Articles | Volume 37, issue 1
Ann. Geophys., 37, 25–36, 2019
https://doi.org/10.5194/angeo-37-25-2019

Special issue: Advanced Global Navigation Satellite Systems tropospheric...

Ann. Geophys., 37, 25–36, 2019
https://doi.org/10.5194/angeo-37-25-2019

Regular paper 15 Jan 2019

Regular paper | 15 Jan 2019

Comparisons between the WRF data assimilation and the GNSS tomography technique in retrieving 3-D wet refractivity fields in Hong Kong

Zhaohui Xiong et al.

Related authors

An improved pixel-based water vapor tomography model
Yibin Yao, Linyang Xin, and Qingzhi Zhao
Ann. Geophys., 37, 89–100, https://doi.org/10.5194/angeo-37-89-2019,https://doi.org/10.5194/angeo-37-89-2019, 2019
Short summary
An empirical zenith wet delay correction model using piecewise height functions
YiBin Yao and YuFeng Hu
Ann. Geophys., 36, 1507–1519, https://doi.org/10.5194/angeo-36-1507-2018,https://doi.org/10.5194/angeo-36-1507-2018, 2018
An optimal tropospheric tomography approach with the support of an auxiliary area
Qingzhi Zhao, Yibin Yao, Wanqiang Yao, and Pengfei Xia
Ann. Geophys., 36, 1037–1046, https://doi.org/10.5194/angeo-36-1037-2018,https://doi.org/10.5194/angeo-36-1037-2018, 2018
Short summary
Capturing the signature of heavy rainfall events using the 2-d-/4-d water vapour information derived from GNSS measurement in Hong Kong
Qingzhi Zhao, Yibin Yao, and Wanqiang Yao
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-76,https://doi.org/10.5194/angeo-2018-76, 2018
Manuscript not accepted for further review
Short summary
Establishment of a regional precipitable water vapor model based on the combination of GNSS and ECMWF data
Yibin Yao, Xingyu Xu, and Yufeng Hu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-227,https://doi.org/10.5194/amt-2018-227, 2018
Revised manuscript not accepted

Related subject area

Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Modelling of the atmosphere
Observing geometry effects on a Global Navigation Satellite System (GNSS)-based water vapor tomography solved by least squares and by compressive sensing
Marion Heublein, Patrick Erik Bradley, and Stefan Hinz
Ann. Geophys., 38, 179–189, https://doi.org/10.5194/angeo-38-179-2020,https://doi.org/10.5194/angeo-38-179-2020, 2020
Propagation to the upper atmosphere of acoustic-gravity waves from atmospheric fronts in the Moscow region
Yuliya Kurdyaeva, Sergey Kulichkov, Sergey Kshevetskii, Olga Borchevkina, and Elena Golikova
Ann. Geophys., 37, 447–454, https://doi.org/10.5194/angeo-37-447-2019,https://doi.org/10.5194/angeo-37-447-2019, 2019
Short summary
Sensitivity of GNSS tropospheric gradients to processing options
Michal Kačmařík, Jan Douša, Florian Zus, Pavel Václavovic, Kyriakos Balidakis, Galina Dick, and Jens Wickert
Ann. Geophys., 37, 429–446, https://doi.org/10.5194/angeo-37-429-2019,https://doi.org/10.5194/angeo-37-429-2019, 2019
Short summary
An empirical model of the thermospheric mass density derived from CHAMP satellite
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018,https://doi.org/10.5194/angeo-36-1141-2018, 2018

Cited articles

Adams, K., Fernandes, S., and Maia, F.: GNSS Precipitable Water Vapor from an Amazonian Rain Forest Flux Tower, J. Atmos. Ocean. Tech., 28, 1192–1198, https://doi.org/10.1175/jtech-d-11-00082.1, 2011. 
Adavi, Z. and Mashhadi-Hossainali, M.: 4D tomographic reconstruction of the tropospheric wet refractivity using the concept of virtual reference station, case study: northwest of Iran, Meteorol. Atmos. Phys., 126, 193–205, https://doi.org/10.1007/s00703-014-0342-4, 2014. 
Altshuler, E. E.: Tropospheric range-error corrections for the Global Positioning System, IEEE T. Antenn. Propag., 46, 643–649, https://doi.org/10.1109/8.668906, 2002. 
Altuntac, E.: Quasi-Newton Approach for an Atmospheric Tomography Problem, eprint arXiv:1511.08022, available at: https://arxiv.org/pdf/1511.08022.pdf (last access: 4 May 2018), 2015. 
Askne, J. and Nordius, H.: Estimation of Tropospheric Delay for Microwaves from Surface Weather Data, Radio Sci., 22, 379–386, https://doi.org/10.1029/rs022i003p00379, 1987. 
Download
Short summary
A comparison between the GNSS tomography technique and WRFDA in retrieving wet refractivity (WR) is conducted in HK during a wet period and a dry period. The results show that both of them can retrieve good WR. In most of the cases, the WRFDA output outperforms the tomographic WR, but the tomographic WR is better than the WRFDA output in the lower troposphere in the dry period. By assimilating better tomographic WR in the lower troposphere into the WRFDA, we slightly improve the retrieved WR.