 011110,
https://doi.org/10.1103/physreve.71.011110, 2005a. a, b
Varotsos, P. A., Sarlis, N. V., Tanaka, H. K., and Skordas, E. S.: Some
properties of the entropy in the natural time, Phys. Rev. E, 71, 032102,
https://doi.org/10.1103/physreve.71.032102, 2005b. a
Varotsos, P. A., Sarlis, N. V., Tanaka, H. K., and Skordas, E. S.: Similarity
of fluctuations in correlated systems: The case of seismicity, Phys. Rev. E,
72, 041103, https://doi.org/10.1103/physreve.72.041103, 2005c. a
Varotsos, P. A., Sarlis, N. V., Skordas, E. S., and Lazaridou, M. S.:
Identifying sudden cardiac death risk and specifying its occurrence time by
analyzing electrocardiograms in natural time, Appl. Phys. Lett., 91, 064106,
https://doi.org/10.1063/1.2768928, 2007. a, b, c
Varotsos, P. A., Sarlis, N. V., Skordas, E. S., and Lazaridou, M. S.:
Seismic
Electric Signals: An additional fact showing their physical interconnection
with seismicity, Tectonophysics, 589, 116–125,
https://doi.org/10.1016/j.tecto.2012.12.020, 2013.
a
Varotsos, P. A., Sarlis, N. V., and Skordas, E. S.: Tsallis Entropy Index q
and the Complexity Measure of Seismicity in Natural Time under Time Reversal
before the M9 Tohoku Earthquake in 2011, Entropy, 20, 757,
https://doi.org/10.3390/e20100757, 2018. a, b, c
Varotsos, P. A., Sarlis, N. V., and Skordas, E. S.: Natural time analysis:
Important changes of the order parameter of seismicity preceding the 2011 M9
Tohoku earthquake in Japan, Europhys. Lett., 125, 69001,
https://doi.org/10.1209/0295-5075/125/69001,
2019. a, b
Wagner, C.: Theorie der Alterung von Niederschlägen durch Umlösen
(Ostwald-Reifung), Zeitschrift für Elektrochemie, Berich.
Bunsen. Gesell., 65, 581–591, 1961. a
Xu, G., Han, P., Huang, Q., Hattori, K., Febriani, F., and Yamaguchi, H.:
Anomalous behaviors of geomagnetic diurnal variations prior to the 2011 off
the Pacific coast of Tohoku earthquake (Mw9.0), J. Asian Earth Sci., 77, 59–65, https://doi.org/10.1016/j.jseaes.2013.08.011, 2013. a, b
Short summary
In this paper, we summarize the anomalous phenomena that were observed before the super-giant earthquake of magnitude 9.0 that occurred on 11 March 2011 in Japan. These phenomena have been detected by means of ground-based measurements and satellite data. We find that all these phenomena are in agreement with a condensed matter physical model that motivated in the 1980s a short-term earthquake prediction method based on the detection of precursory electric signals.
In this paper, we summarize the anomalous phenomena that were observed before the super-giant...
Special issue