Articles | Volume 37, issue 1
https://doi.org/10.5194/angeo-37-25-2019
https://doi.org/10.5194/angeo-37-25-2019
Regular paper
 | 
15 Jan 2019
Regular paper |  | 15 Jan 2019

Comparisons between the WRF data assimilation and the GNSS tomography technique in retrieving 3-D wet refractivity fields in Hong Kong

Zhaohui Xiong, Bao Zhang, and Yibin Yao

Related authors

Multi-Global Navigation Satellite System (GNSS) real-time tropospheric delay retrieval based on state-space representation (SSR) products from different analysis centers
Wanqiang Yao, Haoran Huang, Xiongwei Ma, Qi Zhang, Yibin Yao, Xiaohu Lin, Qingzhi Zhao, and Yunzheng Huang
Ann. Geophys., 42, 455–472, https://doi.org/10.5194/angeo-42-455-2024,https://doi.org/10.5194/angeo-42-455-2024, 2024
Short summary
USER IMPLEMENTATION AND ASSESSMENT OF BDS-3 PRECISE POINT POSITIONING AUGMENTATION SERVICE WITH NO ECONOMIC COST
C. Ouyang, J. Shi, W. Peng, X. Dong, J. Guo, and Y. Yao
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 679–686, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-679-2023,https://doi.org/10.5194/isprs-annals-X-1-W1-2023-679-2023, 2023
An improved pixel-based water vapor tomography model
Yibin Yao, Linyang Xin, and Qingzhi Zhao
Ann. Geophys., 37, 89–100, https://doi.org/10.5194/angeo-37-89-2019,https://doi.org/10.5194/angeo-37-89-2019, 2019
Short summary
An empirical zenith wet delay correction model using piecewise height functions
YiBin Yao and YuFeng Hu
Ann. Geophys., 36, 1507–1519, https://doi.org/10.5194/angeo-36-1507-2018,https://doi.org/10.5194/angeo-36-1507-2018, 2018
An optimal tropospheric tomography approach with the support of an auxiliary area
Qingzhi Zhao, Yibin Yao, Wanqiang Yao, and Pengfei Xia
Ann. Geophys., 36, 1037–1046, https://doi.org/10.5194/angeo-36-1037-2018,https://doi.org/10.5194/angeo-36-1037-2018, 2018
Short summary

Related subject area

Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Modelling of the atmosphere
Analysis of migrating and non-migrating tides of the Extended Unified Model in the mesosphere and lower thermosphere
Matthew J. Griffith and Nicholas J. Mitchell
Ann. Geophys., 40, 327–358, https://doi.org/10.5194/angeo-40-327-2022,https://doi.org/10.5194/angeo-40-327-2022, 2022
Short summary
Winds and tides of the Extended Unified Model in the mesosphere and lower thermosphere validated with meteor radar observations
Matthew J. Griffith, Shaun M. Dempsey, David R. Jackson, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Ann. Geophys., 39, 487–514, https://doi.org/10.5194/angeo-39-487-2021,https://doi.org/10.5194/angeo-39-487-2021, 2021
Short summary
Observing geometry effects on a Global Navigation Satellite System (GNSS)-based water vapor tomography solved by least squares and by compressive sensing
Marion Heublein, Patrick Erik Bradley, and Stefan Hinz
Ann. Geophys., 38, 179–189, https://doi.org/10.5194/angeo-38-179-2020,https://doi.org/10.5194/angeo-38-179-2020, 2020
Propagation to the upper atmosphere of acoustic-gravity waves from atmospheric fronts in the Moscow region
Yuliya Kurdyaeva, Sergey Kulichkov, Sergey Kshevetskii, Olga Borchevkina, and Elena Golikova
Ann. Geophys., 37, 447–454, https://doi.org/10.5194/angeo-37-447-2019,https://doi.org/10.5194/angeo-37-447-2019, 2019
Short summary
Sensitivity of GNSS tropospheric gradients to processing options
Michal Kačmařík, Jan Douša, Florian Zus, Pavel Václavovic, Kyriakos Balidakis, Galina Dick, and Jens Wickert
Ann. Geophys., 37, 429–446, https://doi.org/10.5194/angeo-37-429-2019,https://doi.org/10.5194/angeo-37-429-2019, 2019
Short summary

Cited articles

Adams, K., Fernandes, S., and Maia, F.: GNSS Precipitable Water Vapor from an Amazonian Rain Forest Flux Tower, J. Atmos. Ocean. Tech., 28, 1192–1198, https://doi.org/10.1175/jtech-d-11-00082.1, 2011. 
Adavi, Z. and Mashhadi-Hossainali, M.: 4D tomographic reconstruction of the tropospheric wet refractivity using the concept of virtual reference station, case study: northwest of Iran, Meteorol. Atmos. Phys., 126, 193–205, https://doi.org/10.1007/s00703-014-0342-4, 2014. 
Altshuler, E. E.: Tropospheric range-error corrections for the Global Positioning System, IEEE T. Antenn. Propag., 46, 643–649, https://doi.org/10.1109/8.668906, 2002. 
Altuntac, E.: Quasi-Newton Approach for an Atmospheric Tomography Problem, eprint arXiv:1511.08022, available at: https://arxiv.org/pdf/1511.08022.pdf (last access: 4 May 2018), 2015. 
Askne, J. and Nordius, H.: Estimation of Tropospheric Delay for Microwaves from Surface Weather Data, Radio Sci., 22, 379–386, https://doi.org/10.1029/rs022i003p00379, 1987. 
Download
Short summary
A comparison between the GNSS tomography technique and WRFDA in retrieving wet refractivity (WR) is conducted in HK during a wet period and a dry period. The results show that both of them can retrieve good WR. In most of the cases, the WRFDA output outperforms the tomographic WR, but the tomographic WR is better than the WRFDA output in the lower troposphere in the dry period. By assimilating better tomographic WR in the lower troposphere into the WRFDA, we slightly improve the retrieved WR.