Articles | Volume 43, issue 2
https://doi.org/10.5194/angeo-43-469-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-469-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global evolution of flux transfer events along the magnetopause from the dayside to the far tail
Department of Physics, University of Helsinki, Helsinki, Finland
now at: CSC – IT Center for Science Ltd., Espoo, Finland
Konstantinos Papadakis
Department of Physics, University of Helsinki, Helsinki, Finland
Markku Alho
Department of Physics, University of Helsinki, Helsinki, Finland
Markus Battarbee
Department of Physics, University of Helsinki, Helsinki, Finland
Giulia Cozzani
Department of Physics, University of Helsinki, Helsinki, Finland
LPC2E, CNRS/CNES/University of Orléans, Orléans, France
Lauri Pänkäläinen
Department of Physics, University of Helsinki, Helsinki, Finland
Urs Ganse
Department of Physics, University of Helsinki, Helsinki, Finland
Fasil Kebede
Department of Physics, University of Helsinki, Helsinki, Finland
Department of Physics and Technology, University of Bergen, Bergen, Norway
Jonas Suni
Department of Physics, University of Helsinki, Helsinki, Finland
Konstantinos Horaites
Department of Physics, University of Helsinki, Helsinki, Finland
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
National Oceanic and Atmospheric Administration National Centers for Environmental Information, Boulder, CO, USA
Maxime Grandin
Department of Physics, University of Helsinki, Helsinki, Finland
Finnish Meteorological Institute, Helsinki, Finland
Minna Palmroth
Department of Physics, University of Helsinki, Helsinki, Finland
Finnish Meteorological Institute, Helsinki, Finland
Related authors
Abiyot Bires Workayehu, Minna Palmroth, Maxime Grandin, Liisa Juusola, Markku Alho, Ivan Zaitsev, Venla Koikkalainen, Konstantinos Horaites, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, and Jonas Suni
EGUsphere, https://doi.org/10.5194/egusphere-2025-2282, https://doi.org/10.5194/egusphere-2025-2282, 2025
Short summary
Short summary
We investigate the ionospheric signatures of BBFs in the magnetotail utilising a global 6D hybrid-Vlasov simulation coupled with an ionospheric model. We analyse changes in the magnitudes of ionospheric observables and use them as the ionospheric manifestations of bursty bulk flows. Our results reveal that reconnection-driven BBF induce vortices that generate FACs, which map to the ionosphere with distinct east-west alignment and exhibit a characteristic westward drift.
Venla Koikkalainen, Maxime Grandin, Emilia Kilpua, Abiyot Workayehu, Ivan Zaitsev, Liisa Juusola, Shi Tao, Markku Alho, Lauri Pänkäläinen, Giulia Cozzani, Konstantinos Horaites, Jonas Suni, Yann Pfau-Kempf, Urs Ganse, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2265, https://doi.org/10.5194/egusphere-2025-2265, 2025
Short summary
Short summary
We use a numerical simulation to study phenomena that occur between the Earth’s dipolar magnetic field and the nightside of near-Earth space. We observe the formation of large-scale vortex flows with scales of several Earth radii. On the ionospheric grid of the simulation we find that the field-aligned currents formed in the simulation reflect the vortex flow in the transition region. The main finding is that the vortex flow is a result of a combination of flow dynamics and a plasma instability.
Shi Tao, Markku Alho, Ivan Zaitsev, Lucile Turc, Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1340, https://doi.org/10.5194/egusphere-2025-1340, 2025
Short summary
Short summary
Plasma convection is the movement of plasma that drags the magnetic field lines with it. Magnetic field in the solar wind interacts with the Earth's magnetic field and drags the dayside field lines of the Earth's magnetosphere toward nightside, causing the plasma inside the magnetosphere to circulate around the Earth in a process called the Dungey Cycle. Our simulation and methodology desribe this cycle in detail and find features in the convection that are not explained by fluid models.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev., 18, 511–527, https://doi.org/10.5194/gmd-18-511-2025, https://doi.org/10.5194/gmd-18-511-2025, 2025
Short summary
Short summary
Vlasiator is a kinetic space plasma model that simulates the behavior of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations have been run without any interaction with the ionosphere, the uppermost layer of Earth's atmosphere. In this paper, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space plasma and Earth's ionosphere interact.
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
Abiyot Bires Workayehu, Minna Palmroth, Maxime Grandin, Liisa Juusola, Markku Alho, Ivan Zaitsev, Venla Koikkalainen, Konstantinos Horaites, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, and Jonas Suni
EGUsphere, https://doi.org/10.5194/egusphere-2025-2282, https://doi.org/10.5194/egusphere-2025-2282, 2025
Short summary
Short summary
We investigate the ionospheric signatures of BBFs in the magnetotail utilising a global 6D hybrid-Vlasov simulation coupled with an ionospheric model. We analyse changes in the magnitudes of ionospheric observables and use them as the ionospheric manifestations of bursty bulk flows. Our results reveal that reconnection-driven BBF induce vortices that generate FACs, which map to the ionosphere with distinct east-west alignment and exhibit a characteristic westward drift.
Noora Partamies, Rowan Dayton-Oxland, Katie Herlingshaw, Ilkka Virtanen, Bea Gallardo-Lacourt, Mikko Syrjäsuo, Fred Sigernes, Takanori Nishiyama, Toshi Nishimura, Mathieu Barthelemy, Anasuya Aruliah, Daniel Whiter, Lena Mielke, Maxime Grandin, Eero Karvinen, Marjan Spijkers, and Vincent E. Ledvina
Ann. Geophys., 43, 349–367, https://doi.org/10.5194/angeo-43-349-2025, https://doi.org/10.5194/angeo-43-349-2025, 2025
Short summary
Short summary
We studied the first broad band emissions, called continuum, in the dayside aurora. They are similar to Strong Thermal Emission Velocity Enhancement (STEVE) with white-, pale-pink-, or mauve-coloured light. But unlike STEVE, they follow the dayside aurora forming rays and other dynamic shapes. We used ground optical and radar observations and found evidence of heating and upwelling of both plasma and neutral air. This study provides new information on conditions for continuum emission, but its understanding will require further work.
Venla Koikkalainen, Maxime Grandin, Emilia Kilpua, Abiyot Workayehu, Ivan Zaitsev, Liisa Juusola, Shi Tao, Markku Alho, Lauri Pänkäläinen, Giulia Cozzani, Konstantinos Horaites, Jonas Suni, Yann Pfau-Kempf, Urs Ganse, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2265, https://doi.org/10.5194/egusphere-2025-2265, 2025
Short summary
Short summary
We use a numerical simulation to study phenomena that occur between the Earth’s dipolar magnetic field and the nightside of near-Earth space. We observe the formation of large-scale vortex flows with scales of several Earth radii. On the ionospheric grid of the simulation we find that the field-aligned currents formed in the simulation reflect the vortex flow in the transition region. The main finding is that the vortex flow is a result of a combination of flow dynamics and a plasma instability.
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2394, https://doi.org/10.5194/egusphere-2025-2394, 2025
Short summary
Short summary
Key properties of the ionospheric electrodynamics are electric fields, currents, and conductances. They provide a window to the vast and distant near-Earth space, cause Joule heating that affect satellite orbits, and drive geomagnetically induced currents (GICs) in technological conductor networks. We have developed a new method for solving the key properties of ionospheric electrodynamics from ground-based magnetic field observations.
Shi Tao, Markku Alho, Ivan Zaitsev, Lucile Turc, Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1340, https://doi.org/10.5194/egusphere-2025-1340, 2025
Short summary
Short summary
Plasma convection is the movement of plasma that drags the magnetic field lines with it. Magnetic field in the solar wind interacts with the Earth's magnetic field and drags the dayside field lines of the Earth's magnetosphere toward nightside, causing the plasma inside the magnetosphere to circulate around the Earth in a process called the Dungey Cycle. Our simulation and methodology desribe this cycle in detail and find features in the convection that are not explained by fluid models.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys., 43, 217–240, https://doi.org/10.5194/angeo-43-217-2025, https://doi.org/10.5194/angeo-43-217-2025, 2025
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation through the novel combination of both magnetospheric modelling and atmospheric modelling. We first simulate fluxes of auroral electrons and then use these fluxes to model their atmospheric impact. We find an increase of more than 200 % in thermospheric odd nitrogen and a corresponding decrease in stratospheric ozone of around 0.8 %. The produced auroral electron precipitation is realistic and shows potential for future studies.
Anton Fetzer, Mikko Savola, Adnane Osmane, Vili-Arttu Ketola, Philipp Oleynik, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1279, https://doi.org/10.5194/egusphere-2025-1279, 2025
Short summary
Short summary
Extreme events can pose serious risks to satellites, potentially disrupting communication, navigation, and power systems. Our study estimates the worst-case radiation levels during such an event and assesses their impact on electronics and solar panels.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev., 18, 511–527, https://doi.org/10.5194/gmd-18-511-2025, https://doi.org/10.5194/gmd-18-511-2025, 2025
Short summary
Short summary
Vlasiator is a kinetic space plasma model that simulates the behavior of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations have been run without any interaction with the ionosphere, the uppermost layer of Earth's atmosphere. In this paper, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space plasma and Earth's ionosphere interact.
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
Geosci. Commun., 7, 297–316, https://doi.org/10.5194/gc-7-297-2024, https://doi.org/10.5194/gc-7-297-2024, 2024
Short summary
Short summary
We carried out a citizen science study of aurora sightings and technological disruptions experienced during the extreme geomagnetic storm of 10 May 2024. We collected reports from 696 observers from over 30 countries via an online survey, supplemented with observations logged in the Skywarden database. We found that the aurora was seen from exceptionally low latitudes and had very bright red and pink hues, suggesting that high fluxes of low-energy electrons from space entered the atmosphere.
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024, https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Short summary
Auroral displays typically take place at high latitudes, but the exact latitude where the auroral breakup occurs can vary. In this study, we compare the characteristics of the fluxes of precipitating electrons from space during auroral breakups occurring above Tromsø (central part of the auroral zone) and above Svalbard (poleward boundary of the auroral zone). We find that electrons responsible for the aurora above Tromsø carry more energy than those precipitating above Svalbard.
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Cited articles
Akhavan-Tafti, M., Slavin, J. A., Eastwood, J. P., Cassak, P. A., and Gershman, D. J.: MMS Multi-Point Analysis of FTE Evolution: Physical Characteristics and Dynamics, J. Geophys. Res.-Space, 124, 5376–5395, https://doi.org/10.1029/2018JA026311, 2019. a
Akhavan-Tafti, M., Palmroth, M., Slavin, J., Battarbee, M., Ganse, U., Grandin, M., Le, G., Gershman, D., Eastwood, J., and Stawarz, J.: Comparative Analysis of the Vlasiator Simulations and MMS Observations of Multiple X-Line Reconnection and Flux Transfer Events, J. Geophys. Res.-Space, 125, e2019JA027410, https://doi.org/10.1029/2019JA027410, 2020. a
Ala-Lahti, M., Pulkkinen, T. I., Pfau-Kempf, Y., Grandin, M., and Palmroth, M.: Energy Flux Through the Magnetopause During Flux Transfer Events in Hybrid-Vlasov 2D Simulations, Geophys. Res. Lett., 49, e2022GL100079, https://doi.org/10.1029/2022GL100079, 2022. a, b
Alho, M., Cozzani, G., Zaitsev, I., Kebede, F. T., Ganse, U., Battarbee, M., Bussov, M., Dubart, M., Hoilijoki, S., Kotipalo, L., Papadakis, K., Pfau-Kempf, Y., Suni, J., Tarvus, V., Workayehu, A., Zhou, H., and Palmroth, M.: Finding reconnection lines and flux rope axes via local coordinates in global ion-kinetic magnetospheric simulations, Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, 2024. a, b, c, d, e, f, g, h, i
Balsara, D. S.: Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comput. Phys., 228, 5040–5056, https://doi.org/10.1016/j.jcp.2009.03.038, 2009. a
Battarbee, M., Alho, M., Pfau-Kempf, Y., Ganse, U., Grandin, M., Kotipalo, L., Papadakis, K., Jarvinen, R., Pänkäläinen, L., Suni, J., von Alfthan, S., Tarvus, V., Zaitsev, I., Tao, S., Horaites, K., Turc, L., Tesema, F. K., Zhou, H., Honkonen, I., Brito, T., Lalagüe, A., Siljamo, S., and Reimi, J.: analysator, Zenodo [code], https://doi.org/10.5281/zenodo.4462514, 2024. a
Bowers, C. F., Slavin, J. A., DiBraccio, G. A., Poh, G., Hara, T., Xu, S., and Brain, D. A.: MAVEN Survey of Magnetic Flux Rope Properties in the Martian Ionosphere: Comparison With Three Types of Formation Mechanisms, Geophys. Res. Lett., 48, e2021GL093296, https://doi.org/10.1029/2021GL093296, 2021. a
Brain, D. A., Baker, A. H., Briggs, J., Eastwood, J. P., Halekas, J. S., and Phan, T.-D.: Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape, Geophys. Res. Lett., 37, L14108, https://doi.org/10.1029/2010GL043916, 2010. a
Branduardi-Raymont, G., Wang, C., Escoubet, C., Adamovic, M., Agnolon, D., Berthomier, M., Carter, J., Chen, W., Colangeli, L., Collier, M., Connor, H., Dai, L., Dimmock, A., Djazovski, O., Donovan, E., Eastwood, J., Enno, G., Giannini, F., Huang, L., Kataria, D., Kuntz, K., Laakso, H., Li, J., Li, L., Lui, T., Loicq, J., Masson, A., Manuel, J., Parmar, A., Piekutowski, T., Read, A., Samsonov, A., Sembay, S., Raab, W., Ruciman, C., Shi, J., Sibeck, D., Spanswick, E., Sun, T., Symonds, K., Tong, J., Walsh, B., Wei, F., Zhao, D., Zheng, J., Zhu, X., and Zhu, Z.: SMILE definition study report, European Space Agency, ESA/SCI, 1, https://doi.org/10.5270/esa.smile.definition_study_report-2018-12, 2018. a
Brenner, A., Pulkkinen, T. I., Al Shidi, Q., and Toth, G.: Stormtime Energetics: Energy Transport Across the Magnetopause in a Global MHD Simulation, Front. Astron. Space Sci., 8, 756732, https://doi.org/10.3389/fspas.2021.756732, 2021. a, b
Cartwright, M. L. and Moldwin, M. B.: Comparison of small-scale flux rope magnetic properties to large-scale magnetic clouds: Evidence for reconnection across the HCS?, J. Geophys. Res.-Space, 113, https://doi.org/10.1029/2008JA013389, 2008. a
Cartwright, M. L. and Moldwin, M. B.: Heliospheric evolution of solar wind small-scale magnetic flux ropes, J. Geophys. Res.-Space, 115, A09105, https://doi.org/10.1029/2009JA014271, 2010. a
Cassak, P. A.: Theory and simulations of the scaling of magnetic reconnection with symmetric shear flow, Phys. Plasmas, 18, 072106, https://doi.org/10.1063/1.3602859, 2011. a
Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M. C., Harrison, C., Weber, G. H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E. W., Camp, D., Rubel, O., Durant, M., Favre, J. M., and Navratil, P.: High Performance Visualization: Enabling Extreme-Scale Scientific Insight, 1st Edn., Chapman and Hall/CRC, 520 pp., https://doi.org/10.1201/b12985, 2012. a
Cozzani, G., Alho, M., Zaitsev, I., Zhou, H., Hoilijoki, S., Turc, L., Grandin, M., Horaites, K., Battarbee, M., Pfau-Kempf, Y., Ganse, U., Papadakis, K., and Palmroth, M.: Interplay of Magnetic Reconnection and Current Sheet Kink Instability in the Earth's Magnetotail, Geophys. Res. Lett., 52, e2024GL111848, https://doi.org/10.1029/2024GL111848, 2025. a
DiBraccio, G. A. and Gershman, D. J.: Voyager 2 constraints on plasmoid-based transport at Uranus, Geophys. Res. Lett., 46, 10710–10718, https://doi.org/10.1029/2019GL083909, 2019. a
Eastwood, J. P. and Kiehas, S. A.: Origin and Evolution of Plasmoids and Flux Ropes in the Magnetotails of Earth and Mars, chap. 16, 269–287, American Geophysical Union (AGU), ISBN 9781118842324, https://doi.org/10.1002/9781118842324.ch16, 2015. a
Eastwood, J. P., Phan, T. D., Fear, R. C., Sibeck, D. G., Angelopoulos, V., Øieroset, M., and Shay, M. A.: Survival of flux transfer event (FTE) flux ropes far along the tail magnetopause, J. Geophys. Res.-Space, 117, A08222, https://doi.org/10.1029/2012JA017722, 2012. a, b, c, d
Edberg, N. J. T., Alho, M., André, M., Andrews, D. J., Behar, E., Burch, J. L., Carr, C. M., Cupido, E., Engelhardt, I. A. D., Eriksson, A. I., Glassmeier, K.-H., Goetz, C., Goldstein, R., Henri, P., Johansson, F. L., Koenders, C., Mandt, K., Möstl, C., Nilsson, H., Odelstad, E., Richter, I., Simon Wedlund, C., Stenberg Wieser, G., Szego, K., Vigren, E., and Volwerk, M.: CME impact on comet 67P/Churyumov-Gerasimenko, Mon. Not. R. Astron. Soc., 462, S45–S56, https://doi.org/10.1093/mnras/stw2112, 2016. a
Elphic, R. C. and Russell, C. T.: Magnetic flux ropes in the Venus ionosphere: Observations and models, J. Geophys. Res.-Space, 88, 58–72, https://doi.org/10.1029/JA088iA01p00058, 1983. a
Fargette, N., Lavraud, B., Øieroset, M., Phan, T. D., Toledo-Redondo, S., Kieokaew, R., Jacquey, C., Fuselier, S. A., Trattner, K. J., Petrinec, S., Hasegawa, H., Garnier, P., Génot, V., Lenouvel, Q., Fadanelli, S., Penou, E., Sauvaud, J.-A., Avanov, D. L. A., Burch, J., Chandler, M. O., Coffey, V. N., Dorelli, J., Eastwood, J. P., Farrugia, C. J., Gershman, D. J., Giles, B. L., Grigorenko, E., Moore, T. E., Paterson, W. R., Pollock, C., Saito, Y., Schiff, C., and Smith, S. E.: On the Ubiquity of Magnetic Reconnection Inside Flux Transfer Event-Like Structures at the Earth's Magnetopause, Geophys. Res. Lett., 47, e2019GL086726, https://doi.org/10.1029/2019GL086726, 2020. a
Feng, H. Q., Wu, D. J., and Chao, J. K.: Comment on “Comparison of small-scale flux rope magnetic properties to large-scale magnetic clouds: Evidence for reconnection across the HCS”? by M. L. Cartwright and M. B. Moldwin, J. Geophys. Res.-Space, 115, A10109, https://doi.org/10.1029/2010JA015588, 2010. a
Fermo, R. L., Drake, J. F., and Swisdak, M.: Secondary Magnetic Islands Generated by the Kelvin-Helmholtz Instability in a Reconnecting Current Sheet, Phys. Rev. Lett., 108, 255005, https://doi.org/10.1103/PhysRevLett.108.255005, 2012. a
Ganse, U., Koskela, T., Battarbee, M., Pfau-Kempf, Y., Papadakis, K., Alho, M., Bussov, M., Cozzani, G., Dubart, M., George, H., Gordeev, E., Grandin, M., Horaites, K., Suni, J., Tarvus, V., Kebede, F. T., Turc, L., Zhou, H., and Palmroth, M.: Enabling technology for global 3D + 3V hybrid-Vlasov simulations of near-Earth space, Phys. Plasmas, 30, 042902, https://doi.org/10.1063/5.0134387, 2023. a, b, c, d
Ganse, U., Pfau-Kempf, Y., Zhou, H., Juusola, L., Workayehu, A., Kebede, F., Papadakis, K., Grandin, M., Alho, M., Battarbee, M., Dubart, M., Kotipalo, L., Lalagüe, A., Suni, J., Horaites, K., and Palmroth, M.: The Vlasiator 5.2 ionosphere – coupling a magnetospheric hybrid-Vlasov simulation with a height-integrated ionosphere model, Geosci. Model Dev., 18, 511–-527, https://doi.org/10.5194/gmd-18-511-2025, 2025. a, b, c
Grandin, M., Turc, L., Battarbee, M., Ganse, U., Johlander, A., Pfau-Kempf, Y., Dubart, M., and Palmroth, M.: Hybrid-Vlasov simulation of auroral proton precipitation in the cusps: Comparison of northward and southward interplanetary magnetic field driving, J. Space Weather Spac., 10, 51, https://doi.org/10.1051/swsc/2020053, 2020. a
Grandin, M., Luttikhuis, T., Battarbee, M., Cozzani, G., Zhou, H., Turc, L., Pfau-Kempf, Y., George, H., Horaites, K., Gordeev, E., Ganse, U., Papadakis, K., Alho, M., Tesema, F., Suni, J., Dubart, M., Tarvus, V., and Palmroth, M.: First 3D hybrid-Vlasov global simulation of auroral proton precipitation and comparison with satellite observations, J. Space Weather Spac., 13, 20, https://doi.org/10.1051/swsc/2023017, 2023. a
Grandin, M., Connor, H. K., Hoilijoki, S., Battarbee, M., Pfau-Kempf, Y., Ganse, U., Papadakis, K., and Palmroth, M.: Hybrid-Vlasov simulation of soft X-ray emissions at the Earth’s dayside magnetospheric boundaries, Earth Planet. Phys., 8, 70–88, https://doi.org/10.26464/epp2023052, 2024. a, b, c
Guo, J., Sun, T., Lu, S., Lu, Q., Lin, Y., Wang, X., Wang, C., Wang, R., and Huang, K.: Global hybrid simulations of soft X-ray emissions in the Earth’s magnetosheath, Earth Planet. Phys., 8, 47–58, https://doi.org/10.26464/epp2023053, 2024. a, b
Haerendel, G., Paschmann, G., Sckopke, N., Rosenbauer, H., and Hedgecock, P. C.: The frontside boundary layer of the magnetosphere and the problem of reconnection, J. Geophys. Res.-Space, 83, 3195–3216, https://doi.org/10.1029/JA083iA07p03195, 1978. a
Hara, T., Brain, D. A., Mitchell, D. L., Luhmann, J. G., Seki, K., Hasegawa, H., Mcfadden, J. P., Halekas, J. S., Espley, J. R., Harada, Y., Livi, R., DiBraccio, G. A., Connerney, J. E. P., Mazelle, C., Andersson, L., and Jakosky, B. M.: MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields, J. Geophys. Res.-Space, 122, 828–842, https://doi.org/10.1002/2016JA023347, 2017a. a
Hara, T., Harada, Y., Mitchell, D. L., DiBraccio, G. A., Espley, J. R., Brain, D. A., Halekas, J. S., Seki, K., Luhmann, J. G., McFadden, J. P., Mazelle, C., and Jakosky, B. M.: On the origins of magnetic flux ropes in near-Mars magnetotail current sheets, Geophys. Res. Lett., 44, 7653–7662, https://doi.org/10.1002/2017GL073754, 2017b. a
Hoilijoki, S., Ganse, U., Sibeck, D. G., Cassak, P. A., Turc, L., Battarbee, M., Fear, R. C., Blanco-Cano, X., Dimmock, A. P., Kilpua, E. K. J., Jarvinen, R., Juusola, L., Pfau-Kempf, Y., and Palmroth, M.: Properties of Magnetic Reconnection and FTEs on the Dayside Magnetopause With and Without Positive IMF Bx Component During Southward IMF, J. Geophys. Res.-Space, 124, 4037–4048, https://doi.org/10.1029/2019JA026821, 2019. a, b, c, d
Huang, S., Zhao, P., He, J., Yuan, Z., Zhou, M., Fu, H., Deng, X., Pang, Y., Wang, D., Yu, X., Li, H., Torbert, R., and Burch, J.: A new method to identify flux ropes in space plasmas, Ann. Geophys., 36, 1275–1283, https://doi.org/10.5194/angeo-36-1275-2018, 2018. a
Hwang, K.-J., Dokgo, K., Choi, E., Burch, J. L., Sibeck, D. G., Giles, B. L., Hasegawa, H., Fu, H. S., Liu, Y., Wang, Z., Nakamura, T. K. M., Ma, X., Fear, R. C., Khotyaintsev, Y., Graham, D. B., Shi, Q. Q., Escoubet, C. P., Gershman, D. J., Paterson, W. R., Pollock, C. J., Ergun, R. E., Torbert, R. B., Dorelli, J. C., Avanov, L., Russell, C. T., and Strangeway, R. J.: Magnetic Reconnection Inside a Flux Rope Induced by Kelvin-Helmholtz Vortices, J. Geophys. Res.-Space, 125, e2019JA027665, https://doi.org/10.1029/2019JA027665, 2020. a
Isavnin, A., Kilpua, E., and Koskinen, H.: Grad–Shafranov Reconstruction of Magnetic Clouds: Overview and Improvements, Solar Phys., 273, 205–219, https://doi.org/10.1007/s11207-011-9845-z, 2011. a
Isavnin, A., Vourlidas, A., and Kilpua, E.: Three-Dimensional Evolution of Flux-Rope CMEs and Its Relation to the Local Orientation of the Heliospheric Current Sheet, Solar Phys., 289, 2141–2156, https://doi.org/10.1007/s11207-013-0468-4, 2014. a
Jackman, C. M., Slavin, J. A., Kivelson, M. G., Southwood, D. J., Achilleos, N., Thomsen, M. F., DiBraccio, G. A., Eastwood, J. P., Freeman, M. P., Dougherty, M. K., and Vogt, M. F.: Saturn's dynamic magnetotail: A comprehensive magnetic field and plasma survey of plasmoids and traveling compression regions and their role in global magnetospheric dynamics, J. Geophys. Res.-Space, 119, 5465–5494, https://doi.org/10.1002/2013JA019388, 2014. a
Janvier, M., Démoulin, P., and Dasso, S.: In situ properties of small and large flux ropes in the solar wind, J. Geophys. Res.-Space, 119, 7088–7107, https://doi.org/10.1002/2014JA020218, 2014. a
Jarvinen, R., Vainio, R., Palmroth, M., Juusola, L., Hoilijoki, S., Pfau-Kempf, Y., Ganse, U., Turc, L., and von Alfthan, S.: Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath, Geophys. Res. Lett., 45, 1723–1731, https://doi.org/10.1002/2017GL076192, 2018. a
Jasinski, J. M., Slavin, J. A., Arridge, C. S., Poh, G., Jia, X., Sergis, N., Coates, A. J., Jones, G. H., and Waite Jr., J. H.: Flux transfer event observation at Saturn's dayside magnetopause by the Cassini spacecraft, Geophys. Res. Lett., 43, 6713–6723, https://doi.org/10.1002/2016GL069260, 2016. a
Kieokaew, R., Lavraud, B., Fargette, N., Marchaudon, A., Génot, V., Jacquey, C., Gershman, D., Giles, B., Torbert, R., and Burch, J.: Statistical Relationship Between Interplanetary Magnetic Field Conditions and the Helicity Sign of Flux Transfer Event Flux Ropes, Geophys. Res. Lett., 48, e2020GL091257, https://doi.org/10.1029/2020GL091257, 2021. a
Kotipalo, L., Battarbee, M., Pfau-Kempf, Y., and Palmroth, M.: Physics-motivated Cell-octree Adaptive Mesh Refinement in the Vlasiator 5.3 Global Hybrid-Vlasov Code, Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, 2024. a, b, c
Kronberg, E. A., Woch, J., Krupp, N., Lagg, A., Khurana, K. K., and Glassmeier, K.-H.: Mass release at Jupiter: Substorm-like processes in the Jovian magnetotail, J. Geophys. Res.-Space, 110, A03211, https://doi.org/10.1029/2004JA010777, 2005. a
La Belle-Hamer, A. L., Otto, A., and Lee, L. C.: Magnetic reconnection in the presence of sheared flow and density asymmetry: Applications to the Earth's magnetopause, J. Geophys. Res.-Space, 100, 11875–11889, https://doi.org/10.1029/94JA00969, 1995. a
Li, C., Jia, X., Chen, Y., Toth, G., Zhou, H., Slavin, J. A., Sun, W., and Poh, G.: Global Hall MHD Simulations of Mercury's Magnetopause Dynamics and FTEs Under Different Solar Wind and IMF Conditions, J. Geophys. Res.-Space, 128, e2022JA031206, https://doi.org/10.1029/2022JA031206, 2023. a
Liu, R.: Magnetic flux ropes in the solar corona: structure and evolution toward eruption, Res. Astron. Astrophys., 20, 165, https://doi.org/10.1088/1674-4527/20/10/165, 2020. a
Lowder, C. and Yeates, A.: Magnetic Flux Rope Identification and Characterization from Observationally Driven Solar Coronal Models, Astrophys. J., 846, 106, https://doi.org/10.3847/1538-4357/aa86b1, 2017. a
Lv, L., Pu, Z., and Xie, L.: Multiple magnetic topologies in flux transfer events: THEMIS measurements, Sci. China Technol. Sci., 59, 1283–1293, https://doi.org/10.1007/s11431-016-6071-9, 2016. a
MacTaggart, D., Prior, C., Raphaldini, B., Romano, P., and Guglielmino, S.: Direct evidence that twisted flux tube emergence creates solar active regions, Nat. Commun., 12, 6621, https://doi.org/10.1038/s41467-021-26981-7, 2021. a
Martin, C. J., Arridge, C. S., Badman, S. V., Russell, C. T., and Wei, H.: Distribution and Properties of Magnetic Flux Ropes in Titan's Ionosphere, J. Geophys. Res.-Space, 125, e2019JA027570, https://doi.org/10.1029/2019JA027570, 2020. a
McGregor, D. C., Kerr, S. E., and Krockenberger, A. K.: The distribution and abundance of an island population of Koalas (Phascolarctos cinereus) in the far north of their geographic range, PLoS One, 8, e59713, https://doi.org/10.1371/journal.pone.0059713, 2013. a
Moldwin, M. B., Ford, S., Lepping, R., Slavin, J., and Szabo, A.: Small-scale magnetic flux ropes in the solar wind, Geophys. Res. Lett., 27, 57–60, https://doi.org/10.1029/1999GL010724, 2000. a
Palmroth, M., Hoilijoki, S., Juusola, L., Pulkkinen, T. I., Hietala, H., Pfau-Kempf, Y., Ganse, U., von Alfthan, S., Vainio, R., and Hesse, M.: Tail reconnection in the global magnetospheric context: Vlasiator first results, Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, 2017. a
Palmroth, M., Pulkkinen, T., Ganse, U., Pfau-Kempf, Y., Koskela, T., Zaitsev, I., Alho, M., Cozzani, G., Turc, L., Battarbee, M., Dubart, M., George, H., Gordeev, E., Grandin, M., Horaites, K., Osmane, A., Papadakis, K., Suni, J., Tarvus, V., Zhou, H., and Nakamura, R.: Magnetotail plasma eruptions driven by magnetic reconnection and kinetic instabilities, Nat. Geosci., 16, 570–576, https://doi.org/10.1038/s41561-023-01206-2, 2023. a, b, c, d
Papadakis, K., Pfau-Kempf, Y., Ganse, U., Battarbee, M., Alho, M., Grandin, M., Dubart, M., Turc, L., Zhou, H., Horaites, K., Zaitsev, I., Cozzani, G., Bussov, M., Gordeev, E., Tesema, F., George, H., Suni, J., Tarvus, V., and Palmroth, M.: Spatial filtering in a 6D hybrid-Vlasov scheme to alleviate adaptive mesh refinement artifacts: a case study with Vlasiator (versions 5.0, 5.1, and 5.2.1), Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, 2022. a, b, c
Paul, A., Vaidya, B., and Strugarek, A.: A Volumetric Study of Flux Transfer Events at the Dayside Magnetopause, Astrophys. J., 938, 130, https://doi.org/10.3847/1538-4357/ac8eb5, 2022. a, b, c
Paul, A., Strugarek, A., and Vaidya, B.: Global-MHD Simulations Using MagPIE: Impact of Flux Transfer Events on the Ionosphere, J. Geophys. Res.-Space, 128, e2023JA031718, https://doi.org/10.1029/2023JA031718, 2023. a, b
Pfau-Kempf, Y., Hietala, H., Milan, S. E., Juusola, L., Hoilijoki, S., Ganse, U., von Alfthan, S., and Palmroth, M.: Evidence for transient, local ion foreshocks caused by dayside magnetopause reconnection, Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, 2016. a, b
Pfau-Kempf, Y., Palmroth, M., Johlander, A., Turc, L., Alho, M., Battarbee, M., Dubart, M., Grandin, M., and Ganse, U.: Hybrid-Vlasov modeling of three-dimensional dayside magnetopause reconnection, Phys. Plasmas, 27, 092903, https://doi.org/10.1063/5.0020685, 2020. a, b, c, d
Pfau-Kempf, Y., von Alfthan, S., Ganse, U., Sandroos, A., Battarbee, M., Koskela, T., Hannuksela, O., Honkonen, I., Papadakis, K., Kotipalo, L., Zhou, H., Grandin, M., Pokhotelov, D., and Alho, M.: fmihpc/vlasiator: Vlasiator, Zenodo [code], https://doi.org/10.5281/zenodo.3640593, 2024. a, b, c, d
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res.-Space, 107, SIA 15-1–SIA 15-16, https://doi.org/10.1029/2002JA009430, 2002. a
Press, W., Teukolsky, S., Vetterling, W., and Flannery, B.: Numerical Recipes: The Art of Scientific Computing, 3rd Edn., Chap. 17, Cambridge University Press, ISBN 978-0-521-88068-8, 2011. a
Rijnbeek, R. and Cowley, S.: Magnetospheric flux erosion events are flux transfer events, Nature, 309, 135–138, https://doi.org/10.1038/309135a0, 1984. a
Ripperda, B., Liska, M., Chatterjee, K., Musoke, G., Philippov, A., Markoff, S., Tchekhovskoy, A., and Younsi, Z.: Black Hole Flares: Ejection of Accreted Magnetic Flux through 3D Plasmoid-mediated Reconnection, Astrophys. J. Lett., 924, L32, https://doi.org/10.3847/2041-8213/ac46a1, 2022. a
Romanelli, N., DiBraccio, G. A., Modolo, R., Connerney, J. E. P., Ebert, R. W., Martos, Y. M., Weber, T., Espley, J. R., Kurth, W. S., Allegrini, F., Valek, P., and Bolton, S. J.: Juno Magnetometer Observations at Ganymede: Comparisons With a Global Hybrid Simulation and Indications of Magnetopause Reconnection, Geophys. Res. Lett., 49, e2022GL099545, https://doi.org/10.1029/2022GL099545, 2022. a
Runov, A., Grandin, M., Palmroth, M., Battarbee, M., Ganse, U., Hietala, H., Hoilijoki, S., Kilpua, E., Pfau-Kempf, Y., Toledo-Redondo, S., Turc, L., and Turner, D.: Ion distribution functions in magnetotail reconnection: global hybrid-Vlasov simulation results, Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, 2021. a
Russell, C. T. and Elphic, R. C.: Initial ISEE magnetometer results: magnetopause observations, Space Sci. Rev., 22, 681–715, https://doi.org/10.1007/BF00212619, 1978. a
Russell, C. T., Le, G., and Kuo, H.: The occurrence rate of flux transfer events, Adv. Space Res., 18, 197–205, https://doi.org/10.1016/0273-1177(95)00965-5, 1996. a
Sarkango, Y., Slavin, J. A., Jia, X., DiBraccio, G. A., Gershman, D. J., Connerney, J. E. P., Kurth, W. S., and Hospodarsky, G. B.: Juno Observations of Ion-Inertial Scale Flux Ropes in the Jovian Magnetotail, Geophys. Res. Lett., 48, e2020GL089721, https://doi.org/10.1029/2020GL089721, 2021. a
Sarkango, Y., Slavin, J. A., Jia, X., DiBraccio, G. A., Clark, G. B., Sun, W., Mauk, B. H., Kurth, W. S., and Hospodarsky, G. B.: Properties of Ion-Inertial Scale Plasmoids Observed by the Juno Spacecraft in the Jovian Magnetotail, J. Geophys. Res.-Space, 127, e2021JA030181, https://doi.org/10.1029/2021JA030181, 2022. a
Shi, Q. Q., Tian, A. M., Bai, S. C., Hasegawa, H., Degeling, A. W., Pu, Z. Y., Dunlop, M., Guo, R. L., Yao, S. T., Zong, Q.-G., Wei, Y., Zhou, X.-Z., Fu, S. Y., and Liu, Z. Q.: Dimensionality, Coordinate System and Reference Frame for Analysis of In-Situ Space Plasma and Field Data, Space Sci. Rev., 215, 35, https://doi.org/10.1007/s11214-019-0601-2, 2019. a, b, c
Sibeck, D. G., Angelopoulos, V., Brain, D. A., Delory, G. T., Eastwood, J. P., Farrell, W. M., Grimm, R. E., Halekas, J. S., Hasegawa, H., Hellinger, P., Khurana, K. K., Lillis, R. J., Øieroset, M., Phan, T.-D., Raeder, J., Russell, C. T., Schriver, D., Slavin, J. A., M., T. P., and Weygand, J. M.: ARTEMIS Science Objectives, Space Sci. Rev., 165, 59–91, https://doi.org/10.1007/s11214-011-9777-9, 2011. a
Sibeck, D. G., Allen, R., Aryan, H., Bodewits, D., Brandt, P., Branduardi-Raymont, G., Brown, G., Carter, J. A., Collado-Vega, Y. M., Collier, M. R., Connor, H. K., Cravens, T. E., Ezoe, Y., Fok, M.-C., Galeazzi, M., Gutynska, O., Holmström, M., S.-Y. Hsieh and, K. I., Koutroumpa, D., Kuntz, K. D., Leutenegger, M., Miyoshi, Y., Porter, F. S., Purucker, M. E., Read, A. M., Raeder, J., Robertson, I. P., Samsonov, A. A., Sembay, S., Snowden, S. L., Thomas, N. E., von Steiger, R., Walsh, B. M., and Wing, S.: Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals, Space Sci. Rev., 214, 79, https://doi.org/10.1007/s11214-018-0504-7, 2018. a
Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P., and Zurbuchen, T. H.: MESSENGER Observations of Magnetic Reconnection in Mercury’s Magnetosphere, Science, 324, 606–610, https://doi.org/10.1126/science.1172011, 2009. a
Smith, A. W., Sun, W., Slavin, J. A., and Rae, I. J.: Ion-Scale Magnetic Flux Ropes and Loops in Earth's Magnetotail: An Automated, Comprehensive Survey of MMS Data Between 2017 and 2022, J. Geophys. Res.-Space, 129, e2023JA032231, https://doi.org/10.1029/2023JA032231, 2024. a
Sun, W., Dewey, R. M., Aizawa, S., Huang, J., Slavin, J. A., Fu, S., Wei, Y., and Bowers, C. F.: Review of Mercury's dynamic magnetosphere: Post-MESSENGER era and comparative magnetospheres, Sci. China Earth Sci., 65, 25–74, https://doi.org/10.1007/s11430-021-9828-0, 2022. a
Sun, W. J., Fu, S. Y., Slavin, J. A., Raines, J. M., Zong, Q. G., Poh, G. K., and Zurbuchen, T. H.: Spatial distribution of Mercury's flux ropes and reconnection fronts: MESSENGER observations, J. Geophys. Res.-Space, 121, 7590–7607, https://doi.org/10.1002/2016JA022787, 2016. a
Suni, J. and Horaites, K.: Vlasiator 6D “FHA” dataset, University of Helsinki [data set], http://urn.fi/urn:nbn:fi:att:3ce0f038-2c69-4c7c-8f67-7a71e9e57b56 (last access: 13 August 2025), 2024. a
Tarvus, V., Turc, L., Zhou, H., Nakamura, T., Settino, A., Blasl, K., Cozzani, G., Ganse, U., Pfau-Kempf, Y., Alho, M., Battarbee, M., Bussov, M., Dubart, M., Gordeev, E., Tesema Kebede, F., Papadakis, K., Suni, J., Zaitsev, I., and Palmroth, M.: Hybrid-Vlasov Modelling of Ion Velocity Distribution Functions Associated with the Kelvin–Helmholtz Instability with a Density and Temperature Asymmetry, Astrophys. J., 974, 62, https://doi.org/10.3847/1538-4357/ad697a, 2024. a
Tesema, F., Palmroth, M., Turc, L., Zhou, H., Cozzani, G., Alho, M., Pfau-Kempf, Y., Horaites, K., Zaitsev, I., Grandin, M., Battarbee, M., Ganse, U., Workayehu, A., Suni, J., Papadakis, K., Dubart, M., and Tarvus, V.: Dayside Pc2 Waves Associated With Flux Transfer Events in a 3D Hybrid-Vlasov Simulation, Geophys. Res. Lett., 51, e2023GL106756, https://doi.org/10.1029/2023GL106756, 2024. a
Trattner, K. J., Petrinec, S. M., and Fuselier, S. A.: The Location of Magnetic Reconnection at Earth’s Magnetopause, Space Sci. Rev., 217, 41, https://doi.org/10.1007/s11214-021-00817-8, 2021. a, b
Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S., Skillman, S. W., Abel, T., and Norman, M. L.: yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data, Astrophys. J. Suppl. Ser., 192, 9, https://doi.org/10.1088/0067-0049/192/1/9, 2011. a
Vogt, M. F., Jackman, C. M., Slavin, J. A., Bunce, E. J., Cowley, S. W. H., Kivelson, M. G., and Khurana, K. K.: Structure and statistical properties of plasmoids in Jupiter's magnetotail, J. Geophys. Res.-Space, 119, 821–843, https://doi.org/10.1002/2013JA019393, 2014. a
von Alfthan, S., Pokhotelov, D., Kempf, Y., Hoilijoki, S., Honkonen, I., Sandroos, A., and Palmroth, M.: Vlasiator: first kinetic global hybrid-Vlasov simulation code for modeling space plasma, J. Atmos. Sol.-Terr. Phys., 120, 24–35, https://doi.org/10.1016/j.jastp.2014.08.012, 2014. a, b, c
Wagner, A., Bourgeois, S., Kilpua, E. K. J., Sarkar, R., Price, D. J., Kumari, A., Pomoell, J., Poedts, S., Barata, T., Erdélyi, R., Oliveira, O., and Gafeira, R.: The automatic identification and tracking of coronal flux ropes – II. New mathematical morphology-based flux rope extraction method and deflection analysis, Astron. Astrophys., 683, A39, https://doi.org/10.1051/0004-6361/202348113, 2024. a
Walsh, B. M., Kuntz, K. D., Busk, S., Cameron, T., Chornay, D., Chuchra, A., Collier, M. R., Connor, C., Connor, H. K., Cravens, T. E., Dobson, N., Galeazzi, M., Kim, H., Kujawski, J., U, C. K. P., Porter, F. S., Naldoza, V., Nutter, R., Qudsi, R., Sibeck, D. G., Sembay, S., Shoemaker, M., Simms, K., Thomas, N. E., Atz, E., and Winkert, G.: The Lunar Environment Heliophysics X-ray Imager (LEXI) Mission, Space Sci. Rev., 220, 37, https://doi.org/10.1007/s11214-024-01063-4, 2024. a
Wang, W., Liu, R., Wang, Y., Hu, Q., Shen, C., Jiang, C., and Zhu, C.: Buildup of a highly twisted magnetic flux rope during a solar eruption, Nat. Commun., 8, 1330, https://doi.org/10.1038/s41467-017-01207-x, 2017. a
Wang, Y. L., Elphic, R. C., Lavraud, B., Taylor, M. G. G. T., Birn, J., Russell, C. T., Raeder, J., Kawano, H., and Zhang, X. X.: Dependence of flux transfer events on solar wind conditions from 3 years of Cluster observations, J. Geophys. Res.-Space, 111, A04224, https://doi.org/10.1029/2005JA011342, 2006. a, b
Xu, S., Liemohn, M. W., Dong, C., Mitchell, D. L., Bougher, S. W., and Ma, Y.: Pressure and ion composition boundaries at Mars, J. Geophys. Res.-Space, 121, 6417–6429, https://doi.org/10.1002/2016JA022644, 2016. a, b
Zaitsev, I., Cozzani, G., Alho, M., Horaites, K., Zhou, H., Kit, A., Pfau-Kempf, Y., Hoilijoki, S., Ganse, U., Battarbee, M., Papadakis, K., Suni, J., Dubart, M., Tesema-Kebede, F., Workayehu, A., Tarvus, V., Kotipalo, L., Koikkalainen, V., Turc, L., and Palmroth, M.: Ion-Mediated Tearing and Kink Instabilities in the Earth's Magnetosphere: Hybrid-Vlasov Simulations, J. Geophys. Res.-Space, 130, e2024JA032615, https://doi.org/10.1029/2024JA032615, 2025. a
Zhang, T. L., Baumjohann, W., Teh, W. L., Nakamura, R., Russell, C. T., Luhmann, J. G., Glassmeier, K. H., Dubinin, E., Wei, H. Y., Du, A. M., Lu, Q. M., Wang, S., and Balikhin, M.: Giant flux ropes observed in the magnetized ionosphere at Venus, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL054236, 2012. a
Zhong, J., Lee, L.-C., Slavin, J. A., Zhang, H., and Wei, Y.: MESSENGER Observations of Reconnection in Mercury's Magnetotail Under Strong IMF Forcing, J. Geophys. Res.-Space, 128, L23103, e2022JA031 134, https://doi.org/10.1029/2022JA031134, 2023. a
Zhou, M., Pang, Y., Deng, X., Huang, S., and Lai, X.: Plasma physics of magnetic island coalescence during magnetic reconnection, J. Geophys. Res.-Space, 119, 6177–6189, https://doi.org/10.1002/2013JA019483, 2014. a
Short summary
Flux ropes are peculiar structures of twisted magnetic field occurring in many regions of space, near Earth and other planets, at the Sun, and in astrophysical objects. We developed a new way of detecting flux ropes in large supercomputer simulations of near-Earth space, and we use it to follow the evolution of flux ropes for long distances past the Earth in the flow direction. This will be useful in future studies as these flux ropes are involved in the transport of matter and energy in space.
Flux ropes are peculiar structures of twisted magnetic field occurring in many regions of space,...