Articles | Volume 43, issue 1
https://doi.org/10.5194/angeo-43-115-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-115-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quadratic magnetic gradients from seven- and nine-spacecraft constellations
School of Science, Harbin Institute of Technology, Shenzhen 518055, China
School of Mathematics and Physics, Jingchu University of Technology, Jingmen, China
Rungployphan Kieokaew
Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France
Yufei Zhou
School of Science, Harbin Institute of Technology, Shenzhen 518055, China
Related authors
Yufei Zhou and Chao Shen
Ann. Geophys., 42, 17–28, https://doi.org/10.5194/angeo-42-17-2024, https://doi.org/10.5194/angeo-42-17-2024, 2024
Short summary
Short summary
Multiple spacecraft can operate jointly to detect quantities that are unattainable with a single spacecraft. Present constellations typically consist of four spacecraft, and it is established that a planar distribution of the spacecraft should be avoided. This study addresses the configuration problem for future missions of more spacecraft to measure physical gradients of higher orders. As for quadratic gradients, spacecraft must not be on any quadric surface, such as a sphere or cylinder.
Hua Zhang, Guangshuai Peng, Chao Shen, and Yewen Wu
Ann. Geophys., 39, 701–707, https://doi.org/10.5194/angeo-39-701-2021, https://doi.org/10.5194/angeo-39-701-2021, 2021
Short summary
Short summary
In this paper, we propose a new explanation for shoulder-like formations based on the test particle model. The simulation reproduced three shoulders in a substorm case. The physical explanation of shoulder formation is not yet understood. The paper suggests that the physical mechanism of shoulder formation is the result of plasma extrusion in the predawn sector, caused by the outer plasmasphere drifting radially outward and rotating faster.
Yan-Yan Yang, Chao Shen, and Yong Ji
Ann. Geophys., 37, 931–941, https://doi.org/10.5194/angeo-37-931-2019, https://doi.org/10.5194/angeo-37-931-2019, 2019
Short summary
Short summary
Previous studies show that the ring current (RC) and field-aligned currents (FACs) are the dominant currents in the inner magnetosphere. However, through two large storm events observed by Cluster, we find new strong southward and northward currents in the latitudinal region from 10° N to 30° N. Theoretical analysis indicates that these currents originated from the fluctuation of magnetic field lines during strong geomagnetic storms.
Yufei Zhou and Chao Shen
Ann. Geophys., 42, 17–28, https://doi.org/10.5194/angeo-42-17-2024, https://doi.org/10.5194/angeo-42-17-2024, 2024
Short summary
Short summary
Multiple spacecraft can operate jointly to detect quantities that are unattainable with a single spacecraft. Present constellations typically consist of four spacecraft, and it is established that a planar distribution of the spacecraft should be avoided. This study addresses the configuration problem for future missions of more spacecraft to measure physical gradients of higher orders. As for quadratic gradients, spacecraft must not be on any quadric surface, such as a sphere or cylinder.
Hua Zhang, Guangshuai Peng, Chao Shen, and Yewen Wu
Ann. Geophys., 39, 701–707, https://doi.org/10.5194/angeo-39-701-2021, https://doi.org/10.5194/angeo-39-701-2021, 2021
Short summary
Short summary
In this paper, we propose a new explanation for shoulder-like formations based on the test particle model. The simulation reproduced three shoulders in a substorm case. The physical explanation of shoulder formation is not yet understood. The paper suggests that the physical mechanism of shoulder formation is the result of plasma extrusion in the predawn sector, caused by the outer plasmasphere drifting radially outward and rotating faster.
Yan-Yan Yang, Chao Shen, and Yong Ji
Ann. Geophys., 37, 931–941, https://doi.org/10.5194/angeo-37-931-2019, https://doi.org/10.5194/angeo-37-931-2019, 2019
Short summary
Short summary
Previous studies show that the ring current (RC) and field-aligned currents (FACs) are the dominant currents in the inner magnetosphere. However, through two large storm events observed by Cluster, we find new strong southward and northward currents in the latitudinal region from 10° N to 30° N. Theoretical analysis indicates that these currents originated from the fluctuation of magnetic field lines during strong geomagnetic storms.
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Instruments and techniques
Estimating gradients of physical fields in space
Magnetometer in-flight offset accuracy for the BepiColombo spacecraft
Beam tracking strategies for fast acquisition of solar wind velocity distribution functions with high energy and angular resolutions
Yufei Zhou and Chao Shen
Ann. Geophys., 42, 17–28, https://doi.org/10.5194/angeo-42-17-2024, https://doi.org/10.5194/angeo-42-17-2024, 2024
Short summary
Short summary
Multiple spacecraft can operate jointly to detect quantities that are unattainable with a single spacecraft. Present constellations typically consist of four spacecraft, and it is established that a planar distribution of the spacecraft should be avoided. This study addresses the configuration problem for future missions of more spacecraft to measure physical gradients of higher orders. As for quadratic gradients, spacecraft must not be on any quadric surface, such as a sphere or cylinder.
Daniel Schmid, Ferdinand Plaschke, Yasuhito Narita, Daniel Heyner, Johannes Z. D. Mieth, Brian J. Anderson, Martin Volwerk, Ayako Matsuoka, and Wolfgang Baumjohann
Ann. Geophys., 38, 823–832, https://doi.org/10.5194/angeo-38-823-2020, https://doi.org/10.5194/angeo-38-823-2020, 2020
Short summary
Short summary
Recently, the two-spacecraft mission BepiColombo was launched to explore Mercury. To measure the magnetic field precisely, in-flight calibration of the magnetometer offset is needed. Usually, the offset is evaluated from magnetic field observations in the solar wind. Since one of the spacecraft will remain within Mercury's magnetic environment, we examine an alternative calibration method. We show that this method is applicable and may be a valuable tool to determine the offset accurately.
Johan De Keyser, Benoit Lavraud, Lubomir Přech, Eddy Neefs, Sophie Berkenbosch, Bram Beeckman, Andrei Fedorov, Maria Federica Marcucci, Rossana De Marco, and Daniele Brienza
Ann. Geophys., 36, 1285–1302, https://doi.org/10.5194/angeo-36-1285-2018, https://doi.org/10.5194/angeo-36-1285-2018, 2018
Short summary
Short summary
This paper describes "beam tracking", a new technology for measuring velocity distributions in the solar wind with a plasma spectrometer, that allows the order of magnitude speedup in data acquisition needed for studying ion-scale turbulence. The basic idea is that the spectrometer should only sample the energy–elevation–azimuth range where the solar wind is expected to reside. The paper shows how the technique can be implemented and illustrates its performance and robustness through simulation.
Cited articles
Broeren, T., Klein, K. G., TenBarge, J. M., Dors, I., Roberts, O. W., and Verscharen, D.: Magnetic Field Reconstruction for a Realistic Multi-Point, Multi-Scale Spacecraft Observatory, Front. Astron. Space Sci., 8, 727076, https://doi.org/10.3389/fspas.2021.727076, 2021.
Burch, J. L. and Phan, T. D.: Magnetic reconnection at the dayside magnetopause: Advances with MMS, Geophys. Res. Lett., 43, 8327–8338, https://doi.org/10.1002/2016GL069787, 2016.
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L.: Magnetospheric multiscale overview and science objectives, Space Sci. Rev., 199, 5–21, https://doi.org/10.1007/s11214-015-0164-9, 2015.
Chanteur, G.: Spatial Interpolation for four spacecraft: Theory, in: Analysis methods for multi-spacecraft data, edited by: Paschmann, G. and Daly, P. W., European Space Agency Publ. Division, Noordwijk, the Netherlands, 349–370, ISBN 1608-280X, 1998.
Chanteur, G. and Harvey, C. C.: Spatial interpolation for four spacecraft: Application to magnetic gradients, in: Analysis methods for multi-spacecraft data, edited by: Paschmann, G. and Daly, P. W., European Space Agency Publications Division, Noordwijk, the Netherlands, 371–394, ISBN 1608-280X, 1998.
Chian, A. C. L., Borotto, F. A., and Gonzalez, W. D.: Alfvén Intermittent Turbulence Driven by Temporal Chaos, Astrophys. J., 505, 993, https://doi.org/10.1086/306214, 1998.
Chian, A. C. L., Borotto, F. A., Hada, T., Miranda, R. A., Muñoz, P. R., and Rempel, E. L.: Nonlinear dynamics in space plasma turbulence: Temporal stochastic chaos, Rev. Mod. Plasma Phys., 6, 34, https://doi.org/10.1007/s41614-022-00095-z, 2022.
De Keyser, J.: Least-squares multi-spacecraft gradient calculation with automatic error estimation, Ann. Geophys., 26, 3295–3316, https://doi.org/10.5194/angeo-26-3295-2008, 2008.
De Keyser, J., Darrouzet, F., Dunlop, M. W., and Décréau, P. M. E.: Least-squares gradient calculation from multi-point observations of scalar and vector fields: methodology and applications with Cluster in the plasmasphere, Ann. Geophys., 25, 971–987, https://doi.org/10.5194/angeo-25-971-2007, 2007.
Denton, R. E., Torbert, R. B., Hasegawa, H., Dors, I., Genestreti, K. J., Argall, M. R., Gershman, D., Le Contel, O., Burch, J. L., Russell, C. T., Strangeway, R. J., Giles, B. L., and Fischer, D.: Polynomial reconstruction of the reconnection magnetic field observed by multiple spacecraft, J. Geophys. Res.-Space, 125, e2019JA027481, https://doi.org/10.1029/2019JA027481, 2020.
Dong, X.-C., Dunlop, M. W., Wang, T.-Y., Cao, J.-B., Trattner, K. J., Bamford, R., Russell, C. T., Bingham, R., Strangeway, R. J., Fear, R. C., Giles, B. L., and Torbert, R. B.: Carriers and sources of magnetopause current: MMS case study, J. Geophys. Res.-Space, 123, 5464–5475, https://doi.org/10.1029/2018JA025292, 2018.
Dunlop, M. W., Balogh, A., and Glassmeier, K.-H.: Four-point Cluster application of magnetic field analysis tools: The discontinuity analyzer, J. Geophys. Res., 107, 1385, https://doi.org/10.1029/2001JA005089, 2002a.
Dunlop, M. W., Balogh, A., Glassmeier, K.-H., and Robert, P.: Four-point cluster application of magnetic field analysis tools: The curlometer, J. Geophys. Res., 107, 1384, https://doi.org/10.1029/2001JA005088, 2002b.
Escoubet, C. P., Schmidt, R., and Goldstein, M. L.: Cluster–Science and mission overview, Space Sci. Rev., 79, 11–32, https://doi.org/10.1023/A:1004923124586, 1997.
Escoubet, C. P., Fehringer, M., and Goldstein, M.: Introduction The Cluster mission, Ann. Geophys., 19, 1197–1200, https://doi.org/10.5194/angeo-19-1197-2001, 2001.
Haaland, S., Hasegawa, H., Paschmann, G., Sonnerup, B., and Dunlop, M.: 20 years of Cluster observations: The magnetopause, J. Geophys. Res., 126, JA029362, e2021, https://doi.org/10.1029/2021JA029362, 2021.
Hamrin, M., Rönnmark, K., Börlin, N., Vedin, J., and Vaivads, A.: GALS – Gradient Analysis by Least Squares, Ann. Geophys., 26, 3491–3499, https://doi.org/10.5194/angeo-26-3491-2008, 2008.
Harvey, C. C.: Spatial gradients and the volumetric tensor, in: Analysis methods for multi-spacecraft data, edited by: Paschmann, G. and Daly, P. W., European Space Agency Publ. Division, Noordwijk, the Netherlands, 307–322, ISBN 1608-280X, 1998.
Kieokaew, R., Foullon, C., and Lavraud, B.: Four-Spacecraft Magnetic Curvature and Vorticity Analyses on Kelvin-Helmholtz Waves in MHD Simulations, J. Geophys. Res., 123, 513–529, https://doi.org/10.1002/2017JA024424, 2018.
Kieokaew, R. and Foullon, C.: Kelvin-Helmholtz Waves Magnetic Curvature and Vorticity: Four-Spacecraft Cluster Observations, J. Geophys. Res., 124, 3347–3359, https://doi.org/10.1029/2019JA026484, 2019.
Klein, K. G., Spence, H., Alexandrova, O., Argall, M., Arzamasskiy, L., Bookbinder, J., Broeren, T., Caprioli, D., Case, A., Chandran, B., Chen, L.-J., Dors, I., Eastwood, J., Forsyth, C., Galvin, A., Genot, V., Halekas, J., Hesse, M., Hine, B., Horbury, T., Jian, L., Kasper, J., Kretzschmar, M., Kunz, M., Lavraud, B., Le Contel, O., Mallet, A., Maruca, B., Matthaeus, W., Niehof, J., O'Brien, H., Owen, C., Retinò, A., Reynolds, C., Roberts, O., Schekochihin, A., Skoug, R., Smith, C., Smith, S., Steinberg, J., Stevens, M., Szabo, A., TenBarge, J., Torbert, R., Vasquez, B., Verscharen, D., Whittlesey, P., Wickizer, B., Zank, G., and Zweibel, E.: HelioSwarm: A Multipoint, Multiscale Mission to Characterize Turbulence, Space Sci. Rev., 219, 74, https://doi.org/10.1007/s11214-023-01019-0, 2023.
Liu, Y. Y., Fu, H. S., Olshevsky, V., Pontin, D. I., Liu, C. M., Wang, Z., Chen, G., Dai, L., and Retino, A.: SOTE: A nonlinear method for magnetic topology reconstruction in space plasmas, Astrophys. J., 244, 31, https://doi.org/10.3847/1538-4365/ab391a, 2019.
Lundquist, S.: Magnetohydrostatic fields, Ark. Fys., 2, 361–365, 1950.
Pecora, F., Yang, Y., Matthaeus, W. H., Chasapis, A., Klein, K. G., Stevens, M., Servidio, S., Greco, A., Gershman, D. J., Giles, B. L., and Burch, J. L.: Three-Dimensional Energy Transfer in Space Plasma Turbulence from Multipoint Measurement, Phys. Rev. Lett., 131, 225201, https://doi.org/10.1103/PhysRevLett.131.225201, 2023.
Pitout, F. and Bogdanova, Y. V.: The polar cusp seen by Cluster, J. Geophys. Res., 126, JA029582, https://doi.org/10.1029/2021JA029582, 2021.
Politano, H. and Pouquet, A.: Von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions, Phys. Rev. E., 57, R21–R24, https://doi.org/10.1103/PhysRevE.57.R21, 1998a.
Politano, H. and Pouquet, A.: Dynamical length scales for turbulent magnetized flows, Geophys. Res. Lett., 25, 273–276, https://doi.org/10.1029/97GL03642, 1998b.
Retinò, A., Khotyaintsev, Y., Le Contel, O., Marcucci, M. F., Plaschke, F., Vaivads, A., Angelopoulos, V., Blasi, P., Burch, J., De Keyser, J., Dunlop, M., Dai, L., Eastwood, J., Fu, H., Haaland, S., Hoshino, M., Johlander, A., Kepko, L., Kucharek, H., Lapenta, G., Lavraud, B., Malandraki, O., Matthaeus, W., McWilliams, K., Petrukovich, A., Pinçon, J.-L., Saito, Y., Sorriso-Valvo, L., Vainio, R., and Wimmer-Schweingruber, R.: Particle energization in space plasmas: towards a multi-point, multi-scale plasma observatory, Exp. Astron., 54, 427–471, https://doi.org/10.1007/s10686-021-09797-7, 2022.
Robert, P., Roux, A., Harvey, C. C., Dunlop, M. W., Daly, P. W., and Glassmeier, K.-H.: Tetrahedron geometric factors, in: Analysis methods for multi-spacecraft data, edited by: Paschmann, G. and Daly, P. W., European Space Agency Publ. Division, Noordwijk, the Netherlands, 323–348, ISBN 1608-280X, 1998.
Rong, Z. J., Wan, W. X., Shen, C., Li, X., Dunlop, M. W., Petrukovich, A. A., Zhang, T. L., and Lucek, E.: Statistical survey on the magnetic structure in magnetotail current sheets, J. Geophys. Res., 116, A09218, https://doi.org/10.1029/2011JA016489, 2011.
Runov, A., Sergeev, V. A., Nakamura, R., Baumjohann, W., Apatenkov, S., Asano, Y., Takada, T., Volwerk, M., Vörös, Z., Zhang, T. L., Sauvaud, J.-A., Rème, H., and Balogh, A.: Local structure of the magnetotail current sheet: 2001 Cluster observations, Ann. Geophys., 24, 247–262, https://doi.org/10.5194/angeo-24-247-2006, 2006.
Russell, C. T., Mellott, M. M., Smith, E. J., and King, J. H.: Multiple spacecraft observations of interplanetary shocks: Four spacecraft determination of shock normals, J. Geophys. Res., 88, 4739–4748, https://doi.org/10.1029/JA088iA06p04739, 1983.
Shen, C., Li, X., Dunlop, M., Liu, Z. X., Balogh, A., Baker, D. N., Hapgood, M., and Wang, X.: Analyses on the geometrical structure of magnetic field in the current sheet based on cluster measurements, J. Geophys. Res., 108, 1168, https://doi.org/10.1029/2002JA009612, 2003.
Shen, C., Liu, Z. X., Li, X., Dunlop, M., Lucek, E., Rong, Z. J., Chen, Z. Q., Escoubet, C. P., Malova, H. V., Lui, A. T. Y., Fazakerley, A., Walsh, A. P., and Mouikis, C.: Flattened current sheet and its evolution in substorms, J. Geophys. Res., 113, A07S21, https://doi.org/10.1029/2007JA012812, 2008.
Shen, C., Rong, Z. J., Dunlop, M. W., Ma, Y. H., Li, X., Zeng, G., Yan, G. Q., Wan, W. X., Liu, Z. X., Carr, C. M., and Rème, H.: Spatial gradients from irregular, multiple-point spacecraft configurations, J. Geophys. Res., 117, A11207, https://doi.org/10.1029/2012JA018075, 2012.
Shen, C., Yang, Y. Y., Rong, Z. J., Li, X., Dunlop, M., Carr, C. M., Liu, Z. X., Baker, D. N., Chen, Z. Q., Ji, Y., and Zeng, G.: Direct calculation of the ring current distribution and magnetic structure seen by Cluster during geomagnetic storms, J. Geophys. Res., 119, 2458–2465, https://doi.org/10.1002/2013JA019460, 2014.
Shen, C., Zeng, G., Zhang, C., Rong, Z., Dunlop, M., Russell, C. T., Escoubet, C. P., and Ren, N.: Determination of the configurations of boundaries in space, J. Geophys. Res., 125, JA028163, https://doi.org/10.1029/2020JA028163, 2020.
Shen, C., Zhang, C., Rong, Z., Pu, Z., Dunlop, M. W., Escoubet, C. P., Russell, C. T., Zeng, G., Ren, N., Burch, J. L., and Zhou, Y.: Nonlinear magnetic gradients and complete magnetic geometry from multispacecraft measurements, J. Geophys. Res., 126, JA028846, https://doi.org/10.1029/2020JA028846, 2021a.
Shen, C., Zhou, Y. F., Ma, Y. H., Wang, X. G., Pu, Z. Y., and Dunlop, M.: A general algorithm for the linear and quadratic gradients of physical quantities based on 10 or more point measurements, J. Geophys. Res., 126, JA029121, https://doi.org/10.1029/2021JA029121, 2021b.
Shi, J. K., Cheng, Z. W., Zhang, T. L., Dunlop, M., Liu, Z. X., Torkar, K., Fazakerley, A., Lucek, E., Rème, H., Dandouras, I., Lui, A. T. Y., Pu, Z. Y., Walsh, A. P., Volwerk, M., Lahiff, A. D., Taylor, M. G. G. T., Grocott, A., Kistler, L. M., Lester, M., Mouikis, C., and Shen, C.: South-north asymmetry of field-aligned currents in the magnetotail observed by Cluster, J. Geophys. Res., 115, A07228, https://doi.org/10.1029/2009JA014446, 2010.
Shi, Q. Q., Shen, C., Pu, Z. Y., Dunlop, M. W., Zong, Q. G., Zhang, H., Xiao, C. J., Liu, Z. X., and Balogh, A.: Dimensional analysis of observed structures using multipoint magnetic field measurements: Application to Cluster, Geophys. Res. Lett., 32, L12105, https://doi.org/10.1029/2005GL022454, 2005.
Sonnerup, B. U. Ö., Haaland, S., Paschmann, G., Lavraud, B., Dunlop, M. W., Rème, H., and Balogh, A.: Orientation and motion of a discontinuity from single-spacecraft measurements of plasma velocity and density: Minimum mass flux residue, J. Geophys. Res., 109, A03221, https://doi.org/10.1029/2003JA010230, 2004.
Torbert, R. B., Dors, I., Argall, M. R., Genestreti, K. J., Burch, J. L., Farrugia, C. J., Forbes, T. G., Giles, B. L., and Strangeway, R. J.: A new method of 3-D magnetic field reconstruction, Geophys. Res. Lett., 47, GL085542, https://doi.org/10.1029/2019GL085542, 2020.
Vogt, J., Albert, A., and Marghitu, O.: Analysis of three-spacecraft data using planar reciprocal vectors: methodological framework and spatial gradient estimation, Ann. Geophys., 27, 3249–3273, https://doi.org/10.5194/angeo-27-3249-2009, 2009.
Vogt, J., Sorbalo, E., He, M., and Blagau, A.: Gradient estimation using configurations of two or three spacecraft, Ann. Geophys., 31, 1913–1927, https://doi.org/10.5194/angeo-31-1913-2013, 2013.
Yang, Y.: Energy Transfer and Dissipation in Plasma Turbulence: From Compressible MHD to Collisionless Plasma, Springer Theses, Springer Singapore, https://doi.org/10.1007/978-981-13-8149-2, 2019.
Zhang, Q.-H., Dunlop, M. W., Lockwood, M., Holme, R., Kamide, Y., Baumjohann, W., Liu, R.-Y., Yang, H.-G., Woodfield, E. E., Hu, H.-Q., Zhang, B.-C., and Liu, S.-L.: The distribution of the ring current: Cluster observations, Ann. Geophys., 29, 1655–1662, https://doi.org/10.5194/angeo-29-1655-2011, 2011.
Zhou, Y. and Shen, C.: Estimating gradients of physical fields in space, Ann. Geophys., 42, 17–28, https://doi.org/10.5194/angeo-42-17-2024, 2024.
Short summary
The coming seven-spacecraft Plasma Observatory and nine-spacecraft HelioSwarm will achieve seven–nine-point magnetic measurements. In this study, a new algorithm is generated to calculate linear and quadratic magnetic gradients from such magnetic measurements so as to obtain the complete geometry of the magnetic structures observed. The tests verify the feasibility of the method. The algorithm can thus be applied to the analysis of magnetic field data from the Plasma Observatory and HelioSwarm.
The coming seven-spacecraft Plasma Observatory and nine-spacecraft HelioSwarm will achieve...