Articles | Volume 37, issue 1
Ann. Geophys., 37, 25–36, 2019
https://doi.org/10.5194/angeo-37-25-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Advanced Global Navigation Satellite Systems tropospheric...
Regular paper 15 Jan 2019
Regular paper | 15 Jan 2019
Comparisons between the WRF data assimilation and the GNSS tomography technique in retrieving 3-D wet refractivity fields in Hong Kong
Zhaohui Xiong et al.
Related authors
No articles found.
Yibin Yao, Linyang Xin, and Qingzhi Zhao
Ann. Geophys., 37, 89–100, https://doi.org/10.5194/angeo-37-89-2019, https://doi.org/10.5194/angeo-37-89-2019, 2019
Short summary
Short summary
In this paper, we propose an improved pixel-based water vapor tomography model, which uses layered optimal polynomial functions by adaptive training for water vapor retrieval. Under different scenarios, tomography results show that the new model outperforms the traditional one by reducing the root-mean-square error (RMSE), and this improvement is more pronounced, at 5.88 % in voxels without the penetration of GNSS rays. The improved model also has advantages in more convenient expression.
YiBin Yao and YuFeng Hu
Ann. Geophys., 36, 1507–1519, https://doi.org/10.5194/angeo-36-1507-2018, https://doi.org/10.5194/angeo-36-1507-2018, 2018
Qingzhi Zhao, Yibin Yao, Wanqiang Yao, and Pengfei Xia
Ann. Geophys., 36, 1037–1046, https://doi.org/10.5194/angeo-36-1037-2018, https://doi.org/10.5194/angeo-36-1037-2018, 2018
Short summary
Short summary
This paper proposes an optimal tropospheric tomography approach with the support of an auxiliary area, which has the ability to use the signals crossing out from the top boundary of the tomographic area. Additionally, the top height of the tomography body is determined based on the average water vapour distribution derived from the COSMIC data. The compared result reveals the superiority of the proposed method when compared to the conventional method.
Qingzhi Zhao, Yibin Yao, and Wanqiang Yao
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-76, https://doi.org/10.5194/angeo-2018-76, 2018
Manuscript not accepted for further review
Short summary
Short summary
This paper captures the signature of heavy rainfall events using the 2-d-/4-d water vapour information derived from GNSS measurement in Hong Kong. The paper first analyzed the relationship between the two-dimensional (2-d) precipitable water vapour (PWV) and rainfall. And then, the four-dimensional (4-d) variations of atmospheric water vapour derived from the GNSS tomographic technique are discussed, especially in the vertical irection. Finally, some interesting results are found and presented.
Yibin Yao, Xingyu Xu, and Yufeng Hu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-227, https://doi.org/10.5194/amt-2018-227, 2018
Revised manuscript not accepted
Qingzhi Zhao, Yibin Yao, and Wanqiang Yao
Ann. Geophys., 35, 1327–1340, https://doi.org/10.5194/angeo-35-1327-2017, https://doi.org/10.5194/angeo-35-1327-2017, 2017
Qingzhi Zhao and Yibin Yao
Ann. Geophys., 35, 87–95, https://doi.org/10.5194/angeo-35-87-2017, https://doi.org/10.5194/angeo-35-87-2017, 2017
Short summary
Short summary
A troposphere tomographic method has been proposed considering the signal rays penetrating from the side of the area of interest. Given the method above needs the establishment of a unit scale factor model using the radiosonde data at only one location in the research area, an improved approach is proposed by considering the reasonability of modelling data and the diversity of the modelling parameters for building a more accurate unit scale factor model.
Yibin Yao, Yufeng Hu, Chen Yu, Bao Zhang, and Jianjian Guo
Nonlin. Processes Geophys., 23, 127–136, https://doi.org/10.5194/npg-23-127-2016, https://doi.org/10.5194/npg-23-127-2016, 2016
Short summary
Short summary
By considering the diurnal variations in zenith tropospheric delay (ZTD) and modifying the model expansion function, we developed an improved global empirical ZTD model GZTD2 with higher temporal and spatial resolutions compared to our previous GZTD model. The external validation testing with IGS ZTD data shows the bias and rms for GZTD2 are −0.3 and 3.9 cm respectively, indicating higher accuracy and reliability for geodesy technology compared to GZTD and other commonly used ZTD models.
Y. B. Yao, Q. Z. Zhao, and B. Zhang
Ann. Geophys., 34, 143–152, https://doi.org/10.5194/angeo-34-143-2016, https://doi.org/10.5194/angeo-34-143-2016, 2016
Short summary
Short summary
Existing water vapor tomographic methods use Global Navigation Satellite System (GNSS) signals penetrating the entire research area while they do not consider signals passing through its sides. To solve this issue, an approach which uses GPS data with both signals that pass the side and top of a research area is proposed. The advantages of proposed approach include improving the utilization of existing GNSS observations and increasing the number of voxels crossed by satellite signals.
Y. B. Yao, X. X. Lei, Q. Liu, C. Y. He, B. Zhang, and L. Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-3533-2014, https://doi.org/10.5194/nhessd-2-3533-2014, 2014
Manuscript not accepted for further review
Y. B. Yao, P. Chen, S. Zhang, and J. J. Chen
Nat. Hazards Earth Syst. Sci., 13, 375–384, https://doi.org/10.5194/nhess-13-375-2013, https://doi.org/10.5194/nhess-13-375-2013, 2013
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Modelling of the atmosphere
Observing geometry effects on a Global Navigation Satellite System (GNSS)-based water vapor tomography solved by least squares and by compressive sensing
Propagation to the upper atmosphere of acoustic-gravity waves from atmospheric fronts in the Moscow region
Sensitivity of GNSS tropospheric gradients to processing options
An empirical model of the thermospheric mass density derived from CHAMP satellite
Marion Heublein, Patrick Erik Bradley, and Stefan Hinz
Ann. Geophys., 38, 179–189, https://doi.org/10.5194/angeo-38-179-2020, https://doi.org/10.5194/angeo-38-179-2020, 2020
Yuliya Kurdyaeva, Sergey Kulichkov, Sergey Kshevetskii, Olga Borchevkina, and Elena Golikova
Ann. Geophys., 37, 447–454, https://doi.org/10.5194/angeo-37-447-2019, https://doi.org/10.5194/angeo-37-447-2019, 2019
Short summary
Short summary
To simulate the vertical propagation of atmospheric waves, experimental data on pressure variations at the Earth's surface are used. These data are associated with the meteorological source. The simulation results have allowed for the first time estimates of the amplitudes of temperature wave disturbances in the upper atmosphere caused by waves from the atmospheric front. The simulations have been performed using the Lomonosov supercomputer.
Michal Kačmařík, Jan Douša, Florian Zus, Pavel Václavovic, Kyriakos Balidakis, Galina Dick, and Jens Wickert
Ann. Geophys., 37, 429–446, https://doi.org/10.5194/angeo-37-429-2019, https://doi.org/10.5194/angeo-37-429-2019, 2019
Short summary
Short summary
We provide an analysis of processing setting impacts on tropospheric gradients estimated from GNSS observation processing. These tropospheric gradients are related to water vapour distribution in the troposphere and therefore can be helpful in meteorological applications.
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018, https://doi.org/10.5194/angeo-36-1141-2018, 2018
Cited articles
Adams, K., Fernandes, S., and Maia, F.: GNSS Precipitable Water Vapor from an
Amazonian Rain Forest Flux Tower, J. Atmos. Ocean.
Tech., 28, 1192–1198, https://doi.org/10.1175/jtech-d-11-00082.1, 2011.
Adavi, Z. and Mashhadi-Hossainali, M.: 4D tomographic reconstruction of the
tropospheric wet refractivity using the concept of virtual reference
station, case study: northwest of Iran, Meteorol. Atmos. Phys., 126,
193–205, https://doi.org/10.1007/s00703-014-0342-4, 2014.
Altshuler, E. E.: Tropospheric range-error corrections for the Global
Positioning System, IEEE T. Antenn. Propag.,
46, 643–649, https://doi.org/10.1109/8.668906, 2002.
Altuntac, E.: Quasi-Newton Approach for an Atmospheric Tomography Problem,
eprint arXiv:1511.08022, available at:
https://arxiv.org/pdf/1511.08022.pdf
(last access: 4 May 2018), 2015.
Askne, J. and Nordius, H.: Estimation of Tropospheric Delay for Microwaves from
Surface Weather Data, Radio Sci., 22, 379–386, https://doi.org/10.1029/rs022i003p00379, 1987.
Barker, D., Huang, Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S., and
Demirtas, M.: The weather research and forecasting model's community
variational/ensemble data assimilation system: WRFDA, B.
Am. Meteorol. Soc., 93, 831–843, https://doi.org/10.1175/BAMS-D-11-00167.1, 2012.
Barker, M., Huang, W., Guo, R., Bourgeois, J., and Xiao, N.: A three-dimensional
variational data assimilation system for MM5: Implementation and initial
results, Mon. Weather Rev., 132, 897–914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2, 2004.
Bennitt, V. and Jupp, A.: Operational assimilation of GPS zenith total delay
observations into the Met Office numerical weather prediction models,
Mon. Weather Rev., 140, 2706–2719, https://doi.org/10.1175/MWR-D-11-00156.1,
2012.
Bevis, M., Businger, S., Herring, A., Rocken, C., Anthes, A., and Ware, H.: GPS
meteorology: remote sensing of atmospheric water vapor using the global
positioning system, J. Geophys. Res., 97, 15787–15801, https://doi.org/10.1029/92JD01517, 1992.
Bokoye, I., Royer, A., O'Neill, T., Cliche, P., McArthur, B., Teillet, M.,
and
Thériault, M.: Multisensor analysis of integrated atmospheric water
vapor over Canada and Alaska, J. Geophys. Res., 108, 4480, https://doi.org/10.1029/2002jd002721, 2003.
Boniface, K., Ducrocq, V., Jaubert, G., Yan, X., Brousseau, P., Masson, F.,
Champollion, C., Chéry, J., and Doerflinger, E.: Impact of
high-resolution data assimilation of GPS zenith delay on Mediterranean heavy
rainfall forecasting, Ann. Geophys., 27, 2739–2753,
https://doi.org/10.5194/angeo-27-2739-2009, 2009.
Cao, Y., Chen, Y., and Pingwha, I.: Wet Refractivity Tomography with an
improved Kalman-Filter Method, Adv. Atmos. Sci., 23, 693–699,
https://doi.org/10.5194/angeo-35-87-2017, 2006.
Carvalhoaabc, D.: A sensitivity study of the WRF model in wind simulation for
an area of high wind energy, Environ. Modell. Softw., 33, 23–34,
https://doi.org/10.1016/j.envsoft.2012.01.019, 2012.
Chen, B. and Liu, Z.: Voxel-optimized regional water vapor tomography and
comparison with radiosonde and numerical weather mode, J. Geodesy, 88,
691–703, https://doi.org/10.1007/s00190-014-0715-y, 2014.
Chien, F. C., Hong, J. S., Chang, W. J., Jou, B. J., Lin, P., Lin, T. E.,
Liu, S. P., and Miou, H. J.: A sensitivity study of the WRF model. Part II:
verification of quantitative precipitation forecasts, J. Atmos. Sci., 34,
261–276, 2006.
Dudhia, J.: Numerical Study of Convection Observed during the Winter Monsoon
Experiment Using a Mesoscale Two-Dimensional Model, J. Atmos., 46,
3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:nsocod>2.0.co;2, 1989.
Faccani, C., Ferretti, R., Pacione, R., Paolucci, T., Vespe, F., and
Cucurull, L.: Impact of a high density GPS network on the operational
forecast, Adv. Geosci., 2, 73–79, https://doi.org/10.5194/adgeo-2-73-2005, 2005.
Flores, A., Ruffini, G., and Rius, A.: 4D tropospheric tomography using GPS
slant wet delays, Ann. Geophys., 18, 223–234,
https://doi.org/10.1007/s00585-000-0223-7, 2000.
Flores, A., De Arellano, G., Gradinarsky, P., and Rius, A.: Tomography of the
Lower Troposphere Using a Small Dense Network of GPS Receivers, IEEE T.
Geosci. Remote, 39, 439–447, https://doi.org/10.1109/36.905252, 2001.
Grejner-Brzezinska, A.: GPS-PWV estimation and validation with radiosonde
data and numerical weather prediction model in Antarctica, Gps Solutions, 17,
29–39, https://doi.org/10.1007/s10291-012-0258-8, 2013.
Hirahara, K.: Local GPS tropospheric tomography, Earth Planets Space, 52,
935–939, https://doi.org/10.1186/bf03352308, 2000.
Hong, S.-Y., Dudhia, J., and Chen, S.-H.: A Revised Approach to Ice
Microphysical Pro-cesses for the Bulk Parameterization of Clouds and
Precipitation, Mon. Weather Rev., 132, 103–120, 2004.
Hong, Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an
Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134, 2318,
https://doi.org/10.1175/MWR3199.1, 2006.
Huang, Y., Xiao, Q., Barker, M., Zhang, X., Michalakes, J., Huang, W., and
Dudhia, J.: Four-Dimensional Variational Data Assimilation for WRF:
Formulation and Preliminary Results, Mon. Weather Rev., 137, 299–314,
https://doi.org/10.1175/2008MWR2577.1, 2008.
Jankov, I., Gallus Jr., W. A., Segal, M., Shaw, B., and Koch, E.: The Impact
of Different WRF Model Physical Parameterizations and Their Interactions on
Warm Season MCS Rainfall, Weather Forecast., 20, 1048–1060,
https://doi.org/10.1175/WAF888.1, 2005.
Kain, J. S. and Fritsch, J. M.: A one-dimensional entraining/detraining plume
model and its application in convective parameterization, J. Atmos. Sci., 47,
2784–2802, 1990.
Kouba, J. and Héroux, P.: Precise point positioning using IGS orbit and
clock products, GPS Solut., 5, 12–28, https://doi.org/10.1007/PL00012883, 2001.
Lanyi, G.: Tropospheric delay effects in radio interferometry,
Telecommunications & Data Acquisition Progress Report, 78, 152–159,
available at: http://ipnpr.jpl.nasa.gov/progress_report/42-78/78N.PDF
(last access: 4 May 2018), 1984.
Li, X., Dick, G., Ge, M., Heise, S., Wickert, J., and Bender, M.: Real-time
GPS sensing of atmospheric water vapor: Precise point positioning with orbit,
clock, and phase delay corrections, Geophys. Res. Lett., 41, 3615–3621,
https://doi.org/10.1002/2014jd021486, 2014.
Li, X., Zus, F., Lu, C., Dick, G., Ning, T., Ge, M., and Schuh, H.:
Retrieving of atmospheric parameters from multi-GNSS in real time: validation
with water vapor radiometer and numerical weather model, J. Geophys.
Res.-Atmos., 120, 7189–7204, https://doi.org/10.1002/2015jd023454, 2015.
Lindskog, M., Ridal, M., Thorsteinsson, S., and Ning, T.: Data assimilation
of GNSS zenith total delays from a Nordic processing centre, Atmos. Chem.
Phys., 17, 13983–13998, https://doi.org/10.5194/acp-17-13983-2017, 2017.
Lu, C., Li, X., Nilsson, T., Ning, T., Heinkelmann, R., Ge, M., and Schuh,
H.: Real-time retrieval of precipitable water vapor from GPS and BeiDou
observations, J. Geodesy, 89, 843–856, https://doi.org/10.1007/s00190-015-0818-0, 2015.
Mlawer, J., Taubman, J., Brown, D., Iacono, J., and Clough, A.: Radiative
transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k
model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682,
https://doi.org/10.1029/97JD00237, 1997.
Moeller, G., Wittmann, C., Yan, X., and Weber, R.: GNSS tomography and
assimilation test cases during the 2013 Central Europe floods, Geophys. Res.
Abstr., EGU2016-6007, EGU General Assembly 2016, Vienna, Austria, 2016.
Monin, S. and Obukhov, M.: Basic laws of turbulent mixing in the surface
layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR., 64,
1963–1987, available at:
https://www.mcnaughty.com/keith/papers/Monin_and_Obukhov_1954.pdf (last
access: 4 May 2018), 1954.
Nakamura, H., Koizumi, K., and Mannoji, N.: Data assimilation of GPS
precipitable water vapor into the JMA mesoscale numerical weather prediction
model and its impact on rainfall forecasts, J. Meteorol. Soc. Jpn. Ser. II,
82, 441–452, https://doi.org/10.2151/jmsj.2004.441, 2004.
Niell, E.: Global mapping functions for the atmosphere delay at radio
wavelengths, J. Geophys. Res., 101, 3227–3246, https://doi.org/10.1029/95jb03048, 1996.
Nilsson, T. and Gradinarsky, L.: Water vapor tomography using GPS phase
observations: simulation results, IEEE T. Geosci. Remote, 44, 2927–2941,
https://doi.org/10.1109/TGRS.2006.877755, 2006.
Pacione, R., Sciarretta, C., Faccani, C., Ferretti, R., and Vespe, F.: GPS PW
assimilation into MM5 with the nudging technique, Phys. Chem. Earth Pt. A,
26, 6–8, https://doi.org/10.1016/S1464-1895(01)00088-6, 2001.
Perler, D., Geiger, A., and Hurter, F.: 4D GPS water vapor tomography: new
parameterized approaches, J. Geodesy, 85, 539–550,
https://doi.org/10.1007/s00190-011-0454-2, 2011a.
Perler, D., Geiger, A., and Rothacher, M.: Determination of the
4D-Tropospheric Water Vapor Distribution by GPS for the Assimilation into
Numerical Weather Prediction Models, AGU Fall Meeting, 5–9 December 2011,
San Francisco, USA, 2011b.
Rocken, C., Ware, R., Van Hove, T., Solheim, F., Alber, C., Johnson, J.,
Solheim, F., Alber, C., and Johnson, J.: Sensing atmospheric water vapor with
the global positioning system, Geophys. Res. Lett., 20, 2631–2634,
https://doi.org/10.1029/93gl02935, 1993.
Rohm, W. and Bosy, J.: The verification of GNSS tropospheric tomography model
in a mountainous area, Adv. Space Res., 47, 1721–1730,
https://doi.org/10.1016/j.asr.2010.04.017, 2011.
Saastamoinen, J.: Atmospheric correction for the troposphere and stratosphere
in radio ranging of satellites, Use Artif. Satell. Geod., 15, 247–251,
https://doi.org/10.1029/GM015p0247, 1972.
Seko, H., Shimada, S., Nakamura, H., and Kato, T.: Three-dimensional
distribution of water vapor estimated from tropospheric delay of GPS data in
a mesoscale precipitation system of the Baiu front, Earth Planets Space, 52,
927–933, https://doi.org/10.1186/bf03352307, 2000.
Shoji, Y., Sato, K., Yabuki, M., and Tsuda, T.: PWV Retrieval over the ocean
using shipborne GNSS receivers with MADOCA real-time orbits, SOLA, 12,
265–271, https://doi.org/10.2151/sola.2016-052, 2016.
Singh, S., Mandal, M., and Bhaskaran, K.: Impact of radiance data
assimilation on the prediction performance of cyclonic storm SIDR using
WRF-3DVAR modelling system, Meteorol. Atmos. Phys., 2, 1–18,
https://doi.org/10.1007/s00703-017-0552-7, 2017.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, A., Mitchell, K., and
Cuenca, H.: Implementation and verification of the unified noah land surface
model in the WRF model, 20th conference on weather analysis and
forecasting/16th conference on numerical weather prediction, 11–15, 2004.
Tregoning, P., Boers, R., O'Brien, D., and Hendy, M.: Accuracy of absolute
precipitable water vapor estimates from GPS observations, J. Geophys.
Res.-Atmos., 103, 28701–28710, https://doi.org/10.1029/98JD02516, 1998.
UCAR/NCAR/CISL/VETS: The NCAR Command Language (NCL, Version 6.1.2)
[Software], UCAR/NCAR/CISL/VETS, Boulder, Colorado, https://doi.org/10.5065/D6WD3XH5,
2013.
Vedel, H. and Huang, X.: Impact of ground based GPS data on NWP forecasts, J.
Meteorol. Soc. Jpn., 82, 459–472, https://doi.org/10.2151/jmsj.2004.459, 2004.
Wang, X., Dai, Z., Zhang, E., Fuyang, K. E., Cao, Y., Song, L., and Lianchun,
S.: Tropospheric wet refractivity tomography using multiplicative algebraic
reconstruction technique, Adv. Space Res., 53, 156–162,
https://doi.org/10.1016/j.asr.2010.04.017, 2014b.
Wexler, A.: Vapor Pressure Formulation for Water in Range 0 to f
00 ∘C. A Revision, J. Res. Natl. Inst. Stan., 80, 775–785,
https://doi.org/10.6028/jres.080A.071, 1976.
Wexler, A.: Vapor Pressure Formulation for Ice, J. Res. Natl. Inst. Stan.,
81, 5–20, https://doi.org/10.6028/jres.081A.003, 1977.
Yao, Y., Zhang, B., Xu, C., and Yan, F.: Improved one/multi-parameter models
that consider seasonal and geographic variations for estimating weighted mean
temperature in ground-based GPS meteorology, J. Geodesy, 88, 273–282,
https://doi.org/10.1007/s00190-013-0684-6, 2014.
Yuan, Y., Zhang, K., Rohm, W., Choy, S., Norman, R., and Wang, S.: Real-time
retrieval of precipitable water vapor from GPS precise point positioning, J.
Geophys. Res.-Atmos., 119, 10044–10057, https://doi.org/10.1002/2014jd021486, 2014.
Zhang, B., Fan, Q., Yao, Y., and Li, X.: An Improved Tomography Approach
Based on Adaptive Smoothing and Ground Meteorological Observations, Remote
Sensing, 9, 886, https://doi.org/10.3390/rs9090886, 2017.
Zhao, Q. and Yao, Y.: An improved troposphere tomographic approach
considering the signals coming from the side face of the tomographic area,
Ann. Geophys., 35, 87–95, https://doi.org/10.5194/angeo-35-87-2017, 2017.
Short summary
A comparison between the GNSS tomography technique and WRFDA in retrieving wet refractivity (WR) is conducted in HK during a wet period and a dry period. The results show that both of them can retrieve good WR. In most of the cases, the WRFDA output outperforms the tomographic WR, but the tomographic WR is better than the WRFDA output in the lower troposphere in the dry period. By assimilating better tomographic WR in the lower troposphere into the WRFDA, we slightly improve the retrieved WR.
A comparison between the GNSS tomography technique and WRFDA in retrieving wet refractivity (WR)...