Articles | Volume 36, issue 5
https://doi.org/10.5194/angeo-36-1303-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-1303-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Turbulent processes in the Earth's magnetotail: spectral and statistical research
Liudmyla V. Kozak
CORRESPONDING AUTHOR
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Space Research Institute of the National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Kyiv, Ukraine
Bohdan A. Petrenko
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Anthony T. Y. Lui
Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
Elena A. Kronberg
Max Planck Institute for Solar System Research, Göttingen, Germany
Department of Earth and Environmental Sciences, Ludwig Maximilian University of Munich, Munich, Germany
Elena E. Grigorenko
Space Research Institute, RAS, Russia
Andrew S. Prokhorenkov
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Related authors
Andrei Y. Malykhin, Elena E. Grigorenko, Elena A. Kronberg, Patrick W. Daly, and Ludmila V. Kozak
Ann. Geophys., 37, 549–559, https://doi.org/10.5194/angeo-37-549-2019, https://doi.org/10.5194/angeo-37-549-2019, 2019
Short summary
Short summary
In this work we present an analysis of the dynamics of suprathermal ions of different masses (H+, He+, O+) during prolonged dipolarizations in the near-Earth magnetotail according to Cluster/RAPID observations in 2001–2005. All dipolarizations from our database were associated with fast flow braking and consisted of multiple dipolarization fronts (DFs). We found statistically that fluxes of suprathermal ions started to increase ~ 1 min before the dipolarization onset and continued.
Andrey Y. Malykhin, Elena E. Grigorenko, Elena A. Kronberg, Rositza Koleva, Natalia Y. Ganushkina, Ludmila Kozak, and Patrick W. Daly
Ann. Geophys., 36, 741–760, https://doi.org/10.5194/angeo-36-741-2018, https://doi.org/10.5194/angeo-36-741-2018, 2018
Andrei Y. Malykhin, Elena E. Grigorenko, Elena A. Kronberg, Patrick W. Daly, and Ludmila V. Kozak
Ann. Geophys., 37, 549–559, https://doi.org/10.5194/angeo-37-549-2019, https://doi.org/10.5194/angeo-37-549-2019, 2019
Short summary
Short summary
In this work we present an analysis of the dynamics of suprathermal ions of different masses (H+, He+, O+) during prolonged dipolarizations in the near-Earth magnetotail according to Cluster/RAPID observations in 2001–2005. All dipolarizations from our database were associated with fast flow braking and consisted of multiple dipolarization fronts (DFs). We found statistically that fluxes of suprathermal ions started to increase ~ 1 min before the dipolarization onset and continued.
Andrey Y. Malykhin, Elena E. Grigorenko, Elena A. Kronberg, Rositza Koleva, Natalia Y. Ganushkina, Ludmila Kozak, and Patrick W. Daly
Ann. Geophys., 36, 741–760, https://doi.org/10.5194/angeo-36-741-2018, https://doi.org/10.5194/angeo-36-741-2018, 2018
H. Breuillard, O. Agapitov, A. Artemyev, E. A. Kronberg, S. E. Haaland, P. W. Daly, V. V. Krasnoselskikh, D. Boscher, S. Bourdarie, Y. Zaliznyak, and G. Rolland
Ann. Geophys., 33, 583–597, https://doi.org/10.5194/angeo-33-583-2015, https://doi.org/10.5194/angeo-33-583-2015, 2015
E. A. Kronberg and P. W. Daly
Geosci. Instrum. Method. Data Syst., 2, 257–261, https://doi.org/10.5194/gi-2-257-2013, https://doi.org/10.5194/gi-2-257-2013, 2013
A. T. Y. Lui
Ann. Geophys., 31, 1131–1142, https://doi.org/10.5194/angeo-31-1131-2013, https://doi.org/10.5194/angeo-31-1131-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetotail
Dynamics of variable dusk–dawn flow associated with magnetotail current sheet flapping
Venus's induced magnetosphere during active solar wind conditions at BepiColombo's Venus 1 flyby
Ion distribution functions in magnetotail reconnection: global hybrid-Vlasov simulation results
Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: Magnetospheric Multiscale observations
Acceleration of protons and heavy ions to suprathermal energies during dipolarizations in the near-Earth magnetotail
Quasi-separatrix layers induced by ballooning instability in the near-Earth magnetotail
Magnetic dipolarizations inside geosynchronous orbit with tailward ion flows
A possible source mechanism for magnetotail current sheet flapping
On application of asymmetric Kan-like exact equilibria to the Earth magnetotail modeling
James H. Lane, Adrian Grocott, Nathan A. Case, and Maria-Theresia Walach
Ann. Geophys., 39, 1037–1053, https://doi.org/10.5194/angeo-39-1037-2021, https://doi.org/10.5194/angeo-39-1037-2021, 2021
Short summary
Short summary
The Sun's magnetic field is carried across space by the solar wind – a hot plasma
streamof ions and electrons – forming the interplanetary magnetic field (IMF). The IMF can introduce asymmetries in the Earth's magnetic field, giving plasma flowing within it a direction dependent on IMF orientation. Electric currents in near-Earth space can also influence these plasma flows. We investigate these two competing mechanisms and find that the currents can prevent the IMF from controlling the flow.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Guoqiang Wang, Tielong Zhang, Mingyu Wu, Daniel Schmid, Yufei Hao, and Martin Volwerk
Ann. Geophys., 38, 309–318, https://doi.org/10.5194/angeo-38-309-2020, https://doi.org/10.5194/angeo-38-309-2020, 2020
Short summary
Short summary
Currents are believed to exist in mirror-mode structures and to be self-consistent with the magnetic field depression. Bipolar currents are found in two ion-scale magnetic dips. The bipolar current in a small-size magnetic dip is mainly contributed by electron velocities, which is mainly formed by the magnetic gradient–curvature drift. For another large-size magnetic dip, the bipolar current is mainly caused by an ion bipolar velocity, which can be explained by the ion drift motions.
Andrei Y. Malykhin, Elena E. Grigorenko, Elena A. Kronberg, Patrick W. Daly, and Ludmila V. Kozak
Ann. Geophys., 37, 549–559, https://doi.org/10.5194/angeo-37-549-2019, https://doi.org/10.5194/angeo-37-549-2019, 2019
Short summary
Short summary
In this work we present an analysis of the dynamics of suprathermal ions of different masses (H+, He+, O+) during prolonged dipolarizations in the near-Earth magnetotail according to Cluster/RAPID observations in 2001–2005. All dipolarizations from our database were associated with fast flow braking and consisted of multiple dipolarization fronts (DFs). We found statistically that fluxes of suprathermal ions started to increase ~ 1 min before the dipolarization onset and continued.
Ping Zhu, Zechen Wang, Jun Chen, Xingting Yan, and Rui Liu
Ann. Geophys., 37, 325–335, https://doi.org/10.5194/angeo-37-325-2019, https://doi.org/10.5194/angeo-37-325-2019, 2019
Short summary
Short summary
Our research explores a new method for identifying where and when the magnetic field lines in Earth's magnetotail may change its topology through the reconnection process, during which a sudden release of magnetic energy can lead to the brightening of aurora, a process called substorm. Traditionally, the magnetic reconnection was often interpreted using a two-dimensional model, which however does not capture the intrinsically three-dimensional nature of reconnection physics, as we have revealed.
Xiaoying Sun, Weining William Liu, and Suping Duan
Ann. Geophys., 37, 289–297, https://doi.org/10.5194/angeo-37-289-2019, https://doi.org/10.5194/angeo-37-289-2019, 2019
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Daniil B. Korovinskiy, Darya I. Kubyshkina, Vladimir S. Semenov, Marina V. Kubyshkina, Nikolai V. Erkaev, and Stefan A. Kiehas
Ann. Geophys., 36, 641–653, https://doi.org/10.5194/angeo-36-641-2018, https://doi.org/10.5194/angeo-36-641-2018, 2018
Short summary
Short summary
The Harris–Fadeev–Kan–Manankova family of exact two-dimensional equilibria is generalized to reproduce the slow decrease of the normal magnetic component in the tailward direction, and the magnetotail current sheet bending and shifting in the vertical plane, arising from the Earth dipole tilting and the solar wind nonradial propagation. The analytical solution is found to fit the empirical T96 model, especially, at distances beyond 10–15 Earth radii at high levels of magnetospheric activity.
Cited articles
Akasofu, S.-I.: Auroral Morphology: A Historical Account and Major Auroral
Features During Auroral Substorms, in: Auroral Phenomenology and
Magnetospheric Processes: Earth and Other Planets, 29–38, American
Geophysical Union, Washington, D.C., USA, https://doi.org/10.1029/2011gm001156, 2012. a
Akasofu, S.-I.: Where is the magnetic energy for the expansion phase of auroral
substorms accumulated? 2. The main body, not the magnetotail, J. Geophys. Res.-Space Phys., 122, 8479–8487,
https://doi.org/10.1002/2016ja023074, 2017. a
Angelopoulos, V.: The THEMIS Mission, Space Sci. Rev., 141, 5–34,
https://doi.org/10.1007/s11214-008-9336-1, 2008. a, b
Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., and
McPherron, R. L.: Neutral line model of substorms: Past results and present
view, J. Geophys. Res.-Space Phys., 101, 12975–13010,
https://doi.org/10.1029/95ja03753, 1996. a, b
Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.-H.,
Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann, G., Oddy, T.,
and Schwingenschuh, K.: The Cluster Magnetic Field Investigation: overview
of in-flight performance and initial results, Ann. Geophys., 19, 1207–1217, https://doi.org/10.5194/angeo-19-1207-2001, 2001. a
Barenblatt, G. I.: Turbulent boundary layers at very large Reynolds numbers,
Russ. Math. Surv.+, 59, 45–62, 2004. a
Borovsky, J. E. and Funsten, H. O.: MHD turbulence in the Earth's plasma sheet: Dynamics, dissipation,
and driving, J. Geophys. Res.-Space Phys., 108,
https://doi.org/10.1029/2002JA009625, 2003.
Chang, T.: Low-dimensional behavior and symmetry breaking of stochastic systems
near criticality-can these effects be observed in space and in the
laboratory?, IEEE T. Plasma Sci., 20, 691–694,
https://doi.org/10.1109/27.199515, 1992. a
Chechkin, A. V., Gonchar, V. Y., Gorenflo, R., Korabel, N., and Sokolov, I. M.:
Generalized fractional diffusion equations for accelerating subdiffusion and
truncated Lévy flights, Phys. Rev. E, 78, 021111,
https://doi.org/10.1103/physreve.78.021111, 2008. a
Chen, C., Fazakerley, A., Khotyaintsev, Y., Lavraud, B., Marcucci, M. F.,
Narita, Y., Retinò, A., Soucek, J., Vainio, R., Vaivads, A., and Valentini,
F.: THOR Exploring plasma energization in space turbulence, Assessment Study
Report ESA/SRE, 2017. a
Cheng, C. Z. and Lui, A. T. Y.: Kinetic ballooning instability for substorm
onset and current disruption observed by AMPTE/CCE, Geophys. Res.
Lett., 25, 4091–4094, https://doi.org/10.1029/1998gl900093, 1998. a
Consolini, G.: On the magnetic field fluctuations during magnetospheric tail
current disruption: A statistical approach, J. Geophys. Res.,
110, A07202, https://doi.org/10.1029/2004ja010947, 2005. a
Consolini, G. and Lui, A. T. Y.: Sign-singularity analysis of current
disruption, Geophys. Res. Lett., 26, 1673–1676,
https://doi.org/10.1029/1999gl900355, 1999. a
Consolini, G. and Lui, A. T. Y.: Symmetry breaking and nonlinear wave-wave
interaction in current disruption: Possible evidence for a phase transition,
in: Magnetospheric Current Systems, 395–401, American Geophysical Union, Washington, D.C., USA,
https://doi.org/10.1029/gm118p0395, 2000. a, b
Daly, P. W. and Paschmann, G.: Analysis Methods for Multi-Spacecraft Data,
ISSI Scientific Report SR-001 (Electronic edition 1.1), 2000. a
Dubrulle, B.: Intermittency in fully developed turbulence: Log-Poisson
statistics and generalized scale covariance, Phys. Rev. Lett., 73,
959–962, https://doi.org/10.1103/physrevlett.73.959, 1994. a, b
Farge, M.: Wavelet Transforms and their Applications to Turbulence, Annu.
Rev. Fluid Mech., 24, 395–458,
https://doi.org/10.1146/annurev.fl.24.010192.002143, 1992. a
Frik, P.: Turbulence: approaches and models, Perm's State Tech. Univ., Perm, Russian Federation, 1999. a
Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., André, M., and Huang, S. Y.:
Occurrence rate of earthward-propagating dipolarization fronts, Geophys.
Res. Lett., 39, 2012L10101, https://doi.org/10.1029/2012gl051784, 2012. a, b
Grigorenko, E. E., Kronberg, E. A., Daly, P. W., Ganushkina, N. Y., Lavraud,
B., Sauvaud, J., and Zelenyi, L. M.: Origin of low proton-to-electron
temperature ratio in the Earth's plasma sheet, J. Geophys.
Res.-Space Phys., 121, 9985–10004, https://doi.org/10.1002/2016JA022874, 2016. a
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and
wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004. a
Hadid, L. Z., Sahraoui, F., Kiyani, K. H., Retinò, A., Modolo, R., Canu, P.,
Masters, A., and Dougherty, M. K.: Nature of the MHD and Kinetic Scale
Turbulence in the Magnetosheath of Saturn: Cassini Observations, The
Astrophys. J. Lett., 813, L29, https://doi.org/10.1088/2041-8205/813/2/L29, 2015. a
Haerendel, G.: Disruption, ballooning or auroral avalanche-on the cause of
substorms, Proc. Int. Conf. on Substorms, Kiruna, Sweden, 23–27 March 1992,
417–420, available at: https://ci.nii.ac.jp/naid/10003640079/en/ (last access: 29 August 2018),
1992. a
Hwang, K.-J., Goldstein, M. L., Moore, T. E., Walsh, B. M., Baishev, D. G.,
Moiseyev, A. V., Shevtsov, B. M., and Yumoto, K.: A tailward moving current
sheet normal magnetic field front followed by an earthward moving
dipolarization front, J. Geophys. Res.-Space Phys., 119,
5316–5327, https://doi.org/10.1002/2013ja019657, 2014. a
Jevrejeva, S., Moore, J. C., and Grinsted, A.: Influence of the Arctic
Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions
in the Baltic Sea: The wavelet approach, J. Geophys. Res.-Atmos., 108, 4677, https://doi.org/10.1029/2003jd003417, 2003. a
Kan, J. R.: A globally integrated substorm model: Tail reconnection and
magnetosphere-ionosphere coupling, J. Geophys. Res.-Space
Phys., 103, 11787–11795, https://doi.org/10.1029/98ja00361, 1998. a
Kolmogorov, A. N.: Dissipation of Energy in Locally Isotropic Turbulence,
Akademiia Nauk SSSR Doklady, 32, 15–17, 1941. a
Kozak, L. V. and Lui, A. T.: Statistical analysis of plasma turbulence based on
satellite magnetic field measurements, Kinemat. Phys. Celest.+, 24, 209–214, https://doi.org/10.3103/s0884591308040041, 2008. a
Kozak, L. V., Pilipenko, V. A., Chugunova, O. M., and Kozak, P. N.: Statistical
analysis of turbulence in the foreshock region and in the Earth's
magnetosheath, Cosmic Res.+, 49, 194–204,
https://doi.org/10.1134/s0010952511030063, 2011. a, b
Kozak, L. V., Savin, S. P., Budaev, V. P., Pilipenko, V. A., and Lezhen, L. A.:
Character of turbulence in the boundary regions of the Earth's magnetosphere,
Geomagn. Aeronomy+, 52, 445–455, https://doi.org/10.1134/s0016793212040093,
2012. a, b
Kozak, L. V., Prokhorenkov, A., and Savin, S.: Statistical analysis of the
magnetic fluctuations in boundary layers of Earth's magnetosphere, Adv. Space Res., 56, 2091–2096, https://doi.org/10.1016/j.asr.2015.08.009, 2015. a, b
Kozak, L. V., Lui, A., Kronberg, E., and Prokhorenkov, A.: Turbulent processes in
Earth's magnetosheath by Cluster mission measurements,
J. Atmos. Sol.-Terr. Phy., 154, 115–126,
https://doi.org/10.1016/j.jastp.2016.12.016, 2017. a
Kraichnan, R. H.: The structure of isotropic turbulence at very high Reynolds
numbers, J. Fluid Mech., 5, 497, https://doi.org/10.1017/s0022112059000362,
1959. a
Kronberg, E. A., Ashour-Abdalla, M., Dandouras, I., Delcourt, D. C.,
Grigorenko, E. E., Kistler, L. M., Kuzichev, I. V., Liao, J., Maggiolo, R.,
Malova, H. V., Orlova, K. G., Peroomian, V., Shklyar, D. R., Shprits, Y. Y.,
Welling, D. T., and Zelenyi, L. M.: Circulation of Heavy Ions and Their
Dynamical Effects in the Magnetosphere: Recent Observations and Models, Space
Sci. Rev., 184, 173–235, https://doi.org/10.1007/s11214-014-0104-0, 2014. a
Kronberg, E. A., Grigorenko, E. E., Turner, D. L., Daly, P. W., Khotyaintsev,
Y., and Kozak, L.: Comparing and contrasting dispersionless injections at
geosynchronous orbit during a substorm event, J. Geophys.
Res.-Space Phys., 122, 3, https://doi.org/10.1002/2016ja023551, 2017a. a, b
Kronberg, E. A., Welling, D., Kistler, L. M., Mouikis, C., Daly, P. W.,
Grigorenko, E. E., Klecker, B., and Dandouras, I.: Contribution of energetic
and heavy ions to the plasma pressure: The 27 September to 3 October 2002
storm, J. Geophys. Res.-Space Phys., 122, 9427–9439,
https://doi.org/10.1002/2017ja024215, 2017b. a
Le Contel, O., Roux, A., Jacquey, C., Robert, P., Berthomier, M., Chust, T., Grison, B.,
Angelopoulos, V., Sibeck, D., Chaston, C. C., Cully, C. M., Ergun, B., Glassmeier, K.-H.,
Auster, U., McFadden, J., Carlson, C., Larson, D., Bonnell, J. W., Mende, S., Russell, C. T.,
Donovan, E., Mann, I., and Singer, H.: Quasi-parallel whistler mode waves observed by THEMIS
during near-earth dipolarizations, Ann. Geophys., 27, 2259–2275, https://doi.org/10.5194/angeo-27-2259-2009, 2009. a
Lopez, R. E.: Magnetospheric substorms, Johns Hopkins APL Technical Digest,
11, 264–271, 1990. a
Lovejoy, S., Schertzer, D., and Silas, P.: Diffusion in one-dimensional
multifractal porous media, Water Resour. Res., 34, 3283–3291,
https://doi.org/10.1029/1998wr900007, 1998. a, b
Lui, A.: Multiscale phenomena in the near-Earth magnetosphere, J.
Atmos. Sol.-Terr. Phy., 64, 125–143,
https://doi.org/10.1016/s1364-6826(01)00079-7, 2002. a, b
Lui, A.: Potential Plasma Instabilities For Substorm Expansion Onsets, Space
Sci. Rev., 113, 127–206, https://doi.org/10.1023/b:spac.0000042942.00362.4e,
2004. a, b, c
Lui, A. T. Y.: A synthesis of magnetospheric substorm models, J.
Geophys. Res.-Space Phys., 96, 1849–1856, https://doi.org/10.1029/90ja02430,
1991. a, b
Lui, A. T. Y.: Comment on “Tail Reconnection Triggering Substorm Onset”,
Science, 324, 1391–1391, https://doi.org/10.1126/science.1167726, 2009. a
Lui, A. T. Y.: Review on the Characteristics of the Current Sheet in the
Earth's Magnetotail, in: Electric Currents in Geospace and
Beyond, John Wiley & Sons, Inc., Washington, D.C., USA, 155–175,
https://doi.org/10.1002/9781119324522.ch10, 2018. a
Lui, A. T. Y. and Najmi, A.-H.: Time-frequency decomposition of signals in a
current disruption event, Geophys. Res. Lett., 24, 3157–3160,
https://doi.org/10.1029/97gl03229, 1997. a
Lui, A. T. Y., Chang, C.-L., Mankofsky, A., Wong, H.-K., and Winske, D.: A
cross-field current instability for substorm expansions, J.
Geophys. Res., 96, 11389, https://doi.org/10.1029/91ja00892, 1991. a
Lui, A. T. Y., Yoon, P. H., Mok, C., and Ryu, C.-M.: Inverse cascade feature in
current disruption, J. Geophys. Res.-Space Phys., 113, A00C06,
https://doi.org/10.1029/2008ja013521, 2008. a
Mok, C., Ryu, C.-M., Yoon, P. H., and Lui, A. T. Y.: Obliquely propagating
electromagnetic drift ion cyclotron instability, J. Geophys.
Res.-Space Phys., 115, A04218, https://doi.org/10.1029/2009ja014871, 2010. a
Nakamura, R., Baumjohann, W., Mouikis, C., Kistler, L. M., Runov, A., Volwerk,
M., Asano, Y., Vörös, Z., Zhang, T. L., Klecker, B., Rème, H.,
and Balogh, A.: Spatial scale of high-speed flows in the plasma sheet
observed by Cluster, Geophys. Res. Lett., 31, L09804,
https://doi.org/10.1029/2004gl019558, 2004. a
Nishida, A.: Geomagnetic Diagnosis of the Magnetosphere, Springer Berlin
Heidelberg, https://doi.org/10.1007/978-3-642-86825-2, 1978. a
Nishida, A. and Hones, E. W.: Association of plasma sheet thinning with neutral
line formation in the magnetotail, J. Geophys. Res., 79,
535–547, https://doi.org/10.1029/ja079i004p00535, 1974. a
Panov, E. V., Artemyev, A. V., Baumjohann, W., Nakamura, R., and Angelopoulos,
V.: Transient electron precipitation during oscillatory BBF braking:
THEMIS observations and theoretical estimates, J. Geophys.
Res.-Space Phys., 118, 3065–3076, https://doi.org/10.1002/jgra.50203, 2013. a, b
Panov, E. V., Wolf, R. A., Kubyshkina, M. V., Nakamura, R., and Baumjohann, W.:
Anharmonic oscillatory flow braking in the Earth's
magnetotail, Geophys. Res. Lett., 42, 3700–3706,
https://doi.org/10.1002/2015gl064057, 2015. a
Prokhorenkov, A., Kozak, L., Lui, A., and Gala, I.: Diffusion processes in the
transition layer of the Earth's magnetosphere, Advances in Astronomy and
Space Physics, 5, 99–103, 2015. a
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A.,
Barthe, A., Bouyssou, J., Camus, Th., Coeur-Joly, O., Cros, A., Cuvilo, J., Ducay, F.,
Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J.,
Vallat, C., Alcaydé, D., Jacquey, C., Mazelle, C., d'Uston, C., Möbius, E.,
Kistler, L. M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M.,
Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M.,
Sckopke, N., Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P.,
McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B.,
Baldetti, P., Bruno, R., Chionchio, G., Di Lellis, A., Marcucci, M. F., Pallocchia, G.,
Korth, A., Daly, P. W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M.,
Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S.,
Ghielmetti, A. G., Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R.,
Cao, J.-B., Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Scudder, J., and Sonnerup, B.:
First multispacecraft ion measurements in and near the Earth's magnetosphere with the
identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 19, 1303–1354, https://doi.org/10.5194/angeo-19-1303-2001, 2001. a
Rostoker, G. and Eastman, T.: A boundary layer model for magnetospheric
substorms, J. Geophys. Res., 92, 12187,
https://doi.org/10.1029/ja092ia11p12187, 1987. a
Rothwell, P. L., Block, L. P., Silevitch, M. B., and Fälthammar, C. G.: A
new model for substorm onsets: The pre-breakup and triggering regimes,
Geophys. Res. Lett., 15, 1279–1282, https://doi.org/10.1029/gl015i011p01279,
1988. a
Roux, A., Perraut, S., Robert, P., Morane, A., Pedersen, A., Korth, A.,
Kremser, G., Aparicio, B., Rodgers, D., and Pellinen, R.: Plasma sheet
instability related to the westward traveling surge, J. Geophys.
Res., 96, 17697, https://doi.org/10.1029/91ja01106, 1991. a, b
Runov, A., Angelopoulos, V., and Zhou, X.-Z.: Multipoint observations of
dipolarization front formation by magnetotail reconnection, J.
Geophys. Res.-Space Phys., 117, A05230, https://doi.org/10.1029/2011ja017361, 2012. a
Samson, J. C.: Nonlinear, Hybrid, Magnetohydrodynamic Instabilities Associated
with Substorm Intensifications Near the Earth, in: Substorms-4,
Springer, the Netherlands, 505–509, https://doi.org/10.1007/978-94-011-4798-9_104, 1998. a, b
Savin, S., Budaev, V., Zelenyi, L., Amata, E., Sibeck, D., Lutsenko, V.,
Borodkova, N., Zhang, H., Angelopoulos, V., Safrankova, J., Nemecek, Z.,
Blecki, J., Buechner, J., Kozak, L., Romanov, S., Skalsky, A., and
Krasnoselsky, V.: Anomalous interaction of a plasma flow with the boundary
layers of a geomagnetic trap, JETP Letters, 93, 754–762,
https://doi.org/10.1134/s0021364011120137, 2011. a, b
Savin, S., Amata, E., Budaev, V., Zelenyi, L., Kronberg, E. A., Buechner, J.,
Safrankova, J., Nemecek, Z., Blecki, J., Kozak, L., Klimov, S., Skalsky, A.,
and Lezhen, L.: On nonlinear cascades and resonances in the outer
magnetosphere, JETP Letters, 99, 16–21, https://doi.org/10.1134/s002136401401010x,
2014. a
Schindler, K.: A theory of the substorm mechanism, J. Geophys.
Res., 79, 2803–2810, https://doi.org/10.1029/ja079i019p02803, 1974. a
She, Z.-S. and Leveque, E.: Universal scaling laws in fully developed
turbulence, Phys. Rev. Lett., 72, 336–339,
https://doi.org/10.1103/physrevlett.72.336, 1994. a, b
Sitnov, M. I. and Schindler, K.: Tearing stability of a multiscale magnetotail
current sheet, Geophys. Res. Lett., 37, L08102, https://doi.org/10.1029/2010gl042961,
2010. a
Speiser, T.: Conductivity without collisions or noise, Planet. Space
Sci., 18, 613–622, https://doi.org/10.1016/0032-0633(70)90136-4, 1970. a
Streltsov, A. V., Pedersen, T. R., Mishin, E. V., and Snyder, A. L.:
Ionospheric feedback instability and substorm development, J.
Geophys. Res.-Space Phys., 115, A07205, https://doi.org/10.1029/2009ja014961, 2010.
a
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79, 61–78,
https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2, 1998. a
Treumann, R. A., Brostrom, L., LaBelle, J., and Sckopke, N.: The plasma wave
signature of a “magnetic hole” in the
vicinity of the magnetopause, J. Geophys. Res., 95, 19099,
https://doi.org/10.1029/ja095ia11p19099, 1990. a
Yoon, P. H., Lui, A. T. Y., and Bonnell, J. W.: Identification of plasma
instability from wavelet spectra in a current disruption event, J.
Geophys. Res.-Space Phys., 114, A04207, https://doi.org/10.1029/2008ja013816, 2009. a
Zaburdaev, V., Denisov, S., and Klafter, J.: Lévy walks, Rev.
Mod. Phys., 87, 483–530, https://doi.org/10.1103/revmodphys.87.483, 2015. a
Zacks, S.: The theory of statistical inference, Wiley, New York, NY, USA, 1971. a
Zhou, M., Ashour-Abdalla, M., Deng, X., Schriver, D., El-Alaoui, M., and Pang,
Y.: THEMIS observation of multiple dipolarization fronts and associated
wave characteristics in the near-Earth magnetotail, Geophys. Res.
Lett., 36, L20107, https://doi.org/10.1029/2009gl040663, 2009. a
Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., Vörös, Z.,
Aburjania, G., Chargazia, K., and Alexandrova, O.: Magnetic Turbulence in the
Geospace Environment, Space Sci. Rev., 156, 89–134,
https://doi.org/10.1007/s11214-010-9692-5, 2010. a
Short summary
We analysed the turbulent processes in the Earth's magnetotail in the regions of magnetic field dipolarization and compared them with known models. We used spectral and statistical methods for analysis measurements from the Cluster-II mission. We have obtained a significant difference for turbulent processes depending on observed scales. Our results can be interesting for classification of the turbulent processes in both hydrodynamics and magnetohydrodynamics environments.
We analysed the turbulent processes in the Earth's magnetotail in the regions of magnetic field...