Articles | Volume 43, issue 2
https://doi.org/10.5194/angeo-43-835-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-835-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Parameterization of the subsolar standoff distance of Earth's magnetopause based on results from machine learning
Lars Klingenstein
CORRESPONDING AUTHOR
Institut für Geophysik und extraterrestrische Physik, TU Braunschweig, Braunschweig, Germany
Niklas Grimmich
Institut für Geophysik und extraterrestrische Physik, TU Braunschweig, Braunschweig, Germany
Yuri Y. Shprits
Space Physics and Space Weather, GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
Institute for Physics and Astronomy, University of Potsdam, Potsdam, Germany
Adrian Pöppelwerth
Institut für Geophysik und extraterrestrische Physik, TU Braunschweig, Braunschweig, Germany
Ferdinand Plaschke
Institut für Geophysik und extraterrestrische Physik, TU Braunschweig, Braunschweig, Germany
Related authors
No articles found.
Gerlinde Timmermann, David Fischer, Hans-Ulrich Auster, Ingo Richter, Benjamin Grison, and Ferdinand Plaschke
Geosci. Instrum. Method. Data Syst., 14, 447–458, https://doi.org/10.5194/gi-14-447-2025, https://doi.org/10.5194/gi-14-447-2025, 2025
Short summary
Short summary
We've compared the amplitude spectral densities of a fluxgate magnetometer (FGM) and an anisotropic magnetoresistive (AMR) magnetometer during ground testing with the amplitude spectral densities obtained in different regions of near-Earth space. The FGM can measure the fields in the different space regions and their fluctuations within a frequency range of 1 mHz to 2.5 Hz. The AMR magnetometer is only suitable for more turbulent regions such as the magnetosheath due to its higher noise levels.
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
Ann. Geophys., 43, 151–173, https://doi.org/10.5194/angeo-43-151-2025, https://doi.org/10.5194/angeo-43-151-2025, 2025
Short summary
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind, the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Adrian Pöppelwerth, Georg Glebe, Johannes Z. D. Mieth, Florian Koller, Tomas Karlsson, Zoltán Vörös, and Ferdinand Plaschke
Ann. Geophys., 42, 271–284, https://doi.org/10.5194/angeo-42-271-2024, https://doi.org/10.5194/angeo-42-271-2024, 2024
Short summary
Short summary
In the magnetosheath, a near-Earth region of space, we observe increases in plasma velocity and density, so-called jets. As they propagate towards Earth, jets interact with the ambient plasma. We study this interaction with three spacecraft simultaneously to infer their sizes. While previous studies have investigated their size almost exclusively statistically, we demonstrate a new method of determining the sizes of individual jets.
Tomas Karlsson, Ferdinand Plaschke, Austin N. Glass, and Jim M. Raines
Ann. Geophys., 42, 117–130, https://doi.org/10.5194/angeo-42-117-2024, https://doi.org/10.5194/angeo-42-117-2024, 2024
Short summary
Short summary
The solar wind interacts with the planets in the solar system and creates a supersonic shock in front of them. The upstream region of this shock contains many complicated phenomena. One such phenomenon is small-scale structures of strong magnetic fields (SLAMS). These SLAMS have been observed at Earth and are important in determining the properties of space around the planet. Until now, SLAMS have not been observed at Mercury, but we show for the first time that SLAMS also exist there.
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463, https://doi.org/10.5194/angeo-41-449-2023, https://doi.org/10.5194/angeo-41-449-2023, 2023
Short summary
Short summary
The upper detection limit in reciprocal space, the spatial Nyquist limit, is derived for arbitrary spatial dimensions for the wave telescope analysis technique. This is important as future space plasma missions will incorporate larger numbers of spacecraft (>4). Our findings are a key element in planning the spatial distribution of future multi-point spacecraft missions. The wave telescope is a multi-dimensional power spectrum estimator; hence, this can be applied to other fields of research.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Yasuhito Narita, Ferdinand Plaschke, Werner Magnes, David Fischer, and Daniel Schmid
Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021, https://doi.org/10.5194/gi-10-13-2021, 2021
Short summary
Short summary
The systematic error of calibrated fluxgate magnetometer data is studied for a spinning spacecraft. The major error comes from the offset uncertainty when the ambient magnetic field is low, while the error represents the combination of non-orthogonality, misalignment to spacecraft reference direction, and gain when the ambient field is high. The results are useful in developing future high-precision magnetometers and an error estimate in scientific studies using magnetometer data.
Cited articles
Aghabozorgi Nafchi, M., Němec, F., Pi, G., Němeček, Z., Šafránková, J., Grygorov, K., and Šimůnek, J.: Interplanetary Magnetic Field By Controls the Magnetopause Location, Journal of Geophysical Research: Space Physics, 128, e2023JA031303, https://doi.org/10.1029/2023JA031303, 2023. a, b, c, d
Aghabozorgi Nafchi, M., Němec, F., Pi, G., Němeček, Z., Šafránková, J., Grygorov, K., Šimůnek, J., and Tsai, T.-C.: Magnetopause location modeling using machine learning: inaccuracy due to solar wind parameter propagation, Frontiers in Astronomy and Space Sciences, 11, 1390427, https://doi.org/10.3389/fspas.2024.1390427, 2024. a, b, c, d, e, f, g, h, i, j, k, l, m
Angelopoulos, V.: The THEMIS Mission, Space Science Reviews, 141, 5–34, https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Aubry, M. P., Russell, C. T., and Kivelson, M. G.: Inward motion of the magnetopause before a substorm, Journal of Geophysical Research (1896–1977), 75, 7018–7031, https://doi.org/10.1029/JA075i034p07018, 1970. a
Baraka, S. M., Le Contel, O., Ben-Jaffel, L., and Moore, W. B.: The Impact of Radial and Non-Radial IMF on the Earth's Magnetopause Size, Shape, and Dawn-Dusk Asymmetry From Global 3D Kinetic Simulations, Journal of Geophysical Research: Space Physics, 126, e2021JA029528, https://doi.org/10.1029/2021JA029528, 2021. a, b, c
Borovsky, J. E.: What magnetospheric and ionospheric researchers should know about the solar wind, Journal of Atmospheric and Solar-Terrestrial Physics, 204, 105271, https://doi.org/10.1016/j.jastp.2020.105271, 2020. a
Case, N. A. and Wild, J. A.: The location of the Earth's magnetopause: A comparison of modeled position and in situ Cluster data, Journal of Geophysical Research: Space Physics, 118, 6127–6135, https://doi.org/10.1002/jgra.50572, 2013. a, b, c, d
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, pp. 785–794, Association for Computing Machinery, New York, NY, USA, ISBN 978-1-4503-4232-2, https://doi.org/10.1145/2939672.2939785, 2016. a
Cucho-Padin, G., Connor, H., Jung, J., Walsh, B., and G. Sibeck, D.: Finding the magnetopause location using soft X-ray observations and a statistical inverse method, Earth and Planetary Physics, 8, 184–203, https://doi.org/10.26464/epp2023070, 2024. a
Di Matteo, S. and Sivadas, N.: Solar-wind/magnetosphere coupling: Understand uncertainties in upstream conditions, Frontiers in Astronomy and Space Sciences, 9, https://doi.org/10.3389/fspas.2022.1060072, 2022. a
Dušík, Š., Granko, G., Šafránková, J., Němeček, Z., and Jelínek, K.: IMF cone angle control of the magnetopause location: Statistical study, Geophysical Research Letters, 37, 2010GL044965, https://doi.org/10.1029/2010GL044965, 2010. a, b
Escoubet, C. P., Fehringer, M., and Goldstein, M.: Introduction The Cluster mission, Ann. Geophys., 19, 1197–1200, https://doi.org/10.5194/angeo-19-1197-2001, 2001. a
Fairfield, D. H.: Average and unusual locations of the Earth's magnetopause and bow shock, Journal of Geophysical Research, 76, 6700–6716, https://doi.org/10.1029/ja076i028p06700, 1971. a
Grimmich, N., Plaschke, F., Archer, M., Heyner, D., Mieth, J., Nakamura, R., and Sibeck, D.: Database: THEMIS magnetopause crossings between 2007 and mid-2022, OSF [data set], https://doi.org/10.17605/OSF.IO/B6KUX, 2023a. a, b
Grimmich, N., Plaschke, F., Archer, M. O., Heyner, D., Mieth, J. Z. D., Nakamura, R., and Sibeck, D. G.: Study of Extreme Magnetopause Distortions Under Varying Solar Wind Conditions, Journal of Geophysical Research: Space Physics, 128, e2023JA031603, https://doi.org/10.1029/2023JA031603, 2023b. a, b, c, d, e
Grimmich, N., Plaschke, F., Grison, B., Prencipe, F., Escoubet, C., Archer, M., Constantinescu, D., Haaland, S., Nakamura, R., and Sibeck, D.: Database: Cluster Magnetopause Crossings between 2001 and 2020, OSF [data set], https://doi.org/10.17605/OSF.IO/PXCTG, 2024a. a, b
Grimmich, N., Plaschke, F., Grison, B., Prencipe, F., Escoubet, C. P., Archer, M. O., Constantinescu, O. D., Haaland, S., Nakamura, R., Sibeck, D. G., Darrouzet, F., Hayosh, M., and Maggiolo, R.: The Cluster spacecrafts' view of the motion of the high-latitude magnetopause, Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, 2024b. a
Grygorov, K., Šafránková, J., Němeček, Z., Pi, G., Přech, L., and Urbář, J.: Shape of the equatorial magnetopause affected by the radial interplanetary magnetic field, Planetary and Space Science, 148, 28–34, https://doi.org/10.1016/j.pss.2017.09.011, 2017. a
Gu, Y., Wang, Y., Wei, F., Feng, X., Samsonov, A., Song, X., Wang, B., Zuo, P., Jiang, C., Chen, Y., Xu, X., and Zhou, Z.: A time-dependent three-dimensional dayside magnetopause model based on quasi-elastodynamic theory, Geosci. Model Dev., 18, 4215–4229, https://doi.org/10.5194/gmd-18-4215-2025, 2025. a
Imajo, S., Matsuoka, A., Toh, H., and Iyemori, T.: Mid-latitude Geomagnetic Indices ASY and SYM (ASY/SYM Indices), World Data Center for Geomagnetism, Kyoto [data set], https://doi.org/10.14989/267216, 2022. a
Janda, B., Němec, F., Němeček, Z., and Šafránková, J.: Dawn-Dusk Asymmetry of the Magnetopause Distance Under the Parker Spiral Configuration of the IMF, Journal of Geophysical Research: Space Physics, 129, e2024JA033181, https://doi.org/10.1029/2024JA033181, 2024. a, b
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, Journal of Geophysical Research: Space Physics, 110, 2004JA010649, https://doi.org/10.1029/2004JA010649, 2005. a
Li, S., Sun, Y., and Chen, C.: An Interpretable Machine Learning Procedure Which Unravels Hidden Interplanetary Drivers of the Low Latitude Dayside Magnetopause, Space Weather, 21, e2022SW003391, https://doi.org/10.1029/2022SW003391, 2023. a, b, c, d
Lin, R. L., Zhang, X. X., Liu, S. Q., Wang, Y. L., and Gong, J. C.: A three-dimensional asymmetric magnetopause model, Journal of Geophysical Research: Space Physics, 115, 2009JA014235, https://doi.org/10.1029/2009JA014235, 2010. a, b
Lin, Y., Lu, J., Qu, B., Wang, X., and Institute of Space Weather, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China: Assessing the performance of magnetopause models based on THEMIS data, Earth and Planetary Physics, 8, 776–786, https://doi.org/10.26464/epp2024053, 2024. a
Liu, Z., Lu, J. Y., Kabin, K., Yang, Y. F., Zhao, M. X., and Cao, X.: Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations, Journal of Geophysical Research: Space Physics, 117, 2011JA017441, https://doi.org/10.1029/2011JA017441, 2012. a, b
Liu, Z., Lu, J. Y., Wang, C., Kabin, K., Zhao, J. S., Wang, M., Han, J. P., Wang, J. Y., and Zhao, M. X.: A three-dimensional high Mach number asymmetric magnetopause model from global MHD simulation, Journal of Geophysical Research: Space Physics, 120, 5645–5666, https://doi.org/10.1002/2014JA020961, 2015. a, b, c
Lu, J. Y., Liu, Z., Kabin, K., Jing, H., Zhao, M. X., and Wang, Y.: The IMF dependence of the magnetopause from global MHD simulations, Journal of Geophysical Research: Space Physics, 118, 3113–3125, https://doi.org/10.1002/jgra.50324, 2013. a
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, in: Advances in Neural Information Processing Systems, vol. 30, Curran Associates, Inc., https://papers.nips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html (last access: 10 September 2025), 2017. a
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-I.: From local explanations to global understanding with explainable AI for trees, Nature Machine Intelligence, 2, 56–67, https://doi.org/10.1038/s42256-019-0138-9, 2020. a
Machková, A., Němec, F., Němeček, Z., and Šafránková, J.: On the Influence of the Earth's Magnetic Dipole Eccentricity and Magnetospheric Ring Current on the Magnetopause Location, Journal of Geophysical Research: Space Physics, 124, 905–914, https://doi.org/10.1029/2018JA026070, 2019. a, b
Menvielle, M., Iyemori, T., Marchaudon, A., and Nosé, M.: Geomagnetic Indices, in: Geomagnetic Observations and Models, edited by Mandea, M. and Korte, M., Springer Netherlands, Dordrecht, 183–228, ISBN 978-90-481-9857-3, 978-90-481-9858-0, https://doi.org/10.1007/978-90-481-9858-0_8, 2011. a, b
Nguyen, G., Aunai, N., Michotte De Welle, B., Jeandet, A., Lavraud, B., and Fontaine, D.: Massive Multi-Mission Statistical Study and Analytical Modeling of the Earth's Magnetopause: 2. Shape and Location, Journal of Geophysical Research: Space Physics, 127, e2021JA029774, https://doi.org/10.1029/2021JA029774, 2022a. a
Nguyen, G., Aunai, N., Michotte De Welle, B., Jeandet, A., Lavraud, B., and Fontaine, D.: Massive Multi-Mission Statistical Study and Analytical Modeling of the Earth's Magnetopause: 3. An Asymmetric Non Indented Magnetopause Analytical Model, Journal of Geophysical Research: Space Physics, 127, e2021JA030112, https://doi.org/10.1029/2021JA030112, 2022b. a, b
Nguyen, G., Aunai, N., Michotte De Welle, B., Jeandet, A., Lavraud, B., and Fontaine, D.: Massive Multi-Mission Statistical Study and Analytical Modeling of the Earth's Magnetopause: 4. On the Near-Cusp Magnetopause Indentation, Journal of Geophysical Research: Space Physics, 127, e2021JA029776, https://doi.org/10.1029/2021JA029776, 2022c. a, b
Nose, M., Iyemori, T., Sugiura, M., Kamei, T., Matsuoka, A., Imajo, S., and Kotani, T.: Geomagnetic AE index, World Data Center for Geomagnetism, Kyoto, https://doi.org/10.17593/15031-54800,, 2015. a
Němeček, Z., Šafránková, J., Lopez, R., Dušík, Å., Nouzák, L., Přech, L., Šimůnek, J., and Shue, J.-H.: Solar cycle variations of magnetopause locations, Advances in Space Research, 58, 240–248, https://doi.org/10.1016/j.asr.2015.10.012, 2016. a
Němeček, Z., ÄŽurovcová, T., Šafránková, J., Richardson, J. D., Šimůnek, J., and Stevens, M. L.: (Non)radial Solar Wind Propagation through the Heliosphere, The Astrophysical Journal Letters, 897, https://doi.org/10.3847/2041-8213/ab9ff7, 2020a. a
Němeček, Z., Šafránková, J., and Šimůnek, J.: An Examination of the Magnetopause Position and Shape Based Upon New Observations, in: Geophysical Monograph Series, edited by Zong, Q., Escoubet, P., Sibeck, D., Le, G., and Zhang, H., 1 edn., Wiley, 135–151, ISBN 978-1-119-50963-9, 978-1-119-50959-2, https://doi.org/10.1002/9781119509592.ch8, 2020b. a, b, c, d, e
Papitashvili, N. E. and King, J. H.: OMNI 1-min Data, NASA Space Physics Data Facility [data set], https://doi.org/10.48322/45bb-8792, 2020. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825–2830, 2011. a
Petrinec, S. M., Burch, J. L., Fuselier, S. A., Trattner, K. J., Giles, B. L., and Strangeway, R. J.: On the Occurrence of Magnetic Reconnection Along the Terrestrial Magnetopause, Using Magnetospheric Multiscale (MMS) Observations in Proximity to the Reconnection Site, Journal of Geophysical Research: Space Physics, 127, e2021JA029669, https://doi.org/10.1029/2021JA029669, 2022. a
Roelof, E. C. and Sibeck, D. G.: Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure, Journal of Geophysical Research: Space Physics, 98, 21421–21450, https://doi.org/10.1029/93ja02362, 1993. a
Samsonov, A. A., Němeček, Z., Šafránková, J., and Jelínek, K.: Why does the subsolar magnetopause move sunward for radial interplanetary magnetic field?, Journal of Geophysical Research: Space Physics, 117, 2011JA017429, https://doi.org/10.1029/2011JA017429, 2012. a
Samsonov, A. A., Gordeev, E., Tsyganenko, N. A., Šafránková, J., Němeček, Z., Šimůnek, J., Sibeck, D. G., Tóth, G., Merkin, V. G., and Raeder, J.: Do we know the actual magnetopause position for typical solar wind conditions?, Journal of Geophysical Research: Space Physics, 121, 6493–6508, https://doi.org/10.1002/2016JA022471, 2016. a
Shapley, L. S.: A Value for n-Person Games, in: Contributions to the Theory of Games, Volume II, edited by: Kuhn, H. W. and Tucker, A. W., 307–318, Princeton University Press, https://doi.org/10.1515/9781400881970-018, 1953. a
Shue, J.-H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., and Singer, H. J.: A new functional form to study the solar wind control of the magnetopause size and shape, Journal of Geophysical Research: Space Physics, 102, 9497–9511, https://doi.org/10.1029/97JA00196, 1997. a, b
Shue, J.-H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R., and Kawano, H.: Magnetopause location under extreme solar wind conditions, Journal of Geophysical Research: Space Physics, 103, 17691–17700, https://doi.org/10.1029/98JA01103, 1998. a, b
Staples, F. A., Rae, I. J., Forsyth, C., Smith, A. R. A., Murphy, K. R., Raymer, K. M., Plaschke, F., Case, N. A., Rodger, C. J., Wild, J. A., Milan, S. E., and Imber, S. M.: Do Statistical Models Capture the Dynamics of the Magnetopause During Sudden Magnetospheric Compressions?, Journal of Geophysical Research: Space Physics, 125, e2019JA027289, https://doi.org/10.1029/2019JA027289, 2020. a
Suvorova, A. V. and Dmitriev, A. V.: Magnetopause inflation under radial IMF: Comparison of models, Earth and Space Science, 2, 107–114, https://doi.org/10.1002/2014EA000084, 2015. a
Tapping, K. F.: The 10.7 cm solar radio flux (F10.7), Space Weather, 11, 394–406, https://doi.org/10.1002/swe.20064, 2013. a
Tapping, K. F. and DeTracey, B.: The origin of the 10.7 cm flux, Solar Physics, 127, 321–332, https://doi.org/10.1007/BF00152171, 1990. a
Tsurutani, B. T. and Gonzalez, W. D.: The Interplanetary Causes of Magnetic Storms: A Review, in: Magnetic Storms, American Geophysical Union (AGU), 77–89, ISBN 978-1-118-66461-2, https://doi.org/10.1029/GM098p0077, 1997. a
Tsyganenko, N. A.: Data-based modelling of the Earth's dynamic magnetosphere: a review, Ann. Geophys., 31, 1745–1772, https://doi.org/10.5194/angeo-31-1745-2013, 2013. a
Verigin, M. I., Kotova, G. A., Bezrukikh, V. V., Zastenker, G. N., and Nikolaeva, N.: Analytical model of the near-Earth magnetopause according to the data of the Prognoz and Interball satellite data, Geomagnetism and Aeronomy, 49, 1176–1181, https://doi.org/10.1134/S0016793209080283, 2009. a
Walsh, A. P., Haaland, S., Forsyth, C., Keesee, A. M., Kissinger, J., Li, K., Runov, A., Soucek, J., Walsh, B. M., Wing, S., and Taylor, M. G. G. T.: Dawn–dusk asymmetries in the coupled solar wind–magnetosphere–ionosphere system: a review, Ann. Geophys., 32, 705–737, https://doi.org/10.5194/angeo-32-705-2014, 2014. a, b
Walsh, B. M., Bhakyapaibul, T., and Zou, Y.: Quantifying the Uncertainty of Using Solar Wind Measurements for Geospace Inputs, Journal of Geophysical Research: Space Physics, 124, 3291–3302, https://doi.org/10.1029/2019ja026507, 2019. a
Wang, C. and Sun, T.: Methods to derive the magnetopause from soft X-ray images by the SMILE mission, Geoscience Letters, 9, 30, https://doi.org/10.1186/s40562-022-00240-z, 2022. a
Wang, C., Branduardi-Raymont, G., Escoubet, C. P., and Forsyth, C.: Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE): Science and Mission Overview, Space Science Reviews, 221, 9, https://doi.org/10.1007/s11214-024-01126-6, 2025. a
Wang, J. Y., Wang, C., Huang, Z. H., and Sun, T. R.: Effects of the interplanetary magnetic field on the twisting of the magnetotail: Global MHD results, Journal of Geophysical Research: Space Physics, 119, 1887–1897, https://doi.org/10.1002/2013JA019257, 2014. a
Wang, Y., Sibeck, D. G., Merka, J., Boardsen, S. A., Karimabadi, H., Sipes, T. B., Šafránková, J., Jelínek, K., and Lin, R.: A new three-dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations, Journal of Geophysical Research: Space Physics, 118, 2173–2184, https://doi.org/10.1002/jgra.50226, 2013. a, b, c, d, e, f
Wanliss, J. A. and Showalter, K. M.: High-resolution global storm index: Dst versus SYM-H, Journal of Geophysical Research: Space Physics, 111, 2005JA011034, https://doi.org/10.1029/2005JA011034, 2006. a
Zhelavskaya, I. S., Aseev, N. A., and Shprits, Y. Y.: A Combined Neural Network- and Physics-Based Approach for Modeling Plasmasphere Dynamics, Journal of Geophysical Research: Space Physics, 126, e2020JA028077, https://doi.org/10.1029/2020JA028077, 2021. a
Short summary
We applied machine learning to investigate how the solar wind and Earth's geomagnetic activity control the position of the magnetopause, the boundary layer of Earth's magnetic field. Our results demonstrate that geomagnetic activity strongly influences this boundary and should be incorporated in predictive models. Using data from multiple spacecraft, we developed a simple mathematical description of the magnetopause distance that improves understanding of solar wind–magnetosphere interactions.
We applied machine learning to investigate how the solar wind and Earth's geomagnetic activity...