Articles | Volume 43, issue 1
https://doi.org/10.5194/angeo-43-271-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-271-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of the 3-D geoelectric field at the Earth's surface using spherical elementary current systems
Finnish Meteorological Institute, Helsinki, Finland
Heikki Vanhamäki
Space Physics and Astronomy Research Unit, University of Oulu, Oulu, Finland
Elena Marshalko
Finnish Meteorological Institute, Helsinki, Finland
Mikhail Kruglyakov
Department of Physics, University of Otago, Dunedin, New Zealand
Ari Viljanen
Finnish Meteorological Institute, Helsinki, Finland
Related authors
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2394, https://doi.org/10.5194/egusphere-2025-2394, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Key properties of the ionospheric electrodynamics are electric fields, currents, and conductances. They provide a window to the vast and distant near-Earth space, cause Joule heating that affect satellite orbits, and drive geomagnetically induced currents (GICs) in technological conductor networks. We have developed a new method for solving the key properties of ionospheric electrodynamics from ground-based magnetic field observations.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev., 18, 511–527, https://doi.org/10.5194/gmd-18-511-2025, https://doi.org/10.5194/gmd-18-511-2025, 2025
Short summary
Short summary
Vlasiator is a kinetic space plasma model that simulates the behavior of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations have been run without any interaction with the ionosphere, the uppermost layer of Earth's atmosphere. In this paper, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space plasma and Earth's ionosphere interact.
Noora Partamies, Bas Dol, Vincent Teissier, Liisa Juusola, Mikko Syrjäsuo, and Hjalmar Mulders
Ann. Geophys., 42, 103–115, https://doi.org/10.5194/angeo-42-103-2024, https://doi.org/10.5194/angeo-42-103-2024, 2024
Short summary
Short summary
Auroral imaging produces large amounts of image data that can no longer be analyzed by visual inspection. Thus, every step towards automatic analysis tools is crucial. Previously supervised learning methods have been used in auroral physics, with a human expert providing ground truth. However, this ground truth is debatable. We present an unsupervised learning method, which shows promising results in detecting auroral breakups in the all-sky image data.
Liisa Juusola, Ari Viljanen, Noora Partamies, Heikki Vanhamäki, Mirjam Kellinsalmi, and Simon Walker
Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023, https://doi.org/10.5194/angeo-41-483-2023, 2023
Short summary
Short summary
At times when auroras erupt on the sky, the magnetic field surrounding the Earth undergoes rapid changes. On the ground, these changes can induce harmful electric currents in technological conductor networks, such as powerlines. We have used magnetic field observations from northern Europe during 28 such events and found consistent behavior that can help to understand, and thus predict, the processes that drive auroras and geomagnetically induced currents.
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Mirjam Kellinsalmi, Ari Viljanen, Liisa Juusola, and Sebastian Käki
Ann. Geophys., 40, 545–562, https://doi.org/10.5194/angeo-40-545-2022, https://doi.org/10.5194/angeo-40-545-2022, 2022
Short summary
Short summary
Eruptions from the Sun can pose a hazard to Earth's power grids via, e.g., geomagnetically induced currents (GICs). We study magnetic measurements from Fennoscandia to find ways to understand and forecast GIC. We find that the direction of the time derivative of the magnetic field has a short
reset time, about 2 min. We conclude that this result gives insight on the current systems high in Earth’s atmosphere, which are the main driver behind the time derivative’s behavior and GIC formation.
Sebastian Käki, Ari Viljanen, Liisa Juusola, and Kirsti Kauristie
Ann. Geophys., 40, 107–119, https://doi.org/10.5194/angeo-40-107-2022, https://doi.org/10.5194/angeo-40-107-2022, 2022
Short summary
Short summary
During auroral substorms, the ionospheric electric currents change rapidly, and a large amount of energy is dissipated. We combine ionospheric current data derived from the Swarm satellite mission with the substorm database from the SuperMAG ground magnetometer network. We obtain statistics of the strength and location of the currents relative to the substorm onset. Our results show that low-earth orbit satellites give a coherent picture of the main features in the substorm current system.
Liisa Juusola, Heikki Vanhamäki, Ari Viljanen, and Maxim Smirnov
Ann. Geophys., 38, 983–998, https://doi.org/10.5194/angeo-38-983-2020, https://doi.org/10.5194/angeo-38-983-2020, 2020
Short summary
Short summary
Rapid variations of the magnetic field measured on the ground can be used to estimate space weather risks to power grids, but forecasting the variations remains a challenge. We show that part of this problem stems from the fact that, in addition to electric currents in space, the magnetic field variations are strongly affected by underground electric currents. We suggest that separating the measured field into its space and underground parts could improve our understanding of space weather.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Minna Palmroth, Sanni Hoilijoki, Liisa Juusola, Tuija I. Pulkkinen, Heli Hietala, Yann Pfau-Kempf, Urs Ganse, Sebastian von Alfthan, Rami Vainio, and Michael Hesse
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, https://doi.org/10.5194/angeo-35-1269-2017, 2017
Short summary
Short summary
Much like solar flares, substorms occurring within the Earth's magnetic domain are explosive events that cause vivid auroral displays. A decades-long debate exists to explain the substorm onset. We devise a simulation encompassing the entire near-Earth space and demonstrate that detailed modelling of magnetic reconnection explains the central substorm observations. Our results help to understand the unpredictable substorm process, which will significantly improve space weather forecasts.
Noora Partamies, James M. Weygand, and Liisa Juusola
Ann. Geophys., 35, 1069–1083, https://doi.org/10.5194/angeo-35-1069-2017, https://doi.org/10.5194/angeo-35-1069-2017, 2017
Short summary
Short summary
Large-scale undulations of the diffuse aurora boundary, auroral omega bands, have been studied based on 438 omega-like structures identified over Fennoscandian Lapland from 1996 to 2007. The omegas mainly occurred in the post-magnetic midnight sector, in the region between oppositely directed ionospheric field-aligned currents, and during substorm recovery phases. The omega bands were observed during substorms, which were more intense than the average substorm in the same region.
Yann Pfau-Kempf, Heli Hietala, Steve E. Milan, Liisa Juusola, Sanni Hoilijoki, Urs Ganse, Sebastian von Alfthan, and Minna Palmroth
Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, https://doi.org/10.5194/angeo-34-943-2016, 2016
Short summary
Short summary
We have simulated the interaction of the solar wind – the charged particles and magnetic fields emitted by the Sun into space – with the magnetic field of the Earth. The solar wind flows supersonically and creates a shock when it encounters the obstacle formed by the geomagnetic field. We have identified a new chain of events which causes phenomena in the downstream region to eventually cause perturbations at the shock and even upstream. This is confirmed by ground and satellite observations.
Johannes Norberg, Lassi Roininen, Antti Kero, Tero Raita, Thomas Ulich, Markku Markkanen, Liisa Juusola, and Kirsti Kauristie
Geosci. Instrum. Method. Data Syst., 5, 263–270, https://doi.org/10.5194/gi-5-263-2016, https://doi.org/10.5194/gi-5-263-2016, 2016
Short summary
Short summary
The Sodankylä Geophysical Observatory has been producing ionospheric tomography data since 2003. Based on these data, one solar cycle of ionospheric vertical total electron content (VTEC) estimates is constructed. The measurements are compared against the IRI-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model are on average 40 % higher of that of the tomographic results.
Kirsti Kauristie, Minna Myllys, Noora Partamies, Ari Viljanen, Pyry Peitso, Liisa Juusola, Shabana Ahmadzai, Vikramjit Singh, Ralf Keil, Unai Martinez, Alexej Luginin, Alexi Glover, Vicente Navarro, and Tero Raita
Geosci. Instrum. Method. Data Syst., 5, 253–262, https://doi.org/10.5194/gi-5-253-2016, https://doi.org/10.5194/gi-5-253-2016, 2016
Short summary
Short summary
We use the connection between auroras and geomagnetic field variations in a concept for a Regional Auroral Forecast (RAF) service. RAF is based on statistical relationships between alerts by the NOAA Space Weather Prediction Center and magnetic time derivatives measured by five MIRACLE magnetometer stations located in the surroundings of the Sodankylä research station. As an improvement to previous similar services RAF yields knowledge on typical auroral storm durations at different latitudes.
M. Myllys, N. Partamies, and L. Juusola
Ann. Geophys., 33, 573–581, https://doi.org/10.5194/angeo-33-573-2015, https://doi.org/10.5194/angeo-33-573-2015, 2015
K. Andréeová, L. Juusola, E. K. J. Kilpua, and H. E. J. Koskinen
Ann. Geophys., 32, 1293–1302, https://doi.org/10.5194/angeo-32-1293-2014, https://doi.org/10.5194/angeo-32-1293-2014, 2014
N. Partamies, L. Juusola, E. Tanskanen, and K. Kauristie
Ann. Geophys., 31, 349–358, https://doi.org/10.5194/angeo-31-349-2013, https://doi.org/10.5194/angeo-31-349-2013, 2013
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2394, https://doi.org/10.5194/egusphere-2025-2394, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Key properties of the ionospheric electrodynamics are electric fields, currents, and conductances. They provide a window to the vast and distant near-Earth space, cause Joule heating that affect satellite orbits, and drive geomagnetically induced currents (GICs) in technological conductor networks. We have developed a new method for solving the key properties of ionospheric electrodynamics from ground-based magnetic field observations.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev., 18, 511–527, https://doi.org/10.5194/gmd-18-511-2025, https://doi.org/10.5194/gmd-18-511-2025, 2025
Short summary
Short summary
Vlasiator is a kinetic space plasma model that simulates the behavior of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations have been run without any interaction with the ionosphere, the uppermost layer of Earth's atmosphere. In this paper, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space plasma and Earth's ionosphere interact.
Spencer Mark Hatch, Heikki Vanhamäki, Karl Magnus Laundal, Jone Peter Reistad, Johnathan K. Burchill, Levan Lomidze, David J. Knudsen, Michael Madelaire, and Habtamu Tesfaw
Ann. Geophys., 42, 229–253, https://doi.org/10.5194/angeo-42-229-2024, https://doi.org/10.5194/angeo-42-229-2024, 2024
Short summary
Short summary
In studies of the Earth's ionosphere, a hot topic is how to estimate ionospheric conductivity. This is hard to do for a variety of reasons that mostly amount to a lack of measurements. In this study we use satellite measurements to estimate electromagnetic work and ionospheric conductances in both hemispheres. We identify where our model estimates are inconsistent with laws of physics, which partially solves a previous problem with unrealistic predictions of ionospheric conductances.
Noora Partamies, Bas Dol, Vincent Teissier, Liisa Juusola, Mikko Syrjäsuo, and Hjalmar Mulders
Ann. Geophys., 42, 103–115, https://doi.org/10.5194/angeo-42-103-2024, https://doi.org/10.5194/angeo-42-103-2024, 2024
Short summary
Short summary
Auroral imaging produces large amounts of image data that can no longer be analyzed by visual inspection. Thus, every step towards automatic analysis tools is crucial. Previously supervised learning methods have been used in auroral physics, with a human expert providing ground truth. However, this ground truth is debatable. We present an unsupervised learning method, which shows promising results in detecting auroral breakups in the all-sky image data.
Liisa Juusola, Ari Viljanen, Noora Partamies, Heikki Vanhamäki, Mirjam Kellinsalmi, and Simon Walker
Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023, https://doi.org/10.5194/angeo-41-483-2023, 2023
Short summary
Short summary
At times when auroras erupt on the sky, the magnetic field surrounding the Earth undergoes rapid changes. On the ground, these changes can induce harmful electric currents in technological conductor networks, such as powerlines. We have used magnetic field observations from northern Europe during 28 such events and found consistent behavior that can help to understand, and thus predict, the processes that drive auroras and geomagnetically induced currents.
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Mirjam Kellinsalmi, Ari Viljanen, Liisa Juusola, and Sebastian Käki
Ann. Geophys., 40, 545–562, https://doi.org/10.5194/angeo-40-545-2022, https://doi.org/10.5194/angeo-40-545-2022, 2022
Short summary
Short summary
Eruptions from the Sun can pose a hazard to Earth's power grids via, e.g., geomagnetically induced currents (GICs). We study magnetic measurements from Fennoscandia to find ways to understand and forecast GIC. We find that the direction of the time derivative of the magnetic field has a short
reset time, about 2 min. We conclude that this result gives insight on the current systems high in Earth’s atmosphere, which are the main driver behind the time derivative’s behavior and GIC formation.
Sebastian Käki, Ari Viljanen, Liisa Juusola, and Kirsti Kauristie
Ann. Geophys., 40, 107–119, https://doi.org/10.5194/angeo-40-107-2022, https://doi.org/10.5194/angeo-40-107-2022, 2022
Short summary
Short summary
During auroral substorms, the ionospheric electric currents change rapidly, and a large amount of energy is dissipated. We combine ionospheric current data derived from the Swarm satellite mission with the substorm database from the SuperMAG ground magnetometer network. We obtain statistics of the strength and location of the currents relative to the substorm onset. Our results show that low-earth orbit satellites give a coherent picture of the main features in the substorm current system.
Liisa Juusola, Heikki Vanhamäki, Ari Viljanen, and Maxim Smirnov
Ann. Geophys., 38, 983–998, https://doi.org/10.5194/angeo-38-983-2020, https://doi.org/10.5194/angeo-38-983-2020, 2020
Short summary
Short summary
Rapid variations of the magnetic field measured on the ground can be used to estimate space weather risks to power grids, but forecasting the variations remains a challenge. We show that part of this problem stems from the fact that, in addition to electric currents in space, the magnetic field variations are strongly affected by underground electric currents. We suggest that separating the measured field into its space and underground parts could improve our understanding of space weather.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Minna Palmroth, Sanni Hoilijoki, Liisa Juusola, Tuija I. Pulkkinen, Heli Hietala, Yann Pfau-Kempf, Urs Ganse, Sebastian von Alfthan, Rami Vainio, and Michael Hesse
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, https://doi.org/10.5194/angeo-35-1269-2017, 2017
Short summary
Short summary
Much like solar flares, substorms occurring within the Earth's magnetic domain are explosive events that cause vivid auroral displays. A decades-long debate exists to explain the substorm onset. We devise a simulation encompassing the entire near-Earth space and demonstrate that detailed modelling of magnetic reconnection explains the central substorm observations. Our results help to understand the unpredictable substorm process, which will significantly improve space weather forecasts.
Noora Partamies, James M. Weygand, and Liisa Juusola
Ann. Geophys., 35, 1069–1083, https://doi.org/10.5194/angeo-35-1069-2017, https://doi.org/10.5194/angeo-35-1069-2017, 2017
Short summary
Short summary
Large-scale undulations of the diffuse aurora boundary, auroral omega bands, have been studied based on 438 omega-like structures identified over Fennoscandian Lapland from 1996 to 2007. The omegas mainly occurred in the post-magnetic midnight sector, in the region between oppositely directed ionospheric field-aligned currents, and during substorm recovery phases. The omega bands were observed during substorms, which were more intense than the average substorm in the same region.
Yann Pfau-Kempf, Heli Hietala, Steve E. Milan, Liisa Juusola, Sanni Hoilijoki, Urs Ganse, Sebastian von Alfthan, and Minna Palmroth
Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, https://doi.org/10.5194/angeo-34-943-2016, 2016
Short summary
Short summary
We have simulated the interaction of the solar wind – the charged particles and magnetic fields emitted by the Sun into space – with the magnetic field of the Earth. The solar wind flows supersonically and creates a shock when it encounters the obstacle formed by the geomagnetic field. We have identified a new chain of events which causes phenomena in the downstream region to eventually cause perturbations at the shock and even upstream. This is confirmed by ground and satellite observations.
Johannes Norberg, Lassi Roininen, Antti Kero, Tero Raita, Thomas Ulich, Markku Markkanen, Liisa Juusola, and Kirsti Kauristie
Geosci. Instrum. Method. Data Syst., 5, 263–270, https://doi.org/10.5194/gi-5-263-2016, https://doi.org/10.5194/gi-5-263-2016, 2016
Short summary
Short summary
The Sodankylä Geophysical Observatory has been producing ionospheric tomography data since 2003. Based on these data, one solar cycle of ionospheric vertical total electron content (VTEC) estimates is constructed. The measurements are compared against the IRI-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model are on average 40 % higher of that of the tomographic results.
Kirsti Kauristie, Minna Myllys, Noora Partamies, Ari Viljanen, Pyry Peitso, Liisa Juusola, Shabana Ahmadzai, Vikramjit Singh, Ralf Keil, Unai Martinez, Alexej Luginin, Alexi Glover, Vicente Navarro, and Tero Raita
Geosci. Instrum. Method. Data Syst., 5, 253–262, https://doi.org/10.5194/gi-5-253-2016, https://doi.org/10.5194/gi-5-253-2016, 2016
Short summary
Short summary
We use the connection between auroras and geomagnetic field variations in a concept for a Regional Auroral Forecast (RAF) service. RAF is based on statistical relationships between alerts by the NOAA Space Weather Prediction Center and magnetic time derivatives measured by five MIRACLE magnetometer stations located in the surroundings of the Sodankylä research station. As an improvement to previous similar services RAF yields knowledge on typical auroral storm durations at different latitudes.
Peter Wintoft, Ari Viljanen, and Magnus Wik
Ann. Geophys., 34, 485–491, https://doi.org/10.5194/angeo-34-485-2016, https://doi.org/10.5194/angeo-34-485-2016, 2016
Short summary
Short summary
Extreme value analysis has been applied to 1-minute-resolution magnetic fields and computed electric fields over Europe. We find that on average the largest disturbances of the fields are observed close to the auroral oval, as expected. However, the analysis indicates that as we move south from Scandinavia to northern continental Europe the distribution becomes more extreme. This could be due to that strong storms regularly occur at high latitudes, while the extreme storms push the oval south.
M. Myllys, N. Partamies, and L. Juusola
Ann. Geophys., 33, 573–581, https://doi.org/10.5194/angeo-33-573-2015, https://doi.org/10.5194/angeo-33-573-2015, 2015
K. Andréeová, L. Juusola, E. K. J. Kilpua, and H. E. J. Koskinen
Ann. Geophys., 32, 1293–1302, https://doi.org/10.5194/angeo-32-1293-2014, https://doi.org/10.5194/angeo-32-1293-2014, 2014
N. Partamies, L. Juusola, E. Tanskanen, and K. Kauristie
Ann. Geophys., 31, 349–358, https://doi.org/10.5194/angeo-31-349-2013, https://doi.org/10.5194/angeo-31-349-2013, 2013
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Space weather effects
Effects of supernova-induced soft X-rays on middle- and upper-atmospheric nitric oxide and stratospheric ozone
Drivers of rapid geomagnetic variations at high latitudes
The time derivative of the geomagnetic field has a short memory
Atmospheric drag effects on modelled low Earth orbit (LEO) satellites during the July 2000 Bastille Day event in contrast to an interval of geomagnetically quiet conditions
Effects of solar flares on the ionosphere as shown by the dynamics of ionograms recorded in Europe and South Africa
David E. Siskind, McArthur Jones Jr., and Jeffrey W. Reep
Ann. Geophys., 43, 201–216, https://doi.org/10.5194/angeo-43-201-2025, https://doi.org/10.5194/angeo-43-201-2025, 2025
Short summary
Short summary
This study tests a recent suggestion that multi-month soft X-ray emissions from supernovae can destroy planetary ozone layers. To test this, we assume a year-long solar flare and evaluate the production of nitric oxide in the upper atmosphere and its transport down to the stratosphere. Our results suggest widespread catalytic destruction of ozone; however, these effects are limited to the upper edge of the ozone layer (near 40 km). Thus, the total column is only slightly affected (1–2 %).
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Mirjam Kellinsalmi, Ari Viljanen, Liisa Juusola, and Sebastian Käki
Ann. Geophys., 40, 545–562, https://doi.org/10.5194/angeo-40-545-2022, https://doi.org/10.5194/angeo-40-545-2022, 2022
Short summary
Short summary
Eruptions from the Sun can pose a hazard to Earth's power grids via, e.g., geomagnetically induced currents (GICs). We study magnetic measurements from Fennoscandia to find ways to understand and forecast GIC. We find that the direction of the time derivative of the magnetic field has a short
reset time, about 2 min. We conclude that this result gives insight on the current systems high in Earth’s atmosphere, which are the main driver behind the time derivative’s behavior and GIC formation.
Victor U. J. Nwankwo, William Denig, Sandip K. Chakrabarti, Muyiwa P. Ajakaiye, Johnson Fatokun, Adeniyi W. Akanni, Jean-Pierre Raulin, Emilia Correia, John E. Enoh, and Paul I. Anekwe
Ann. Geophys., 39, 397–412, https://doi.org/10.5194/angeo-39-397-2021, https://doi.org/10.5194/angeo-39-397-2021, 2021
Short summary
Short summary
In this work, we simulated the effect of atmospheric drag on satellites in low Earth orbit (LEO) during 1-month intervals of disturbed and quiet solar geomagnetic activity. Our results show that geomagnetic storms (e.g. the Bastille Day event) can cause a significant drop in LEO satellite altitudes and increase their background orbit decay rate by 50–70 %. This work can contribute to improved situational awareness and mitigation of potential threats solar energetic events pose to satellites.
Veronika Barta, Gabriella Sátori, Kitti Alexandra Berényi, Árpád Kis, and Earle Williams
Ann. Geophys., 37, 747–761, https://doi.org/10.5194/angeo-37-747-2019, https://doi.org/10.5194/angeo-37-747-2019, 2019
Short summary
Short summary
The solar flare effects on ionosphere at midlatitudes and low latitudes were investigated with the systematic analysis of ionospheric parameters derived from ionograms (total radio fade-out, fmin, dfmin: deviation from the reference days). The duration of the total fade-out varied with the solar zenith angle. Furthermore, a solar-zenith-angle-dependent enhancement of the fmin and dfmin parameters was detected but the observed values also depended on the flare intensity.
Cited articles
Amm, O.: Ionospheric elementary current systems in spherical coordinates and their application, J. Geomagn. Geoelectr., 49, 947–955, https://doi.org/10.5636/jgg.49.947, 1997. a, b, c, d
Brändlein, D., Lühr, H., and Ritter, O.: Direct penetration of the interplanetary electric field to low geomagnetic latitudes and its effect on magnetotelluric sounding, J. Geophys. Res., 117, A11314, https://doi.org/10.1029/2012JA018008, 2012. a, b
Cordell, D., Unsworth, M. J., Lee, B., Hanneson, C., Milling, D. K., and Mann, I. R.: Estimating the geoelectric field and electric power transmission line voltage during a geomagnetic storm in Alberta, Canada using measured magnetotelluric impedance data: The influence of three-dimensional electrical structures in the lithosphere, Space Weather, 19, e2021SW002803, https://doi.org/10.1029/2021SW002803, 2021. a
Dimmock, A. P., Rosenqvist, L., Hall, J.-O., Viljanen, A., Yordanova, E., Honkonen, I., André, M., and Sjöberg, E. C.: The GIC and geomagnetic response over Fennoscandia to the 7–8 September 2017 geomagnetic storm, Space Weather, 17, 989–1010, https://doi.org/10.1029/2018SW002132, 2019. a
Emmert, J. T., Richmond, A. D., and Drob, D. P.: A computationally compact representation of Magnetic-Apex and Quasi-Di pole coordinates with smooth base vectors, J. Geophys. Res., 115, A08322, https://doi.org/10.1029/2010JA015326, 2010. a
Fukushima, N.: Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform-conductivity ionosphere, Rep. Ionos. Space. Res. Japan, 30, 35–40, 1976. a
Ganse, U., Pfau-Kempf, Y., Zhou, H., Juusola, L., Workayehu, A., Kebede, F., Papadakis, K., Grandin, M., Alho, M., Battarbee, M., Dubart, M., Kotipalo, L., Lalagüe, A., Suni, J., Horaites, K., and Palmroth, M.: The Vlasiator 5.2 ionosphere – coupling a magnetospheric hybrid-Vlasov simulation with a height-integrated ionosphere model, Geosci. Model Dev., 18, 511–527, https://doi.org/10.5194/gmd-18-511-2025, 2025. a
Jackson, J. D.: Classical Electrodynamics, 3rd edn., Wiley, ISBN 978-0-471-30932-1, 1998. a
Juusola, L., Kauristie, K., Vanhamäki, H., and Aikio, A.: Comparison of auroral ionospheric and field-aligned currents derived from Swarm and ground magnetic field measurements, J. Geophys. Res.-Space, 121, 9256–9283, https://doi.org/10.1002/2016JA022961, 2016. a, b
Juusola, L., Viljanen, A., Dimmock, A. P., Kellinsalmi, M., Schillings, A., and Weygand, J. M.: Drivers of rapid geomagnetic variations at high latitudes, Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, 2023a. a, b, c
Juusola, L., Viljanen, A., Partamies, N., Vanhamäki, H., Kellinsalmi, M., and Walker, S.: Three principal components describe the spatiotemporal development of mesoscale ionospheric equivalent currents around substorm onsets, Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023, 2023b. a
Juusola, L., Björnsson, G., Johnsen, M. G., Kauristie, K., Kellinsalmi, M., Matzka, J., Neska, A., Raita, T., Reda, J., Tanskanen, E., Viljanen, A., Willer, A. N., Wittke, J., and Yamauchi, M.: International Monitor for Auroral Geomagnetic Effects (IMAGE) [data set], https://space.fmi.fi/image (last access: 16 May 2025), 2024. a, b
Kelbert, A., Balch, C. C., Pulkkinen, A., Egbert, G. D., Love, J. J., Rigler, E. J., and Fujii, I.: Methodology for time-domain estimation of storm time geoelectric fields using the 3-D magnetotelluric response tensors, Space Weather, 15, 874–894, https://doi.org/10.1002/2017SW001594, 2017. a
Kellinsalmi, M., Viljanen, A., Juusola, L., and Käki, S.: The time derivative of the geomagnetic field has a short memory, Ann. Geophys., 40, 545–562, https://doi.org/10.5194/angeo-40-545-2022, 2022. a
Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., Tokarev, A. D., Asming, V. E., n, L. L. V., Vardaniants, I. L., and the BEAR Working Group: Crustal conductivity in Fennoscandia – a compilation of a database on crustal conductance in the Fennoscandian Shield, Earth Planets Space, 54, 535–558, https://doi.org/10.1186/BF03353044, 2002. a, b, c
Kruglyakov, M.: PGIEM2G, Gitlab [code], https://gitlab.com/m.kruglyakov/PGIEM2G (last access: 16 May 2025), 2022. a
Kruglyakov, M. and Marshalko, E.: Datasets and code for “Multi-site transfer function approach for real-time modeling of the ground electric field induced by laterally-nonuniform ionospheric source” by Kruglyakov et al. (2023), Zenodo [code and data set], https://doi.org/10.5281/zenodo.8402165, 2023. a, b
Kruglyakov, M., Marshalko, E., abd M. Smirnov, A. K., and Viljanen, A.: Multi-site transfer function approach for real-time modeling of the ground electric field induced by laterally-nonuniform ionospheric source, Space Weather, 21, e2023SW003621, https://doi.org/10.1029/2023SW003621, 2023. a, b, c, d, e, f, g, h, i, j, k, l
Kuvshinov, A., Grayver, A., Tøffner-Clausen, L., and Olsen, N.: Probing 3-D electrical conductivity of the mantle using 6 years of Swarm, CryoSat-2 and observatory magnetic data and exploiting matrix Q-responses approach, Earth Planets Space, 73, 67, https://doi.org/10.1186/s40623-020-01341-9, 2021). a
Lanabere, V., Dimmock, A. P., Rosenqvist, L., Viljanen, A., Juusola, L., and Johlander, A.: Characterizing the distribution of extreme geoelectric field events in Sweden, J. Space Weather Space Clim., 14, 22, https://doi.org/10.1051/swsc/2024025, 2024. a, b, c
Laundal, K. M., Yee, J. H., Merkin, V. G., Gjerloev, J. W., Vanhamäki, H., Reistad, J. P., Madelaire, M., Sorathia, K., and Espy, P. J.: Electrojet estimates from mesospheric magnetic field measurements, J. Geophys. Res.-Space, 126, e2020JA028644, https://doi.org/10.1029/2020JA028644, 2021. a
Love, J. J., Lucas, G. M., Kelbert, A., and Bedrosian, P. A.: Geoelectric hazard maps for the Pacific Northwest, Space Weather, 16, 1114–1127, https://doi.org/10.1029/2018SW001844, 2018. a
Love, J. J., Lucas, G., Bedrosian, P. A., and Kelbert, A.: Extreme-value geoelectric amplitude and polarization across the Northeast United States, Space Weather, 17, 379–395, https://doi.org/10.1029/2018SW002068, 2019. a
Love, J. J., Lucas, G. M., Rigler, E. J., Murphy, B. S., Kelbert, A., and Bedrosian, P. A.: Mapping a magnetic superstorm: March 1989 geoelectric hazards and impacts on United States power systems, Space Weather, 20, e2021SW003030, https://doi.org/10.1029/2021SW003030, 2022. a, b
Lucas, G., Love, J. J., Kelbert, A., Bedrosian, P. A., and Rigler, E. J.: A 100-year geoelectric hazard analysis for the U.S. high-voltage power grid, Space Weather, 18, e2019SW002329, https://doi.org/10.1029/2019SW002329, 2020. a
Lucas, G. M., Love, J. J., and Kelbert, A.: Calculation of voltages in electric power transmission lines during historic geomagnetic storms: An investigation using realistic earth impedances, Space Weather, 16, 181–195, https://doi.org/10.1002/2017SW001779, 2018. a
Madelaire, M., Laundal, K., Hatch, S., Vanhamäki, H., Reistad, J., Ohma, A., Merkin, V., and Lin, D.: Estimating the ionospheric induction electric field using ground magnetometers, Geophys. Res. Lett., 51, e2023GL105443, https://doi.org/10.1029/2023GL105443, 2024. a
Malone-Leigh, J., Campanyà, J., Gallagher, P. T., Neukirch, M., Hogg, C., and Hodgson, J.: Nowcasting geoelectric fields in Ireland using magnetotelluric transfer functions, J. Space Weather Space Clim., 13, 6, https://doi.org/10.1051/swsc/2023004, 2023. a
Malone-Leigh, J., Campanyà, J., Gallagher, P. T., Hodgson, J., and Hogg, C.: Mapping geoelectric field hazards in Ireland, Space Weather, 22, e2023SW003638, https://doi.org/10.1029/2023SW003638, 2024. a
Marsal, S., Torta, J. M., Segarra, A., and Araki, T.: Use of spherical elementary currents to map the polar current systems associated with the geomagnetic sudden commencements on 2013 and 2015 St. Patrick's Day storms, J. Geophys. Res.-Space, 122, 194–211, https://doi.org/10.1002/2016JA023166, 2017. a
Marsal, S., Torta, J. M., Pavón-Carrasco, F. J., Blake, S. P., and Piersanti, M.: Including the temporal dimension in the SECS technique, Space Weather, 18, e2020SW002491, https://doi.org/10.1029/2020SW002491, 2020. a
Marshalko, E., Kruglyakov, M., Kuvshinov, A., Juusola, L., Kwagala, N. K., Sokolova, E., and Pilipenko, V.: Comparing three approaches to the inducing source setting for the ground electromagnetic field modeling due to space weather events, Space Weather, 19, e2020SW002657, https://doi.org/10.1029/2020SW002657, 2021. a, b, c, d, e, f, g, h, i, j
McLay, S. A. and Beggan, C. D.: Interpolation of externally-caused magnetic fields over large sparse arrays using Spherical Elementary Current Systems, Ann. Geophys., 28, 1795–1805, https://doi.org/10.5194/angeo-28-1795-2010, 2010. a
Mukhopadhyay, A., Welling, D., Liemohn, M., Ridley, A., Burleigh, M., Wu, C., Zou, S., Connor, H., Vandegriff, E., Dredger, P., and Tóth, G.: Global driving of auroral precipitation: 1. Balance of sources, J. Geophys. Res.-Space, 127, e2022JA030323, https://doi.org/10.1029/2022JA030323, 2022. a
Murphy, B. S., Lucas, G. M., Love, J. J., Kelbert, A., Bedrosian, P. A., and Rigler, E. J.: Magnetotelluric sampling and geoelectric hazard estimation: Are national-scale surveys sufficient?, Space Weather, 19, e2020SW002693, https://doi.org/10.1029/2020SW002693, 2021. a
Pankratov, O. and Kuvshinov, A.: Applied mathematics in EM studies with special emphasis on an uncertainty quantification and 3-D integral equation modelling, Surv. Geophys., 37, 109–147, https://doi.org/10.1007/s10712-015-9340-4, 2016. a
Pirjola, R. and Viljanen, A.: Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length, Ann. Geophys., 16, 1434–1444, https://doi.org/10.1007/s00585-998-1434-6, 1998. a, b
Pulkkinen, A., Viljanen, A., Pajunpää, K., and Pirjola, R.: Recordings and occurrence of geomagnetically induced currents in the Finnish natural gas pipeline network, J. Appl. Geophys., 48, 219–231, https://doi.org/10.1016/S0926-9851(01)00108-2, 2001. a, b
Pulkkinen, A., Amm, O., Viljanen, A., and BEAR Working Group: Ionospheric equivalent current distributions determined with the method of spherical elementary current systems, J. Geophys. Res., 108, https://doi.org/10.1029/2001JA005085, 2003a. a
Pulkkinen, A., Amm, O., Viljanen, A., and BEAR Working Group: Separation of the geomagnetic variation field on the ground into external and internal parts using the spherical elementary current system method, Earth, Planets and Space, 55, 117–129, https://doi.org/10.1186/BF03351739, 2003b. a
Pulkkinen, A., Bernabeu, E., Eichner, J., Beggan, C., and Thomson, A. W. P.: Generation of 100-year geomagnetically induced current scenarios, Space Weather, 10, S04003, https://doi.org/10.1029/2011SW000750, 2012. a, b, c
Pulkkinen, A., Bernabeu, E., Thomson, A., Viljanen, A., Pirjola, R., Boteler, D., Eichner, J., Cilliers, P. J., Welling, D., Savani, N. P., Weigel, R. S., Love, J. J., Balch, C., Ngwira, C. M., Crowley, G., Schultz, A., Kataoka, R., Anderson, B., Fugate, D., Simpson, J. J., and MacAlester, M.: Geomagnetically induced currents: Science, engineering, and applications readiness, Space Weather, 15, 828–856, https://doi.org/10.1002/2016SW001501, 2017. a
Richmond, A. D.: Ionospheric electrodynamics using Magnetic Apex Coordinates, J. Geomagn. Geoelectr., 47, 191–212, https://doi.org/10.5636/jgg.47.191, 1995. a
Rosenqvist, L. and Hall, J. O.: Regional 3-D modeling and verification of geomagnetically induced currents in Sweden, Space Weather, 17, 27–36, https://doi.org/10.1029/2018SW002084, 2019. a
Smirnov, M., Korja, T., and Pedersen, L.: Electromagnetic Mini Array (EMMA) Project in Fennoscandia Looking Into Deep Lithosphere, in: Proceedings of the 7th International Conference “PROBLEMS OF GEOCOSMOS”, St. Petersburg, Petrodvorets, 23–27 May 2006, 26–30, https://geo.phys.spbu.ru/~mironova/Geocosmos2006.pdf (last access: 16 May 2025), 2006. a
Sorathia, K. A., Michael, A., Merkin, V. G., Ohtani, S., Keesee, A. M., Sciola, A., Lin, D., Garretson, J., Ukhorskiy, A. Y., Bao, S., Roedig, C. B., and Pulkkinen, A.: Multiscale magnetosphere-ionosphere coupling during stormtime: A case study of the dawnside current wedge, J. Geophys. Res.-Space, 128, e2023JA031594, https://doi.org/10.1029/2023JA031594, 2023. a
Vanhamäki, H.: Inductive ionospheric solver for magnetospheric MHD simulations, Ann. Geophys., 29, 97–108, https://doi.org/10.5194/angeo-29-97-2011, 2011. a, b
Vanhamäki, H., Viljanen, A., and Amm, O.: Induction effects on ionospheric electric and magnetic fields, Ann. Geophys., 23, 1735–1746, https://doi.org/10.5194/angeo-23-1735-2005, 2005. a
Vanhamäki, H., Amm, O., and Viljanen, A.: Role of inductive electric fields and currents in dynamical ionospheric situations, Ann. Geophys., 25, 437–455, https://doi.org/10.5194/angeo-25-437-2007, 2007. a, b, c
Viljanen, A.: Relation of geomagnetically induced currents and local geomagnetic var iations, in: IEEE T. Power Deliver., 13, 1285–1290, https://doi.org/10.1109/61.714497, 1998. a
Viljanen, A.: GIC recordings in the Finnish natural gas pipeline [data set], https://space.fmi.fi/gic (last access: 16 May 2025), 2023. a
Viljanen, A., Nevanlinna, H., Pajunpää, K., and Pulkkinen, A.: Time derivative of the horizontal geomagnetic field as an activity indicator, Ann. Geophys., 19, 1107–1118, https://doi.org/10.5194/angeo-19-1107-2001, 2001. a
Viljanen, A., Pulkkinen, A., Amm, O., Pirjola, R., Korja, T., and BEAR Working Group: Fast computation of the geoelectric field using the method of elementary current systems and planar Earth models, Ann. Geophys., 22, 101–113, https://doi.org/10.5194/angeo-22-101-2004, 2004. a
Viljanen, A., Pulkkinen, A., Pirjola, R., Pajunpää, K., Posio, P., and Koistinen, A.: Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system, Space Weather, 4, S10004, https://doi.org/10.1029/2006SW000234, 2006. a
Viljanen, A., Pirjola, R., Wik, M., Ádám, A., Prácser, E., Sakharov, Y., and Katkalov, J.: Continental scale modelling of geomagnetically induced currents, J. Space Weather Space Clim., 2, A17, https://doi.org/10.1051/swsc/2012017, 2012. a
Viljanen, A., Pirjola, R., Prácser, E., Katkalov, J., and ik, M. W.: Geomagnetically induced currents in Europe - Modelled occurrence in a continent-wide power grid, J. Space Weather Space Clim., 4, A09, https://doi.org/10.1051/swsc/2014006, 2014. a
Walker, S., Laundal, K., Reistad, J., Ohma, A., and Hatch, S.: Statistical temporal variations in the auroral electrojet estimated with ground magnetometers in Fennoscandia, Space Weather, 21, e2022SW003305, https://doi.org/10.1029/2022SW003305, 2023. a
Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., Gleisner, H., and Mann, I.: Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays, J. Geophys. Res., 116, A03305, https://doi.org/10.1029/2010JA016177, 2011. a
Short summary
Interaction between the magnetic field of the rapidly varying electric currents in space and the conducting ground produces an electric field at the Earth's surface. This geoelectric field drives geomagnetically induced currents in technological conductor networks, which can affect the performance of critical ground infrastructure such as electric power transmission grids. We have developed a new method suitable for monitoring the geoelectric field based on ground magnetic field observations.
Interaction between the magnetic field of the rapidly varying electric currents in space and the...