Articles | Volume 43, issue 1
https://doi.org/10.5194/angeo-43-55-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-55-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigation of the October effect in very low-frequency (VLF) signals
Marc Hansen
CORRESPONDING AUTHOR
Institute for Solar-Terrestrial Physics, German Aerospace Center (DLR), Germany
Daniela Banyś
Institute for Solar-Terrestrial Physics, German Aerospace Center (DLR), Germany
Mark Clilverd
British Antarctic Survey (UKRI-NERC), Cambridge, UK
David Wenzel
Institute for Solar-Terrestrial Physics, German Aerospace Center (DLR), Germany
Tero Raita
Sodankylä Geophysical Observatory, University of Oulu, Oulu, Finland
Mohammed Mainul Hoque
Institute for Solar-Terrestrial Physics, German Aerospace Center (DLR), Germany
Related authors
No articles found.
Roman Leonhardt, Benoit Heumez, Tero Raita, and Jan Reda
EGUsphere, https://doi.org/10.5194/egusphere-2025-2553, https://doi.org/10.5194/egusphere-2025-2553, 2025
Short summary
Short summary
IMBOT , the INTERMAGNET ROBOT, has been developed to perform automated routines to convert and evaluate data submission to INTERMAGNET, a global network of geomagnetic observatories. IMBOT makes data review faster and more reliable, providing high-quality data for the geomagnetic community.
Mizuki Fukizawa, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Tero Raita, and Kirsti Kauristie
Ann. Geophys., 41, 511–528, https://doi.org/10.5194/angeo-41-511-2023, https://doi.org/10.5194/angeo-41-511-2023, 2023
Short summary
Short summary
We use computed tomography to reconstruct the three-dimensional distributions of the Hall and Pedersen conductivities of pulsating auroras, a key research target for understanding the magnetosphere–ionosphere coupling process. It is suggested that the high-energy electron precipitation associated with pulsating auroras may have a greater impact on the closure of field-aligned currents in the ionosphere than has been previously reported.
Mizuki Fukizawa, Takeshi Sakanoi, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Björn Gustavsson, Kirsti Kauristie, Alexander Kozlovsky, Tero Raita, Urban Brändström, and Tima Sergienko
Ann. Geophys., 40, 475–484, https://doi.org/10.5194/angeo-40-475-2022, https://doi.org/10.5194/angeo-40-475-2022, 2022
Short summary
Short summary
The pulsating auroral generation mechanism has been investigated by observing precipitating electrons using rockets or satellites. However, it is difficult for such observations to distinguish temporal changes from spatial ones. In this study, we reconstructed the horizontal 2-D distribution of precipitating electrons using only auroral images. The 3-D aurora structure was also reconstructed. We found that there were both spatial and temporal changes in the precipitating electron energy.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
David A. Newnham, Mark A. Clilverd, William D. J. Clark, Michael Kosch, Pekka T. Verronen, and Alan E. E. Rogers
Atmos. Meas. Tech., 15, 2361–2376, https://doi.org/10.5194/amt-15-2361-2022, https://doi.org/10.5194/amt-15-2361-2022, 2022
Short summary
Short summary
Ozone (O3) is an important trace gas in the mesosphere and lower thermosphere (MLT), affecting heating rates and chemistry. O3 profiles measured by the Ny-Ålesund Ozone in the Mesosphere Instrument agree with Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) for winter night-time, but autumn twilight SABER abundances are up to 50 % higher. O3 abundances in the MLT from two different SABER channels also show significant differences for both autumn twilight and summer daytime.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Cited articles
Barr, R.: The propagation of ELF and VLF radio waves beneath an inhomogeneous anisotropic ionosphere, J. Atmos. Terr. Phys., 33, 343–353, https://doi.org/10.1016/0021-9169(71)90139-5, 1971.
Banyś, D.: Propagation of LF and VLF waves and their use for monitoring space weather events, PhD thesis, Christian-Albrechts University Kiel, https://macau.uni-kiel.de/receive/diss_mods_00026241 (last access: 2 December 2020), 2017.
Clilverd, M. and Raita, T.: AARDDVARK VLF ULTRA data, British Antarctic Survey – UK Polar Data Centre, https://psddb.nerc-bas.ac.uk/data/access/coverage.php?menu=4,7&bc=1&source=1&class=284,37,140,255,243,3,110,232,141,30,279&type=ULTRA, last access: 30 March 2023.
Clilverd, M. A., Seppälä, A., Rodger, C. J., Thomson, N. R., Verronen, P. T., Turunen, E., Ulich, T., Lichtenberger, J., and Steinbach, P.: Modeling polar ionospheric effects during the October–November 2003 solar proton events, Radio Sci., 41, RS2001, https://doi.org/10.1029/2005RS003290, 2006.
Clilverd, M. A, Rodger, C. J., Thomson, N. R, Brundell, J. B., Ulich, T., Lichtenberger, J., Cobbett, N., Collier, A. B., Menk, F. W., Seppälä, A., Verronen, P. T., and Turunen, E.: Remote sensing space weather events: Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network, Space Weather, 7, S04001, https://doi.org/10.1029/2008SW000412, 2009.
Correia, E., Kaufmann, P., Raulin, J.-P., Bertoni, F., and Gavilan, H.R.: Analysis of daytime ionosphere behavior between 2004 and 2008 in Antarctica, J. Atmos. Sol.-Terr. Phy., 73, 2272–2278, https://doi.org/10.1016/j.jastp.2011.06.008, 2011.
Davies, K.: Ionospheric Radio, The Institution of Engineering and Technology, 2008 reprint edition, Institution of Engineering & Technology, ISBN 978-0-86341-186-1, 1990.
Hartree, D.: The Propagation of Electromagnetic Waves in a Refracting Medium in a Magnetic Field, Mathematical Proceedings of the Cambridge Philosophical Society, 27, 143–162, https://doi.org/10.1017/S0305004100009440, 1931.
Haldoupis, C., Steiner, R. J., Mika, Á., Shalimov, S., Marshall, R. A., Inan, U. S., Bösinger, T., and Neubert, T.: “Early/slow” events: A new category of VLF perturbations observed in relation with sprites, J. Geophys. Res., 111, A11321, https://doi.org/10.1029/2006JA011960, 2006.
Macotela, E. L., Clilverd, M., Renkwitz, T., Chau, J., Manninen, J., and Banyś, D.: Spring-fall asymmetry in VLF amplitudes recorded in the North Atlantic region: The fall-effect, Geophys. Res. Lett., 48, e2021GL094581, https://doi.org/10.1029/2021GL094581, 2021.
McRae, W. M. and Thomson, N. R.: Solar flare induced ionospheric D-region enhancements from VLF phase and amplitude observations, J. Atmos. Sol.-Terr. Phy., 66, 77–87, https://doi.org/10.1016/j.jastp.2003.09.009, 2004.
Nwankwo, V. U. J., Denig, W., Chakrabarti, S. K., Ogunmodimu, O., Ajakaiye, M. P., Fatokun, J. O., Anekwe, P. I., Obisesan, O. E., Oyanameh, O. E., and Fatoye, O. V.: Diagnostic study of geomagnetic storm-induced ionospheric changes over very low-frequency signal propagation paths in the mid-latitude D region, Ann. Geophys., 40, 433–461, https://doi.org/10.5194/angeo-40-433-2022, 2022.
Nicolet, M. and Aikin, A. C.: The formation of the D region of the ionosphere, J. Geophys. Res., 65, 1469–1483, https://doi.org/10.1029/JZ065i005p01469, 1960.
Palit, S., Raulin, J.-P., and Szpigel, S.: Response of Earth's upper atmosphere and VLF propagation to celestial X-ray ionization: Investigation with Monte Carlo simulation and long wave propagation capability code, J. Geophys. Res.-Space, 123, 10224–10238, https://doi.org/10.1029/2018JA025992, 2018.
Pancheva, D. and Mukhtarov, P. Y.: Modelling of the electron density height profiles in the mid-latitude ionospheric D-region, Ann. Geophys., 39, https://doi.org/10.4401/ag-4021, 1996.
Schneider, H., Wendt, V., Banys, D., Clilverd, M., and Raita, T.: Processing of VLF amplitude measurements: Deduction of a quiet time seasonal variation, Radio Sci., 59, e2023RS007834, https://doi.org/10.1029/2023RS007834, 2024.
Renkwitz, T., Sivakandan, M., Jaen, J., and Singer, W.: Ground-based noontime D-region electron density climatology over northern Norway, Atmos. Chem. Phys., 23, 10823–10834, https://doi.org/10.5194/acp-23-10823-2023, 2023.
Thomson, N. R. and Clilverd, M. A.: Solar cycle changes in daytime VLF subionospheric attenuation, J. Atmos. Sol.-Terr. Phy., 62, 601–608, https://doi.org/10.1016/S1364-6826(00)00026-2, 2000.
Thomson, N. R., Clilverd, M. A., and Rodger, C. J.: Midlatitude ionospheric D region: Height, sharpness, and solar zenith angle, J. Geophys. Res.-Space, 122, 8933–8946, https://doi.org/10.1002/2017JA024455, 2017.
Wendt, V., Schneider, H., Banyś, D., Hansen, M., Clilverd, M. A., and Raita, T.: Why does the October effect not occur at night?, Geophys. Res. Lett., 51, e2023GL107445, https://doi.org/10.1029/2023GL107445, 2024.
Wenzel, D., Jakowski, N., Berdermann, J., Mayer, C., Valladares, C., and Heber. B.: Global ionospheric are detection system (GIFDS), J. Atmos. Sol.-Terr. Phy., 138–139, 233–242, https://doi.org/10.1016/j.jastp.2015.12.011, 2016.
Short summary
The amplitude of subionospheric very low-frequency (VLF) radio signals does not show a symmetrical behavior over the year, which would be expected from its dependency on the solar position. The VLF amplitude rather shows a distinctive sharp decrease around October, which is hence called the "October effect". This study is the first to systematically investigate this October effect, which shows a clear latitudinal dependency.
The amplitude of subionospheric very low-frequency (VLF) radio signals does not show a...