Articles | Volume 33, issue 11
https://doi.org/10.5194/angeo-33-1431-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/angeo-33-1431-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Association of radiation belt electron enhancements with earthward penetration of Pc5 ULF waves: a case study of intense 2001 magnetic storms
M. Georgiou
CORRESPONDING AUTHOR
Department of Physics, University of Athens, Panepistimiopoli Zografou, Athens, 15784, Greece
Institute of Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Vas. Pavlou & I. Metaxa, Penteli, 15236, Greece
I. A. Daglis
Department of Physics, University of Athens, Panepistimiopoli Zografou, Athens, 15784, Greece
E. Zesta
Goddard Space Flight Center, National Aeronautics and Space Administration, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA
G. Balasis
Institute of Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Vas. Pavlou & I. Metaxa, Penteli, 15236, Greece
I. R. Mann
Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
C. Katsavrias
Department of Physics, University of Athens, Panepistimiopoli Zografou, Athens, 15784, Greece
K. Tsinganos
Department of Physics, University of Athens, Panepistimiopoli Zografou, Athens, 15784, Greece
Institute of Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Vas. Pavlou & I. Metaxa, Penteli, 15236, Greece
Related authors
Christos Katsavrias, Afroditi Nasi, Ioannis A. Daglis, Sigiava Aminalragia-Giamini, Nourallah Dahmen, Constantinos Papadimitriou, Marina Georgiou, Antoine Brunet, and Sebastien Bourdarie
Ann. Geophys., 40, 379–393, https://doi.org/10.5194/angeo-40-379-2022, https://doi.org/10.5194/angeo-40-379-2022, 2022
Short summary
Short summary
The radial diffusion mechanism is of utmost importance to both the acceleration and loss of relativistic electrons in the outer radiation belt and, consequently, for physics-based models, which provide nowcasting and forecasting of the electron population. In the framework of the "SafeSpace" project, we have created a database of calculated radial diffusion coefficients, and, furthermore, we have exploited it to provide insights for future modelling efforts.
G. Balasis, I. A. Daglis, I. R. Mann, C. Papadimitriou, E. Zesta, M. Georgiou, R. Haagmans, and K. Tsinganos
Ann. Geophys., 33, 1237–1252, https://doi.org/10.5194/angeo-33-1237-2015, https://doi.org/10.5194/angeo-33-1237-2015, 2015
Nour Dahmen, Antoine Brunet, Sebastien Bourdarie, Christos Katsavrias, Guillerme Bernoux, Stefanos Doulfis, Afroditi Nasi, Ingmar Sandberg, Constantinos Papadimitriou, Jesus Oliveros Fernandez, and Ioannis Daglis
Ann. Geophys., 41, 301–312, https://doi.org/10.5194/angeo-41-301-2023, https://doi.org/10.5194/angeo-41-301-2023, 2023
Short summary
Short summary
Earth’s space environment is populated with charged particles. The energetic ones are trapped around Earth in radiation belts. Orbiting spacecraft that cross their region can accumulate charges on their internal surfaces, leading to hazardous electrostatic discharges. This paper showcases the SafeSpace safety prototype, which aims to warn satellite operators of probable incoming hazardous events by simulating the dynamics of the electron radiation belts from their origin at the Sun.
Mark B. Moldwin, Edward Wilcox, Eftyhia Zesta, and Todd M. Bonalsky
Geosci. Instrum. Method. Data Syst., 11, 219–222, https://doi.org/10.5194/gi-11-219-2022, https://doi.org/10.5194/gi-11-219-2022, 2022
Short summary
Short summary
The commercial off-the-shelf (COTS) PNI RM3100 magnetometer was tested for single-event latchup (SEL) at Lawrence Berkeley National Laboratory's heavy-ion beam and did not experience any single-event effects at a linear energy transfer >75 MeV cm2 mg−1. Coupled with previous total ionizing dose (TID) testing at the University of Michigan and NASA Goddard Space Flight Center that showed no degradation in performance up to 150 kRad(SI), the COTS PNI RM3100 is extremely radiation tolerant.
Christos Katsavrias, Afroditi Nasi, Ioannis A. Daglis, Sigiava Aminalragia-Giamini, Nourallah Dahmen, Constantinos Papadimitriou, Marina Georgiou, Antoine Brunet, and Sebastien Bourdarie
Ann. Geophys., 40, 379–393, https://doi.org/10.5194/angeo-40-379-2022, https://doi.org/10.5194/angeo-40-379-2022, 2022
Short summary
Short summary
The radial diffusion mechanism is of utmost importance to both the acceleration and loss of relativistic electrons in the outer radiation belt and, consequently, for physics-based models, which provide nowcasting and forecasting of the electron population. In the framework of the "SafeSpace" project, we have created a database of calculated radial diffusion coefficients, and, furthermore, we have exploited it to provide insights for future modelling efforts.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Christos Katsavrias, Constantinos Papadimitriou, Sigiava Aminalragia-Giamini, Ioannis A. Daglis, Ingmar Sandberg, and Piers Jiggens
Ann. Geophys., 39, 413–425, https://doi.org/10.5194/angeo-39-413-2021, https://doi.org/10.5194/angeo-39-413-2021, 2021
Short summary
Short summary
The nature of the semi-annual variation in the relativistic electron fluxes in the Earth's outer radiation belt has been a debate for over 30 years. Our work shows that it is primarily driven by the Russell–McPherron effect, which indicates that reconnection is responsible not only for the short-scale but also the seasonal variability of the electron belt as well. Moreover, it is more pronounced during the descending phase of the solar cycles and coexists with periods of fast solar wind speed.
David M. Miles, Miroslaw Ciurzynski, David Barona, B. Barry Narod, John R. Bennest, Andy Kale, Marc Lessard, David K. Milling, Joshua Larson, and Ian R. Mann
Geosci. Instrum. Method. Data Syst., 8, 227–240, https://doi.org/10.5194/gi-8-227-2019, https://doi.org/10.5194/gi-8-227-2019, 2019
Short summary
Short summary
Fluxgate magnetometers provide magnetic field measurements for geophysics and space physics. A low-noise ferromagnetic ring core typically determines the noise performance of the instrument. Much of the basic research into producing low-noise fluxgate sensors was completed in the 1960s for military purposes and was never publicly released. We present a manufacturing approach that can consistently produce fluxgate ring cores with a noise performance comparable to the legacy ring cores used today.
Ching-Chang Cheng, Christopher T. Russell, Ian R. Mann, Eric Donovan, and Wolfgang Baumjohann
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-116, https://doi.org/10.5194/angeo-2018-116, 2018
Preprint withdrawn
Short summary
Short summary
The comparison of geomagnetic active and quite events of double substorm onsets responsive to IMF variations shows that the occurrence sequence of all required substorm signatures looks the same and not different for small and large Kp. Double substorm onsets responsive to IMF variations can be characterized with two-stage magnetic dipolarizations in the magnetotail, two auroral breakups of which the first occurring at lower latitudes than the second, and two consecutive Pi2-Ps6 band pulsations.
David M. Miles, B. Barry Narod, David K. Milling, Ian R. Mann, David Barona, and George B. Hospodarsky
Geosci. Instrum. Method. Data Syst., 7, 265–276, https://doi.org/10.5194/gi-7-265-2018, https://doi.org/10.5194/gi-7-265-2018, 2018
Short summary
Short summary
We present a proof-of-concept space-flight instrument that can simultaneously make measurements of both the low- and high-frequency local magnetic field. Previously, this would have required two separate instruments that would normally have had to be mounted separately on long deployable booms to keep them from interfering. This new hybrid instrument is expected to be particularly useful on extremely small spacecraft, such as CubeSats, which can only accommodate a few instruments.
Constantinos Papadimitriou, Georgios Balasis, Ioannis A. Daglis, and Omiros Giannakis
Ann. Geophys., 36, 287–299, https://doi.org/10.5194/angeo-36-287-2018, https://doi.org/10.5194/angeo-36-287-2018, 2018
Short summary
Short summary
Swarm is the fourth Earth Explorer mission of the European Space Agency (ESA), launched on 23 November 2013. The mission provides an opportunity for better knowledge of the near-Earth electromagnetic environment. This study presents an initial attempt to derive an ultra low-frequency (ULF) wave index from low-Earth orbit satellite data. The technique can be potentially used to define a new product from the mission, the Swarm ULF wave index, which would be suitable for space weather applications.
David M. Miles, Ian R. Mann, Andy Kale, David K. Milling, Barry B. Narod, John R. Bennest, David Barona, and Martyn J. Unsworth
Geosci. Instrum. Method. Data Syst., 6, 377–396, https://doi.org/10.5194/gi-6-377-2017, https://doi.org/10.5194/gi-6-377-2017, 2017
Short summary
Short summary
Fluxgate magnetometers are an important geophysical tool but are typically sensitive to changes in sensor temperature. We used a novel, low-cost calibration procedure to compare six matched sensors in which the material used as the mechanical support is varied and found that 30 % glass-filled PEEK engineering plastic is a good candidate for sensors. It is more economical, easier to machine, lighter, and more robust than historically used machinable ceramic.
Stelios M. Potirakis, Yiannis Contoyiannis, Nikolaos S. Melis, John Kopanas, George Antonopoulos, Georgios Balasis, Charalampos Kontoes, Constantinos Nomicos, and Konstantinos Eftaxias
Nonlin. Processes Geophys., 23, 223–240, https://doi.org/10.5194/npg-23-223-2016, https://doi.org/10.5194/npg-23-223-2016, 2016
Short summary
Short summary
Based on the methods of critical fluctuations and natural time, we have shown that the fracture-induced MHz electromagnetic emissions recorded by two stations in our network prior to two recent significant earthquakes that occurred in Cephalonia present criticality characteristics, implying that they emerge from a system in critical state.
C. Tsironis, A. Anastasiadis, C. Katsavrias, and I. A. Daglis
Ann. Geophys., 34, 171–185, https://doi.org/10.5194/angeo-34-171-2016, https://doi.org/10.5194/angeo-34-171-2016, 2016
N. Y. Ganushkina, M. W. Liemohn, S. Dubyagin, I. A. Daglis, I. Dandouras, D. L. De Zeeuw, Y. Ebihara, R. Ilie, R. Katus, M. Kubyshkina, S. E. Milan, S. Ohtani, N. Ostgaard, J. P. Reistad, P. Tenfjord, F. Toffoletto, S. Zaharia, and O. Amariutei
Ann. Geophys., 33, 1369–1402, https://doi.org/10.5194/angeo-33-1369-2015, https://doi.org/10.5194/angeo-33-1369-2015, 2015
Short summary
Short summary
A number of current systems exist in the Earth's magnetosphere. It is very difficult to identify local measurements as belonging to a specific current system. Therefore, there are different definitions of supposedly the same current, leading to unnecessary controversy. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques.
G. Balasis, I. A. Daglis, I. R. Mann, C. Papadimitriou, E. Zesta, M. Georgiou, R. Haagmans, and K. Tsinganos
Ann. Geophys., 33, 1237–1252, https://doi.org/10.5194/angeo-33-1237-2015, https://doi.org/10.5194/angeo-33-1237-2015, 2015
C. Katsavrias, I. A. Daglis, W. Li, S. Dimitrakoudis, M. Georgiou, D. L. Turner, and C. Papadimitriou
Ann. Geophys., 33, 1173–1181, https://doi.org/10.5194/angeo-33-1173-2015, https://doi.org/10.5194/angeo-33-1173-2015, 2015
D. Pokhotelov, I. J. Rae, K. R. Murphy, and I. R. Mann
Ann. Geophys., 33, 697–701, https://doi.org/10.5194/angeo-33-697-2015, https://doi.org/10.5194/angeo-33-697-2015, 2015
Short summary
Short summary
Solar wind impacts the Earth’s magnetic cavity driving waves in the magnetosphere. The waves in the range of few mHz are important for the dynamics of energetic particles trapped inside the magnetosphere. The average solar wind parameters are known to control of magnetospheric wave power. Here the variability of solar wind parameters, rather than average properties, is analysed. It is shown that the magnetospheric wave power is most sensitive to variations in the interplanetary magnetic field.
S. M. Potirakis, K. Eftaxias, G. Balasis, J. Kopanas, G. Antonopoulos, and A. Kalimeris
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-2981-2014, https://doi.org/10.5194/nhessd-2-2981-2014, 2014
Preprint withdrawn
J. Marin, V. Pilipenko, O. Kozyreva, M. Stepanova, M. Engebretson, P. Vega, and E. Zesta
Ann. Geophys., 32, 319–331, https://doi.org/10.5194/angeo-32-319-2014, https://doi.org/10.5194/angeo-32-319-2014, 2014
E. Yizengaw, M. B. Moldwin, E. Zesta, C. M. Biouele, B. Damtie, A. Mebrahtu, B. Rabiu, C. F. Valladares, and R. Stoneback
Ann. Geophys., 32, 231–238, https://doi.org/10.5194/angeo-32-231-2014, https://doi.org/10.5194/angeo-32-231-2014, 2014
T. M. Giannaros, D. Melas, I. A. Daglis, and I. Keramitsoglou
Nat. Hazards Earth Syst. Sci., 14, 347–358, https://doi.org/10.5194/nhess-14-347-2014, https://doi.org/10.5194/nhess-14-347-2014, 2014
R. V. Donner and G. Balasis
Nonlin. Processes Geophys., 20, 965–975, https://doi.org/10.5194/npg-20-965-2013, https://doi.org/10.5194/npg-20-965-2013, 2013
D. M. Miles, J. R. Bennest, I. R. Mann, and D. K. Millling
Geosci. Instrum. Method. Data Syst., 2, 213–224, https://doi.org/10.5194/gi-2-213-2013, https://doi.org/10.5194/gi-2-213-2013, 2013
Short summary
Our study demonstrates a remarkable association between the earthward penetration of ULF waves and radiation belt electron enhancements during four magnetic storms that occurred in 2001. In the past, ULF waves had been observed at unusual depths during rare superstorms. But ULF wave activity, reaching magnetic shells as low as 2, was also observed during relatively intense storms when it played a key role in diffusing electrons radially inward and thereby accelerating them to higher energies.
Our study demonstrates a remarkable association between the earthward penetration of ULF waves...
Special issue