Articles | Volume 42, issue 2
https://doi.org/10.5194/angeo-42-371-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-42-371-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Cluster spacecrafts' view of the motion of the high-latitude magnetopause
Niklas Grimmich
CORRESPONDING AUTHOR
Institut für Geophysik und Extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
Ferdinand Plaschke
Institut für Geophysik und Extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
Benjamin Grison
Department of Space Physics, Institute of Atmospheric Physics Czech Academy of Sciences, Praha, Czech Republic
Fabio Prencipe
Institut für Geophysik und Extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
Christophe Philippe Escoubet
ESA European Space Research and Technology Centre, Noordwijk, the Netherlands
Martin Owain Archer
Department of Physics, Imperial College London, London, UK
Ovidiu Dragos Constantinescu
Institut für Geophysik und Extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
Institute for Space Sciences, Bucharest, Romania
Stein Haaland
Birkeland Centre for Space Science, University of Bergen, Bergen, Norway
Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
The University Center in Svalbard, Longyearbyen, Norway
Rumi Nakamura
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
David Gary Sibeck
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Fabien Darrouzet
Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Mykhaylo Hayosh
Department of Space Physics, Institute of Atmospheric Physics Czech Academy of Sciences, Praha, Czech Republic
Romain Maggiolo
Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Related authors
No articles found.
Adrian Pöppelwerth, Georg Glebe, Johannes Z. D. Mieth, Florian Koller, Tomas Karlsson, Zoltán Vörös, and Ferdinand Plaschke
Ann. Geophys., 42, 271–284, https://doi.org/10.5194/angeo-42-271-2024, https://doi.org/10.5194/angeo-42-271-2024, 2024
Short summary
Short summary
In the magnetosheath, a near-Earth region of space, we observe increases in plasma velocity and density, so-called jets. As they propagate towards Earth, jets interact with the ambient plasma. We study this interaction with three spacecraft simultaneously to infer their sizes. While previous studies have investigated their size almost exclusively statistically, we demonstrate a new method of determining the sizes of individual jets.
Tomas Karlsson, Ferdinand Plaschke, Austin N. Glass, and Jim M. Raines
Ann. Geophys., 42, 117–130, https://doi.org/10.5194/angeo-42-117-2024, https://doi.org/10.5194/angeo-42-117-2024, 2024
Short summary
Short summary
The solar wind interacts with the planets in the solar system and creates a supersonic shock in front of them. The upstream region of this shock contains many complicated phenomena. One such phenomenon is small-scale structures of strong magnetic fields (SLAMS). These SLAMS have been observed at Earth and are important in determining the properties of space around the planet. Until now, SLAMS have not been observed at Mercury, but we show for the first time that SLAMS also exist there.
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463, https://doi.org/10.5194/angeo-41-449-2023, https://doi.org/10.5194/angeo-41-449-2023, 2023
Short summary
Short summary
The upper detection limit in reciprocal space, the spatial Nyquist limit, is derived for arbitrary spatial dimensions for the wave telescope analysis technique. This is important as future space plasma missions will incorporate larger numbers of spacecraft (>4). Our findings are a key element in planning the spatial distribution of future multi-point spacecraft missions. The wave telescope is a multi-dimensional power spectrum estimator; hence, this can be applied to other fields of research.
Livia R. Alves, Márcio E. S. Alves, Ligia A. da Silva, Vinicius Deggeroni, Paulo R. Jauer, and David G. Sibeck
Ann. Geophys., 41, 429–447, https://doi.org/10.5194/angeo-41-429-2023, https://doi.org/10.5194/angeo-41-429-2023, 2023
Short summary
Short summary
We derive the wave–particle interaction time (IT) equation considering the effects of special relativity theory for whistler-mode chorus waves and relativistic electrons in Earth's radiation belt. Results show that IT has a non-linear dependence on the wave group velocity, electrons' energy, and initial pitch angle. Our results show that the interaction time is generally longer when applying the complete relativistic approach compared to a non-relativistic calculation.
Martin O. Archer, Cara L. Waters, Shafiat Dewan, Simon Foster, and Antonio Portas
Geosci. Commun., 5, 119–123, https://doi.org/10.5194/gc-5-119-2022, https://doi.org/10.5194/gc-5-119-2022, 2022
Short summary
Short summary
Educational research highlights that improved careers education is needed to increase participation in science, technology, engineering, and mathematics (STEM). Current UK careers resources in the space sector, however, are found to perhaps not best reflect the diversity of roles present and may in fact perpetuate misconceptions about the usefulness of science. We, therefore, compile a more diverse set of space-related jobs, which will be used in the development of a new space careers resource.
Weijie Sun, James A. Slavin, Rumi Nakamura, Daniel Heyner, Karlheinz J. Trattner, Johannes Z. D. Mieth, Jiutong Zhao, Qiu-Gang Zong, Sae Aizawa, Nicolas Andre, and Yoshifumi Saito
Ann. Geophys., 40, 217–229, https://doi.org/10.5194/angeo-40-217-2022, https://doi.org/10.5194/angeo-40-217-2022, 2022
Short summary
Short summary
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's Earth flyby. FTE-type flux ropes are a well-known feature of magnetic reconnection on the magnetopause, and they can be used to constrain the location of reconnection X-lines. Our study suggests that the magnetopause X-line passed BepiColombo from the north as it traversed the magnetopause. Moreover, our results also strongly support coalescence creating larger flux ropes by combining smaller ones.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Martin O. Archer, Jennifer DeWitt, Charlotte Thorley, and Olivia Keenan
Geosci. Commun., 4, 147–168, https://doi.org/10.5194/gc-4-147-2021, https://doi.org/10.5194/gc-4-147-2021, 2021
Short summary
Short summary
We explore how best to support school students to experience undertaking research-level physics by evaluating provision in the PRiSE framework of
research in schoolsprojects. These experiences are received by students and teachers much more positively than typical forms of outreach. The intensive support offered is deemed necessary, with all elements appearing equally important. We suggest the framework could be adopted at other institutions applied to their own areas of scientific research.
Martin O. Archer and Jennifer DeWitt
Geosci. Commun., 4, 169–188, https://doi.org/10.5194/gc-4-169-2021, https://doi.org/10.5194/gc-4-169-2021, 2021
Short summary
Short summary
The impacts upon a diverse range of students, teachers, and schools from participating in a programme of protracted university-mentored projects based on cutting-edge physics research are assessed. The lasting impacts on confidence, skills, aspirations, and practice suggest that similar
research in schoolsinitiatives may have a role to play in aiding the increased uptake and diversity of physics/STEM in higher education as well as meaningfully enhancing the STEM environment within schools.
Martin O. Archer
Geosci. Commun., 4, 189–208, https://doi.org/10.5194/gc-4-189-2021, https://doi.org/10.5194/gc-4-189-2021, 2021
Short summary
Short summary
An evaluation of the accessibility and equity of a programme of independent research projects shows that, with the right support from both teachers and active researchers, schools' ability to succeed at undertaking cutting-edge research appears independent of typical societal inequalities.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Martin O. Archer, Natt Day, and Sarah Barnes
Geosci. Commun., 4, 57–67, https://doi.org/10.5194/gc-4-57-2021, https://doi.org/10.5194/gc-4-57-2021, 2021
Short summary
Short summary
We show that integrating evaluation tools both before and after a drop-in engagement activity enables the demonstration of change and, thus, short-term impact. In our case, young families who listened to space sounds exhibited changed language and conceptions about space in their graffiti wall responses afterwards, exemplifying the power of sound in science communication. We suggest that evaluation tools be adopted both before and after drop-in activities in general.
Yasuhito Narita, Ferdinand Plaschke, Werner Magnes, David Fischer, and Daniel Schmid
Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021, https://doi.org/10.5194/gi-10-13-2021, 2021
Short summary
Short summary
The systematic error of calibrated fluxgate magnetometer data is studied for a spinning spacecraft. The major error comes from the offset uncertainty when the ambient magnetic field is low, while the error represents the combination of non-orthogonality, misalignment to spacecraft reference direction, and gain when the ambient field is high. The results are useful in developing future high-precision magnetometers and an error estimate in scientific studies using magnetometer data.
Galina Korotova, David Sibeck, Mark Engebretson, Michael Balikhin, Scott Thaller, Craig Kletzing, Harlan Spence, and Robert Redmon
Ann. Geophys., 38, 1267–1281, https://doi.org/10.5194/angeo-38-1267-2020, https://doi.org/10.5194/angeo-38-1267-2020, 2020
Short summary
Short summary
We used multipoint magnetic field, electric field, plasma, and energetic particle observations to study the spatial, temporal, and spectral characteristics of compressional Pc5 pulsations observed deep within the magnetosphere at the end of a strong magnetic storm. We investigated the mode of the waves and their nodal structure. The energetic particles responded directly to the compressional Pc5 pulsations. We interpret the compressional Pc5 waves in terms of drift-mirror instability.
Ovidiu Dragoş Constantinescu, Hans-Ulrich Auster, Magda Delva, Olaf Hillenmaier, Werner Magnes, and Ferdinand Plaschke
Geosci. Instrum. Method. Data Syst., 9, 451–469, https://doi.org/10.5194/gi-9-451-2020, https://doi.org/10.5194/gi-9-451-2020, 2020
Short summary
Short summary
We propose a gradiometer-based technique for cleaning multi-sensor magnetic field data acquired on board spacecraft. The technique takes advantage on the fact that the maximum-variance direction of many AC disturbances on board spacecraft does not change over time. We apply the proposed technique to the SOSMAG instrument on board GeoKompsat-2A. We analyse the performance and limitations of the technique and discuss in detail how various disturbances are removed.
Alexander Lukin, Anton Artemyev, Evgeny Panov, Rumi Nakamura, Anatoly Petrukovich, Robert Ergun, Barbara Giles, Yuri Khotyaintsev, Per Arne Lindqvist, Christopher Russell, and Robert Strangeway
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-76, https://doi.org/10.5194/angeo-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
We have collected statistics of 81 fast plasma flow events in the magnetotail with clear MMS observations of kinetic Alfven waves (KAWs). We show that KAWs electric field magnitudes correlates with thermal/subthermal electron flux anisotropy: wider energy range of electron anisotropic population corresponds to higher KAWs’ electric field intensity. These results indicate on an important role of KAWs in production of thermal field-aligned electron population of the Earth’s magnetotail.
Daniel Schmid, Ferdinand Plaschke, Yasuhito Narita, Daniel Heyner, Johannes Z. D. Mieth, Brian J. Anderson, Martin Volwerk, Ayako Matsuoka, and Wolfgang Baumjohann
Ann. Geophys., 38, 823–832, https://doi.org/10.5194/angeo-38-823-2020, https://doi.org/10.5194/angeo-38-823-2020, 2020
Short summary
Short summary
Recently, the two-spacecraft mission BepiColombo was launched to explore Mercury. To measure the magnetic field precisely, in-flight calibration of the magnetometer offset is needed. Usually, the offset is evaluated from magnetic field observations in the solar wind. Since one of the spacecraft will remain within Mercury's magnetic environment, we examine an alternative calibration method. We show that this method is applicable and may be a valuable tool to determine the offset accurately.
Martin O. Archer
Geosci. Commun., 3, 147–166, https://doi.org/10.5194/gc-3-147-2020, https://doi.org/10.5194/gc-3-147-2020, 2020
Short summary
Short summary
The Space Sound Effects Short Film Festival integrated near-Earth space environment research into culture through independent film. By running a film festival challenging filmmakers to incorporate the sounds of space, creative works were produced which have gone on to be screened at numerous established film festivals and events internationally. These events introduced non-science audiences to this area of research which affects their everyday lives, having several unanticipated impacts on them.
Patrik Krcelic, Stein Haaland, Lukas Maes, Rikard Slapak, and Audrey Schillings
Ann. Geophys., 38, 491–505, https://doi.org/10.5194/angeo-38-491-2020, https://doi.org/10.5194/angeo-38-491-2020, 2020
Short summary
Short summary
In this paper we have used Cluster EDI data in combination with the CODIF cusp dataset from Slapak et al. (2017) to obtain parallel and convection velocities for oxygen ions; 69 % of total oxygen outflow from the high-altitude cusps escapes the magnetosphere on average; 50 % escapes tailward beyond the distant X-line. The oxygen capture-versus-escape ratio is highly dependent on geomagnetic conditions. During active conditions, the majority of oxygen outflow is convected to the plasma sheet.
Ferdinand Plaschke, Maria Jernej, Heli Hietala, and Laura Vuorinen
Ann. Geophys., 38, 287–296, https://doi.org/10.5194/angeo-38-287-2020, https://doi.org/10.5194/angeo-38-287-2020, 2020
Short summary
Short summary
Jets of solar-wind plasma commonly hit the Earth's magnetosphere. Using data from the four Magnetospheric Multiscale (MMS) spacecraft, we show statistically that within jets the magnetic field is more aligned with the plasma flow direction than outside of these jets. Our study confirms prior simulation results, but it also shows that the average effect is moderate. The jets' magnetic field is important with respect to their impact on space weather.
Martin Volwerk, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Heyner, and Brian Anderson
Ann. Geophys., 38, 51–60, https://doi.org/10.5194/angeo-38-51-2020, https://doi.org/10.5194/angeo-38-51-2020, 2020
Short summary
Short summary
The magnetic field that is carried by the solar wind slowly decreases in strength as it moves further from the Sun. However, there are sometimes localized decreases in the magnetic field strength, called magnetic holes. These are small structures where the magnetic field strength decreases to less than 50 % of the surroundings and the plasma density increases. This paper presents a statistical study of the behaviour of these holes between Mercury and Venus using MESSENGER data.
Ferdinand Plaschke
Geosci. Instrum. Method. Data Syst., 8, 285–291, https://doi.org/10.5194/gi-8-285-2019, https://doi.org/10.5194/gi-8-285-2019, 2019
Short summary
Short summary
Measuring the magnetic field onboard spacecraft requires regular in-flight calibration activities. Among those, determining the output of magnetometers under vanishing ambient magnetic fields, the so-called magnetometer offsets, is essential. Typically, characteristic rotations in solar wind magnetic fields are used to obtain these offsets. This paper addresses the question of how many solar wind data are needed to reach certain accuracy levels in offset determination.
Laura Vuorinen, Heli Hietala, and Ferdinand Plaschke
Ann. Geophys., 37, 689–697, https://doi.org/10.5194/angeo-37-689-2019, https://doi.org/10.5194/angeo-37-689-2019, 2019
Short summary
Short summary
Before the solar wind encounters the Earth's magnetic field, it is first slowed down and deflected by the Earth's bow shock. We find that downstream of the bow shock regions where the shock normal and the solar wind magnetic field are almost parallel and the shock is more rippled, plasma jets with high earthward velocities are observed significantly more often than elsewhere downstream of the shock. Our results help us forecast the occurrence of these jets and their effects on Earth.
Ferdinand Plaschke, Hans-Ulrich Auster, David Fischer, Karl-Heinz Fornaçon, Werner Magnes, Ingo Richter, Dragos Constantinescu, and Yasuhito Narita
Geosci. Instrum. Method. Data Syst., 8, 63–76, https://doi.org/10.5194/gi-8-63-2019, https://doi.org/10.5194/gi-8-63-2019, 2019
Short summary
Short summary
Raw output of spacecraft magnetometers has to be converted into meaningful units and coordinate systems before it is usable for scientific applications. This conversion is defined by 12 calibration parameters, 8 of which are more easily determined in flight if the spacecraft is spinning. We present theory and advanced algorithms to determine these eight parameters. They take into account the physical magnetometer and spacecraft behavior, making them superior to previously published algorithms.
Nikolai Østgaard, Jone P. Reistad, Paul Tenfjord, Karl M. Laundal, Theresa Rexer, Stein E. Haaland, Kristian Snekvik, Michael Hesse, Stephen E. Milan, and Anders Ohma
Ann. Geophys., 36, 1577–1596, https://doi.org/10.5194/angeo-36-1577-2018, https://doi.org/10.5194/angeo-36-1577-2018, 2018
Short summary
Short summary
In this paper we take advantage of having two auroral imaging missions giving simultaneous data of both the southern and northern aurora. Combined with all available in situ measurements from space and global ground-based networks, we explore the asymmetric behavior of geospace. We find large auroral asymmetries and different reconnection geometry in the two hemispheres. During substorm expansion phase asymmetries are reduced.
Minna Palmroth, Heli Hietala, Ferdinand Plaschke, Martin Archer, Tomas Karlsson, Xóchitl Blanco-Cano, David Sibeck, Primož Kajdič, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, and Lucile Turc
Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, https://doi.org/10.5194/angeo-36-1171-2018, 2018
Short summary
Short summary
Magnetosheath jets are high-velocity plasma structures that are commonly observed within the Earth's magnetosheath. Previously, they have mainly been investigated with spacecraft observations, which do not allow us to infer their spatial sizes, temporal evolution, or origin. This paper shows for the first time their dimensions, evolution, and origins within a simulation whose dimensions are directly comparable to the Earth's magnetosphere. The results are compared to previous observations.
Yaireska M. Collado-Vega, Virginia L. Kalb, David G. Sibeck, Kyoung-Joo Hwang, and Lutz Rastätter
Ann. Geophys., 36, 1117–1129, https://doi.org/10.5194/angeo-36-1117-2018, https://doi.org/10.5194/angeo-36-1117-2018, 2018
Short summary
Short summary
This paper describes an algorithm that automatically detects vortices around the Earth's magnetosphere using the velocity field from simulated data. It also describes how the tool can be used to analyze further properties of the vortices including the velocity changes within their motion across the magnetosheath. Vortices developed at the magnetopause boundary contribute to the process of mass, momentum and energy transfer from the solar wind into the Earth's magnetosphere.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Ferdinand Plaschke and Heli Hietala
Ann. Geophys., 36, 695–703, https://doi.org/10.5194/angeo-36-695-2018, https://doi.org/10.5194/angeo-36-695-2018, 2018
Short summary
Short summary
Fast jets of solar wind particles drive through a slower environment in the magnetosheath, located sunward of the region dominated by the Earth’s magnetic field. THEMIS multi-spacecraft observations show that jets push ambient particles out of their way. These particles flow around the faster jets into the jets’ wake. Thereby, jets stir the magnetosheath, changing the properties of this key region whose particles and magnetic fields can directly interact with the Earth’s magnetic field.
Tomas Karlsson, Ferdinand Plaschke, Heli Hietala, Martin Archer, Xóchitl Blanco-Cano, Primož Kajdič, Per-Arne Lindqvist, Göran Marklund, and Daniel J. Gershman
Ann. Geophys., 36, 655–677, https://doi.org/10.5194/angeo-36-655-2018, https://doi.org/10.5194/angeo-36-655-2018, 2018
Short summary
Short summary
We have studied fast plasma jets outside of Earth’s magnetic environment. Such jets are small-scale structures with a limited lifetime, which may be important in determining the properties of the near-Earth space environment, due to their concentrated kinetic energy. We have used data from the NASA Magnetospheric MultiScale (MMS) satellites to study their properties in detail, to understand how these jets are formed. We have found evidence that there are at least two different types of jets.
Sudong Xiao, Tielong Zhang, Guoqiang Wang, Martin Volwerk, Yasong Ge, Daniel Schmid, Rumi Nakamura, Wolfgang Baumjohann, and Ferdinand Plaschke
Ann. Geophys., 35, 1015–1022, https://doi.org/10.5194/angeo-35-1015-2017, https://doi.org/10.5194/angeo-35-1015-2017, 2017
Christina Chu, Hui Zhang, David Sibeck, Antonius Otto, QiuGang Zong, Nick Omidi, James P. McFadden, Dennis Fruehauff, and Vassilis Angelopoulos
Ann. Geophys., 35, 443–451, https://doi.org/10.5194/angeo-35-443-2017, https://doi.org/10.5194/angeo-35-443-2017, 2017
Short summary
Short summary
Hot flow anomalies (HFAs) at Earth's bow shock were identified in Time History of Events and Macroscale Interactions During Substorms (THEMIS) satellite data from 2007 to 2009. The events were classified as young or mature and regular or spontaneous hot flow anomalies (SHFAs). HFA–SHFA occurrence decreases with distance upstream from the bow shock. HFAs are more prevalent for radial interplanetary magnetic fields and solar wind speeds from 550 to 600 kms−1.
Dennis Frühauff, Ferdinand Plaschke, and Karl-Heinz Glassmeier
Ann. Geophys., 35, 117–121, https://doi.org/10.5194/angeo-35-117-2017, https://doi.org/10.5194/angeo-35-117-2017, 2017
Short summary
Short summary
Vector magnetic field instruments mounted on spacecraft require precise in-flight calibration of the offsets of all three axes, i.e., the output in vanishing ambient field. While calibration of the spin plane offsets is trivial, we apply a new technique for determining the spin axis offset, not relying on solar wind data but on magnetosheath encounters. This technique is successfully applied to the satellites of the THEMIS mission to update the calibration parameters of the complete mission.
Martin Volwerk, Daniel Schmid, Bruce T. Tsurutani, Magda Delva, Ferdinand Plaschke, Yasuhito Narita, Tielong Zhang, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 1099–1108, https://doi.org/10.5194/angeo-34-1099-2016, https://doi.org/10.5194/angeo-34-1099-2016, 2016
Short summary
Short summary
The behaviour of mirror mode waves in Venus's magnetosheath is investigated for solar minimum and maximum conditions. It is shown that the total observational rate of these waves does not change much; however, the distribution over the magnetosheath is significantly different, as well as the growth and decay of the waves during these different solar activity conditions.
David Fischer, Werner Magnes, Christian Hagen, Ivan Dors, Mark W. Chutter, Jerry Needell, Roy B. Torbert, Olivier Le Contel, Robert J. Strangeway, Gernot Kubin, Aris Valavanoglou, Ferdinand Plaschke, Rumi Nakamura, Laurent Mirioni, Christopher T. Russell, Hannes K. Leinweber, Kenneth R. Bromund, Guan Le, Lawrence Kepko, Brian J. Anderson, James A. Slavin, and Wolfgang Baumjohann
Geosci. Instrum. Method. Data Syst., 5, 521–530, https://doi.org/10.5194/gi-5-521-2016, https://doi.org/10.5194/gi-5-521-2016, 2016
Short summary
Short summary
This paper describes frequency and timing calibration, modeling and data processing and calibration for MMS magnetometers, resulting in a merged search choil and fluxgate data product.
Galina Korotova, David Sibeck, Mark Engebretson, John Wygant, Scott Thaller, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 34, 985–998, https://doi.org/10.5194/angeo-34-985-2016, https://doi.org/10.5194/angeo-34-985-2016, 2016
Lukas Maes, Romain Maggiolo, and Johan De Keyser
Ann. Geophys., 34, 961–974, https://doi.org/10.5194/angeo-34-961-2016, https://doi.org/10.5194/angeo-34-961-2016, 2016
Short summary
Short summary
Ion outflow from the ionospheric regions at the highest latitudes is mainly driven by solar illumination. It is an important factor affecting atmospheric escape and space weather. But this region rotates into and out of the sunlight on a daily and seasonal basis. This creates daily and seasonal variations in the outflow, even with both hemispheres combined. The north–south asymmetry in Earth's magnetic field causes extra variations and asymmetries. This was studied with a simple empirical model.
Ferdinand Plaschke and Yasuhito Narita
Ann. Geophys., 34, 759–766, https://doi.org/10.5194/angeo-34-759-2016, https://doi.org/10.5194/angeo-34-759-2016, 2016
Short summary
Short summary
Spacecraft-mounted magnetic field instruments (magnetometers) need to be routinely calibrated. This involves determining the magnetometer outputs in vanishing ambient magnetic fields, the so-called offsets. We introduce and test a new method to determine these offsets with high accuracy, the mirror mode method, which is complementary to existing methods. The mirror mode method should be highly beneficial to current and future magnetic field observations near Earth, other planets, and comets.
Egor V. Yushkov, Anton V. Artemyev, Anatoly A. Petrukovich, and Rumi Nakamura
Ann. Geophys., 34, 739–750, https://doi.org/10.5194/angeo-34-739-2016, https://doi.org/10.5194/angeo-34-739-2016, 2016
Short summary
Short summary
In the paper we study flapping wave structures, generated in the neutral plane of the Earth magnetotail. Investigated flapping is an important process of magnetosphere dynamics, connected with magnetic energy transformation and magnetic storm formation. Large separation of Cluster spacecraft allows us to estimate both local and global properties of flapping current sheets, the typical flapping times and propagation directions.
Takuma Nakamura, Rumi Nakamura, and Hiroshi Haseagwa
Ann. Geophys., 34, 357–367, https://doi.org/10.5194/angeo-34-357-2016, https://doi.org/10.5194/angeo-34-357-2016, 2016
Short summary
Short summary
Magnetic reconnection is a key process in space and laboratory plasmas which transfers energies through the magnetic field topology change. The topology change in this process takes place in a small scale region called the electron diffusion region (EDR). In this paper, using high-resolution fully kinetic simulations, we successfully obtained the firm scaling laws of spatial dimensions of the EDR. The obtained scalings allow us to precisely predict observable dimensions of the EDR in real space.
Sudong Xiao, Tielong Zhang, Yasong Ge, Guoqiang Wang, Wolfgang Baumjohann, and Rumi Nakamura
Ann. Geophys., 34, 303–311, https://doi.org/10.5194/angeo-34-303-2016, https://doi.org/10.5194/angeo-34-303-2016, 2016
Y. Narita, R. Nakamura, W. Baumjohann, K.-H. Glassmeier, U. Motschmann, and H. Comişel
Ann. Geophys., 34, 85–89, https://doi.org/10.5194/angeo-34-85-2016, https://doi.org/10.5194/angeo-34-85-2016, 2016
Short summary
Short summary
Four-spacecraft Cluster observations of turbulent fluctuations in the magnetic reconnection region in the geomagnetic tail show for the first time an indication of ion Bernstein waves, electromagnetic waves that propagate nearly perpendicular to the mean magnetic field and are in resonance with ions. Bernstein waves may influence current sheet dynamics in the reconnection outflow such as a bifurcation of the current sheet.
P. M. E. Décréau, S. Aoutou, A. Denazelle, I. Galkina, J.-L. Rauch, X. Vallières, P. Canu, S. Rochel Grimald, F. El-Lemdani Mazouz, and F. Darrouzet
Ann. Geophys., 33, 1285–1300, https://doi.org/10.5194/angeo-33-1285-2015, https://doi.org/10.5194/angeo-33-1285-2015, 2015
Short summary
Short summary
We present here cases of wide banded Non Thermal Continuum (NTC) observed from the multi-point Cluster observatory. We point out that a large portion of the plasmasphere boundary layer, covering magnetic latitudes from 0 to above 30°, is radiating these radio waves. The radiation is confined inside multiple beams of small cone angles. We show how the spectral signature evolves, from integer harmonics of the electron gyrofrequency, when the observatory moves away from their sources.
G. Verbanac, V. Pierrard, M. Bandić, F. Darrouzet, J.-L. Rauch, and P. Décréau
Ann. Geophys., 33, 1271–1283, https://doi.org/10.5194/angeo-33-1271-2015, https://doi.org/10.5194/angeo-33-1271-2015, 2015
Short summary
Short summary
Using Cluster data, we develop plasmapause Lpp models parameterized by solar wind coupling functions and geomagnetic activity indices. We show that the Lpp response to the changes in the interplanetary conditions depends on the magnetic local time. The faster plasmapause response is observed in the post-midnight sector. At low activity, Lpp exhibits the largest values on the dayside. For enhanced activity, displacements towards larger values on the evening side are identified.
G. I. Korotova, D. G. Sibeck, K. Tahakashi, L. Dai, H. E. Spence, C. A. Kletzing, J. R. Wygant, J. W. Manweiler, P. S. Moya, K.-J. Hwang, and R. J. Redmon
Ann. Geophys., 33, 955–964, https://doi.org/10.5194/angeo-33-955-2015, https://doi.org/10.5194/angeo-33-955-2015, 2015
Short summary
Short summary
We studied localized Pc 4 pulsations in the pre-midnight inner magnetosphere observed by Van Allen Probe B on May 1 2013. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes result from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.
M. O. Archer, T. S. Horbury, P. Brown, J. P. Eastwood, T. M. Oddy, B. J. Whiteside, and J. G. Sample
Ann. Geophys., 33, 725–735, https://doi.org/10.5194/angeo-33-725-2015, https://doi.org/10.5194/angeo-33-725-2015, 2015
Short summary
Short summary
The first in-flight results from a new design of miniaturised magnetometer (MAGIC - MAGnetometer from Imperial College), aboard the first CINEMA (Cubesat for Ions, Neutrals, Electrons and MAgnetic fields) spacecraft in low Earth orbit, are presented. Not only can this sensor be used for determining attitude, but it is also able to detect the extremely small (20-40 nT) magnetic field signatures of field-aligned currents at the auroral oval. Thus, there are science capabilities with such sensors.
P. Robert, N. Cornilleau-Wehrlin, R. Piberne, Y. de Conchy, C. Lacombe, V. Bouzid, B. Grison, D. Alison, and P. Canu
Geosci. Instrum. Method. Data Syst., 3, 153–177, https://doi.org/10.5194/gi-3-153-2014, https://doi.org/10.5194/gi-3-153-2014, 2014
H. Gunell, G. Stenberg Wieser, M. Mella, R. Maggiolo, H. Nilsson, F. Darrouzet, M. Hamrin, T. Karlsson, N. Brenning, J. De Keyser, M. André, and I. Dandouras
Ann. Geophys., 32, 991–1009, https://doi.org/10.5194/angeo-32-991-2014, https://doi.org/10.5194/angeo-32-991-2014, 2014
A. P. Walsh, S. Haaland, C. Forsyth, A. M. Keesee, J. Kissinger, K. Li, A. Runov, J. Soucek, B. M. Walsh, S. Wing, and M. G. G. T. Taylor
Ann. Geophys., 32, 705–737, https://doi.org/10.5194/angeo-32-705-2014, https://doi.org/10.5194/angeo-32-705-2014, 2014
D. Schmid, M. Volwerk, F. Plaschke, Z. Vörös, T. L. Zhang, W. Baumjohann, and Y. Narita
Ann. Geophys., 32, 651–657, https://doi.org/10.5194/angeo-32-651-2014, https://doi.org/10.5194/angeo-32-651-2014, 2014
R. Wang, R. Nakamura, T. Zhang, A. Du, W. Baumjohann, Q. Lu, and A. N. Fazakerley
Ann. Geophys., 32, 239–248, https://doi.org/10.5194/angeo-32-239-2014, https://doi.org/10.5194/angeo-32-239-2014, 2014
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 32, 133–146, https://doi.org/10.5194/angeo-32-133-2014, https://doi.org/10.5194/angeo-32-133-2014, 2014
R. Nakamura, F. Plaschke, R. Teubenbacher, L. Giner, W. Baumjohann, W. Magnes, M. Steller, R. B. Torbert, H. Vaith, M. Chutter, K.-H. Fornaçon, K.-H. Glassmeier, and C. Carr
Geosci. Instrum. Method. Data Syst., 3, 1–11, https://doi.org/10.5194/gi-3-1-2014, https://doi.org/10.5194/gi-3-1-2014, 2014
P. M. E. Décréau, S. Kougblénou, G. Lointier, J.-L. Rauch, J.-G. Trotignon, X. Vallières, P. Canu, S. Rochel Grimald, F. El-Lemdani Mazouz, and F. Darrouzet
Ann. Geophys., 31, 2097–2121, https://doi.org/10.5194/angeo-31-2097-2013, https://doi.org/10.5194/angeo-31-2097-2013, 2013
F. Plaschke, H. Hietala, and V. Angelopoulos
Ann. Geophys., 31, 1877–1889, https://doi.org/10.5194/angeo-31-1877-2013, https://doi.org/10.5194/angeo-31-1877-2013, 2013
F. R. Cardoso, W. D. Gonzalez, D. G. Sibeck, M. Kuznetsova, and D. Koga
Ann. Geophys., 31, 1853–1866, https://doi.org/10.5194/angeo-31-1853-2013, https://doi.org/10.5194/angeo-31-1853-2013, 2013
Y. Narita, R. Nakamura, and W. Baumjohann
Ann. Geophys., 31, 1605–1610, https://doi.org/10.5194/angeo-31-1605-2013, https://doi.org/10.5194/angeo-31-1605-2013, 2013
Y. M. Collado-Vega, R. L. Kessel, D. G. Sibeck, V. L. Kalb, R. A. Boller, and L. Rastaetter
Ann. Geophys., 31, 1463–1483, https://doi.org/10.5194/angeo-31-1463-2013, https://doi.org/10.5194/angeo-31-1463-2013, 2013
A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 31, 1109–1114, https://doi.org/10.5194/angeo-31-1109-2013, https://doi.org/10.5194/angeo-31-1109-2013, 2013
G. Paschmann, S. Haaland, B. Sonnerup, and T. Knetter
Ann. Geophys., 31, 871–887, https://doi.org/10.5194/angeo-31-871-2013, https://doi.org/10.5194/angeo-31-871-2013, 2013
M. Volwerk, N. André, C. S. Arridge, C. M. Jackman, X. Jia, S. E. Milan, A. Radioti, M. F. Vogt, A. P. Walsh, R. Nakamura, A. Masters, and C. Forsyth
Ann. Geophys., 31, 817–833, https://doi.org/10.5194/angeo-31-817-2013, https://doi.org/10.5194/angeo-31-817-2013, 2013
C. P. Escoubet, J. Berchem, K. J. Trattner, F. Pitout, R. Richard, M. G. G. T. Taylor, J. Soucek, B. Grison, H. Laakso, A. Masson, M. Dunlop, I. Dandouras, H. Reme, A. Fazakerley, and P. Daly
Ann. Geophys., 31, 713–723, https://doi.org/10.5194/angeo-31-713-2013, https://doi.org/10.5194/angeo-31-713-2013, 2013
C. Nabert, K.-H. Glassmeier, and F. Plaschke
Ann. Geophys., 31, 419–437, https://doi.org/10.5194/angeo-31-419-2013, https://doi.org/10.5194/angeo-31-419-2013, 2013
M. O. Archer and T. S. Horbury
Ann. Geophys., 31, 319–331, https://doi.org/10.5194/angeo-31-319-2013, https://doi.org/10.5194/angeo-31-319-2013, 2013
A. Alexandrova, R. Nakamura, V. S. Semenov, I. V. Kubyshkin, S. Apatenkov, E. V. Panov, D. Korovinskiy, H. Biernat, W. Baumjohann, K.-H. Glassmeier, and J. P. McFadden
Ann. Geophys., 30, 1727–1741, https://doi.org/10.5194/angeo-30-1727-2012, https://doi.org/10.5194/angeo-30-1727-2012, 2012
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Solar wind–magnetosphere interactions
Velocity of magnetic holes in the solar wind from Cluster multipoint measurements
Storm time polar cap expansion: interplanetary magnetic field clock angle dependence
Solar wind magnetic holes can cross the bow shock and enter the magnetosheath
Comment on
From the Sun to Earth: effects of the 25 August 2018 geomagnetic storm
GUMICS-4 analysis of interplanetary coronal mass ejection impact on Earth during low and typical Mach number solar winds
Local time extent of magnetopause reconnection using space–ground coordination
The asymmetric geospace as displayed during the geomagnetic storm on 17 August 2001
Transfer entropy and cumulant-based cost as measures of nonlinear causal relationships in space plasmas: applications to Dst
Henriette Trollvik, Tomas Karlsson, and Savvas Raptis
Ann. Geophys., 41, 327–337, https://doi.org/10.5194/angeo-41-327-2023, https://doi.org/10.5194/angeo-41-327-2023, 2023
Short summary
Short summary
The solar wind is in a plasma state and can exhibit a range of phenomena like waves and instabilities. One observed phenomenon in the solar wind is magnetic holes (MHs). They are localized depressions in the magnetic field. We studied the motion of MHs using the multispacecraft ESA Cluster mission. We derived their velocities in the solar wind frame and found that both linear and rotational MHs are convected with the solar wind.
Beket Tulegenov, Joachim Raeder, William D. Cramer, Banafsheh Ferdousi, Timothy J. Fuller-Rowell, Naomi Maruyama, and Robert J. Strangeway
Ann. Geophys., 41, 39–54, https://doi.org/10.5194/angeo-41-39-2023, https://doi.org/10.5194/angeo-41-39-2023, 2023
Short summary
Short summary
We study how the polar regions of the Earth connect to space along magnetic field lines. While the Earth's magnetic field is mostly the shape of a dipole, at high latitudes the field lines tend to be open and connect to interplanetary space. This area of open field line is called the polar cap, and it is highly dynamic. Through data analysis and computer simulations, we find that the shape of the polar cap is closely controlled by the magnetic field embedded in the solar wind.
Tomas Karlsson, Henriette Trollvik, Savvas Raptis, Hans Nilsson, and Hadi Madanian
Ann. Geophys., 40, 687–699, https://doi.org/10.5194/angeo-40-687-2022, https://doi.org/10.5194/angeo-40-687-2022, 2022
Short summary
Short summary
Magnetic holes are curious localized dropouts of magnetic field strength in the solar wind (the flow of ionized gas continuously streaming out from the sun). In this paper we show that these magnetic holes can cross the bow shock (where the solar wind brake down to subsonic velocity) and enter the region close to Earth’s magnetosphere. These structures may therefore represent a new type of non-uniform solar wind–magnetosphere interaction.
Invariability of relationship between the polar cap magnetic activity and geoeffective interplanetary electric fieldby Troshichev et al. (2011)
Peter Stauning
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-52, https://doi.org/10.5194/angeo-2020-52, 2020
Preprint withdrawn
Short summary
Short summary
In Troshichev et al. (2006) an error was made in the calculations of Polar Cap (PC) index scaling parameters. For the publication commented here, Troshichev et al. (2011), the authors state having used scaling parameters of the invalid PC index version but have actually substituted parameters from another version instead. The mingling of PC index versions has resulted in erroneous illustrations in Figs. 1, 2, 3, 6, 7, and 8 and the issuing of non-substantiated statements.
Mirko Piersanti, Paola De Michelis, Dario Del Moro, Roberta Tozzi, Michael Pezzopane, Giuseppe Consolini, Maria Federica Marcucci, Monica Laurenza, Simone Di Matteo, Alessio Pignalberi, Virgilio Quattrociocchi, and Piero Diego
Ann. Geophys., 38, 703–724, https://doi.org/10.5194/angeo-38-703-2020, https://doi.org/10.5194/angeo-38-703-2020, 2020
Short summary
Short summary
This paper presents a comprehensive analysis of the solar event that occurred on 25 August 2018. This kind of comprehensive analysis plays a key role in better understanding the complexity of the processes occurring in the Sun–Earth system determining the geoeffectiveness of manifestations of solar activity. The analysis presented here shows for the first time a direct link between characteristics of solar perturbation, the magnetosphere–ionosphere system response and space weather effects.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
Ying Zou, Brian M. Walsh, Yukitoshi Nishimura, Vassilis Angelopoulos, J. Michael Ruohoniemi, Kathryn A. McWilliams, and Nozomu Nishitani
Ann. Geophys., 37, 215–234, https://doi.org/10.5194/angeo-37-215-2019, https://doi.org/10.5194/angeo-37-215-2019, 2019
Short summary
Short summary
Magnetopause reconnection is a process whereby the Sun explosively transfers energy to the Earth. Whether the process is spatially patchy or spatially continuous and extended has been under long debate. We use space–ground coordination to overcome the limitations of previous studies and reliably interpret spatial extent. Our result strongly indicates that both patchy and extended reconnection is possible and, interestingly, that extended reconnection grows from a localized patch via spreading.
Nikolai Østgaard, Jone P. Reistad, Paul Tenfjord, Karl M. Laundal, Theresa Rexer, Stein E. Haaland, Kristian Snekvik, Michael Hesse, Stephen E. Milan, and Anders Ohma
Ann. Geophys., 36, 1577–1596, https://doi.org/10.5194/angeo-36-1577-2018, https://doi.org/10.5194/angeo-36-1577-2018, 2018
Short summary
Short summary
In this paper we take advantage of having two auroral imaging missions giving simultaneous data of both the southern and northern aurora. Combined with all available in situ measurements from space and global ground-based networks, we explore the asymmetric behavior of geospace. We find large auroral asymmetries and different reconnection geometry in the two hemispheres. During substorm expansion phase asymmetries are reduced.
Jay R. Johnson, Simon Wing, and Enrico Camporeale
Ann. Geophys., 36, 945–952, https://doi.org/10.5194/angeo-36-945-2018, https://doi.org/10.5194/angeo-36-945-2018, 2018
Short summary
Short summary
The magnetospheric response to the solar wind is nonlinear. Information theoretical tools are able to characterize the nonlinearities in the system. We show that nonlinear significance of Dst peaks at lags of 3–12 hours which can be attributed to VBs, which also exhibits similar behavior. However, the nonlinear significance that peaks at lags of 25, 50, and 90 hours can be attributed to internal dynamics, which may be related to the relaxation of the ring current.
Cited articles
Alekseev, I. I.: The penetration of interplanetary magnetic and electric fields into the magnetosphere, J. Geomagn. Geoelectr., 38, 1199–1221, https://doi.org/10.5636/jgg.38.1199, 1986. a, b
Alexeev, I. I. and Kalegaev, V. V.: Magnetic field and plasma flow structure near the magnetopause, J. Geophys. Res.-Space Phys., 100, 19267–19276, https://doi.org/10.1029/95JA01345, 1995. a, b
Angelopoulos, V.: The THEMIS Mission, Space Sci. Rev., 141, 5–34, https://doi.org/10.1007/s11214-008-9336-1, 2008. a, b
Archer, M. O., Turner, D. L., Eastwood, J. P., Schwartz, S. J., and Horbury, T. S.: Global impacts of a Foreshock Bubble: Magnetosheath, magnetopause and ground-based observations, Planet. Space Sci., 106, 56–66, https://doi.org/10.1016/j.pss.2014.11.026, 2015. a
Archer, M. O., Hietala, H., Hartinger, M. D., Plaschke, F., and Angelopoulos, V.: Direct observations of a surface eigenmode of the dayside magnetopause, Nat. Commun., 10, 615, https://doi.org/10.1038/s41467-018-08134-5, 2019. a
Aubry, M. P., Russell, C. T., and Kivelson, M. G.: Inward motion of the magnetopause before a substorm, J. Geophys. Res., 75, 7018, https://doi.org/10.1029/JA075i034p07018, 1970. a, b
Balogh, A., Dunlop, M. W., Cowley, S. W. H., Southwood, D. J., Thomlinson, J. G., Glassmeier, K. H., Musmann, G., Luhr, H., Buchert, S., Acuna, M. H., Fairfield, D. H., Slavin, J. A., Riedler, W., Schwingenschuh, K., and Kivelson, M. G.: The Cluster Magnetic Field Investigation, Space Sci. Rev., 79, 65–91, https://doi.org/10.1023/A:1004970907748, 1997. a
Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann, G., Oddy, T., and Schwingenschuh, K.: The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results, Ann. Geophys., 19, 1207–1217, https://doi.org/10.5194/angeo-19-1207-2001, 2001. a
Baumjohann, W. and Treumann, R.: Basic Space Plasma Physics, Imperial College Press, 1997. a
Borovsky, J. E.: The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar-wind monitor at L1, J. Atmos. Solar-Terr. Phy., 177, 2–11, https://doi.org/10.1016/j.jastp.2017.03.014, 2018. a
Branduardi-Raymont, G., Wang, C., C.P. Escoubet, C. P., Adamovic, M., Agnolon, D., Berthomier, M., Carter, J. A., Chen, W., Colangeli, L., Collier, M., Connor, H. K., Dai, L., Dimmock, A., Djazovski, O., Donovan, E., Eastwood, J. P., Enno, G., Giannini, F., Huang, L., Kataria, D., Kuntz, K., Laakso, H., Li, J., Li, L., Lui, T., Loicq, J., Masson, A., Manuel, J., Parmar, A., Piekutowski, T., Read, A. M., Samsonov, A., Sembay, S., Raab, W., Ruciman, C., Shi, J. K., Sibeck, D. G., Spanswick, E. L., Sun, T., Symonds, K., Tong, J., Walsh, B., Wei, F., Zhao, D., Zheng, J., Zhu, X., and Zhu, Z.: SMILE definition study report, European Space Agency, ESA/SCI, 1, 2018. a, b
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L.: Magnetospheric Multiscale Overview and Science Objectives, Space Sci. Rev., 199, 5–21, https://doi.org/10.1007/s11214-015-0164-9, 2016. a
Burkholder, B. L., Nykyri, K., and Ma, X.: Use of the L1 Constellation as a Multispacecraft Solar Wind Monitor, J. Geophys. Res.-Space Phys., 125, e27978, https://doi.org/10.1029/2020JA027978, 2020. a, b
Case, N. A. and Wild, J. A.: The location of the Earth's magnetopause: A comparison of modeled position and in situ Cluster data, J. Geophys. Res.-Space Phys., 118, 6127–6135, https://doi.org/10.1002/jgra.50572, 2013. a, b
Chao, J. K., Wu, D. J., Lin, C. H., Yang, Y. H., Wang, X. Y., Kessel, M., Chen, S. H., and Lepping, R. P.: Models for the Size and Shape of the Earth's Magnetopause and Bow Shock, in: Space Weather Study Using Multipoint Techniques, edited by: Lyu, L.-H., p. 127, Elsevier, https://doi.org/10.1016/S0964-2749(02)80212-8, 2002. a
Dandouras, I., Barthe, A., Penou, E., Brunato, S., Rème, H., Kistler, L. M., Bavassano-Cattaneo, M. B., and Blagau, A.: Cluster ion spectrometry (CIS) data in the Cluster Active Archive (CAA), in: The Cluster Active Archive: Studying the Earth's Space Plasma Environment, edited by: Laakso, H., Taylor, M., and Escoubet, C. P., 51–72, Springer, https://doi.org/10.1007/978-90-481-3499-1_3, 2010. a, b
Dorville, N., Belmont, G., Rezeau, L., Grappin, R., and Retinò, A.: Rotational/compressional nature of the magnetopause: Application of the BV technique on a magnetopause case study, J. Geophys. Res.-Space Phys., 119, 1898–1908, https://doi.org/10.1002/2013JA018927, 2014. a
Dušík, Š., Granko, G., Šafránková, J., Němeček, Z., and Jelínek, K.: IMF cone angle control of the magnetopause location: Statistical study, Geophys. Res. Lett., 37, L19103, https://doi.org/10.1029/2010GL044965, 2010. a, b
Elphic, R. C.: Observations of Flux Transfer Events: A Review, Geophys. Monogr. Ser., 90, 225, https://doi.org/10.1029/GM090p0225, 1995. a, b
Escoubet, C. P., Fehringer, M., and Goldstein, M.: Introduction The Cluster mission, Ann. Geophys., 19, 1197–1200, https://doi.org/10.5194/angeo-19-1197-2001, 2001. a, b
Escoubet, C. P., Hwang, K. J., Toledo-Redondo, S., Turc, L., Haaland, S. E., Aunai, N., Dargent, J., Eastwood, J. P., Fear, R. C., Fu, H., Genestreti, K. J., Graham, D. B., Khotyaintsev, Y. V., Lapenta, G., Lavraud, B., Norgren, C., Sibeck, D. G., Varsani, A., Berchem, J., Dimmock, A. P., Paschmann, G., Dunlop, M., Bogdanova, Y. V., Roberts, O., Laakso, H., Masson, A., Taylor, M. G. G. T., Kajdič, P., Carr, C., Dandouras, I., Fazakerley, A., Nakamura, R., Burch, J. L., Giles, B. L., Pollock, C., Russell, C. T., and Torbert, R. B.: Cluster and MMS simultaneous observations of magnetosheath high speed jets and their impact on the magnetopause, Front. Astron. Space Sci., 6, 78, https://doi.org/10.3389/fspas.2019.00078, 2020. a, b
Escoubet, C. P., Masson, A., Laakso, H., Goldstein, M. L., Dimbylow, T., Bogdanova, Y. V., Hapgood, M., Sousa, B., Sieg, D., and Taylor, M. G. G. T.: Cluster After 20 Years of Operations: Science Highlights and Technical Challenges, J. Geophys. Res.-Space Phys., 126, e29474, https://doi.org/10.1029/2021JA029474, 2021. a
Fairfield, D. H.: Average and unusual locations of the Earth's magnetopause and bow shock, J. Geophys. Res., 76, 6700, https://doi.org/10.1029/JA076i028p06700, 1971. a
Fairfield, D. H., Baumjohann, W., Paschmann, G., Luehr, H., and Sibeck, D. G.: Upstream pressure variations associated with the bow shock and their effects on the magnetosphere, J. Geophys. Res., 95, 3773–3786, https://doi.org/10.1029/JA095iA04p03773, 1990. a
Fear, R. C., Trenchi, L., Coxon, J. C., and Milan, S. E.: How Much Flux Does a Flux Transfer Event Transfer?, J. Geophys. Res.-Space Phys., 122, 12310–12327, https://doi.org/10.1002/2017JA024730, 2017. a
Grimes, E. W., Harter, B., Hatzigeorgiu, N., Drozdov, A., Lewis, J. W., Angelopoulos, V., Cao, X., Chu, X., Hori, T., Matsuda, S., Jun, C.-W., Nakamura, S., Kitahara, M., Segawa, T., Miyoshi, Y., and Le Contel, O.: The Space Physics Environment Data Analysis System in Python, Front. Astron. Space Sci., 9, 1020815, https://doi.org/10.3389/fspas.2022.1020815, 2022 (code available at: https://github.com/spedas/pyspedas, last access: August 2024). a
Grimmich, N., Plaschke, F., Archer, M. O., Heyner, D., Mieth, J. Z. D., Nakamura, R., and Sibeck, D. G.: Study of Extreme Magnetopause Distortions Under Varying Solar Wind Conditions, J. Geophys. Res.-Space Phys., 128, e2023JA031603, https://doi.org/10.1029/2023JA031603, 2023a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa
Grimmich, N., Plaschke, F., Archer, M. O., Heyner, D., Mieth, J. Z. D., Nakamura, R., and Sibeck, D. G.: Database: THEMIS magnetopause crossings between 2007 and mid-2022, OSF [data set], https://doi.org/10.17605/OSF.IO/B6KUX, 2023b. a, b
Grimmich, N., Plaschke, F., Grison, B., Prencipe, F., Escoubet, C. P., Archer, M. O., Constantinescu, O. D., Haaland, S., Nakamura, R., Sibeck, D. G., Darrouzet, F., Hayosh, M., and Maggiolo, R.: Database: Cluster Magnetopause Crossings between 2001 and 2020, OSF [data set], https://doi.org/10.17605/OSF.IO/PXCTG, 2024a. a
Grimmich, N., Prencipe, F., Turner, D. L., Liu, T. Z., Plaschke, F., Archer, M. O., Nakamura, R., Sibeck, D. G., Mieth, J. Z. D., Auster, H.-U., Constantinescu, O. D., Fischer, D., and Magnes, W.: Multi Satellite Observation of a Foreshock Bubble Causing an Extreme Magnetopause Expansion, J. Geophys. Res.-Space Phys., 129, e2023JA032052, https://doi.org/10.1029/2023JA032052, 2024b. a, b
Grison, B., Darrouzet, F., Maggiolo, R., Hayosh, M., and Taylor, M.: Analysis of Cluster data with the publicly available GRMB (Geospace Region and Magnetospheric Boundary) dataset, EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024, EGU24-13267, https://doi.org/10.5194/egusphere-egu24-13267, 2024. a, b, c
Grygorov, K., Šafránková, J., Němeček, Z., Pi, G., Přech, L., and Urbář, J.: Shape of the equatorial magnetopause affected by the radial interplanetary magnetic field, Planet. Space Sci., 148, 28–34, https://doi.org/10.1016/j.pss.2017.09.011, 2017. a
Haaland, S., Reistad, J., Tenfjord, P., Gjerloev, J., Maes, L., DeKeyser, J., Maggiolo, R., Anekallu, C., and Dorville, N.: Characteristics of the flank magnetopause: Cluster observations, J. Geophys. Res.-Space Phys., 119, 9019–9037, https://doi.org/10.1002/2014JA020539, 2014. a, b
Haaland, S., Hasegawa, H., Paschmann, G., Sonnerup, B., and Dunlop, M.: 20 Years of Cluster Observations: The Magnetopause, J. Geophys. Res.-Space Phys., 126, e29362, https://doi.org/10.1029/2021JA029362, 2021. a
Howe, H. C. J. and Binsack, J. H.: Explorer 33 and 35 plasma observations of magnetosheath flow, J. Geophys. Res., 77, 3334, https://doi.org/10.1029/JA077i019p03334, 1972. a
Jacobsen, K. S., Phan, T. D., Eastwood, J. P., Sibeck, D. G., Moen, J. I., Angelopoulos, V., McFadden, J. P., Engebretson, M. J., Provan, G., Larson, D., and Fornaçon, K. H.: THEMIS observations of extreme magnetopause motion caused by a hot flow anomaly, J. Geophys. Res.-Space Phys., 114, A08210, https://doi.org/10.1029/2008JA013873, 2009. a
Kavosi, S. and Raeder, J.: Ubiquity of Kelvin-Helmholtz waves at Earth's magnetopause, Nat. Commun., 6, 7019, https://doi.org/10.1038/ncomms8019, 2015. a, b
Kim, H., Nakamura, R., Connor, H. K., Zou, Y., Plaschke, F., Grimmich, N., Walsh, B. M., McWilliams, K. A., and Ruohoniemi, J. M.: Localized Magnetopause Erosion at Geosynchronous Orbit by Reconnection, Geophys. Res. Lett., 51, e2023GL107085, https://doi.org/10.1029/2023GL107085, 2024. a, b
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res.-Space Phys., 110, A02104, https://doi.org/10.1029/2004JA010649, 2005 (data available at: https://omniweb.gsfc.nasa.gov, last access: August 2024). a, b, c
Laakso, H., Taylor, M., and Escoubet, C. P. (Eds.): The Cluster Active Archive, vol. 11 of Astrophysics and Space Science Proceedings, https://doi.org/10.1007/978-90-481-3499-1, 2010 (data available at: https://csa.esac.esa.int/csa-web/, last access: August 2024). a, b, c, d
Laundal, K. M. and Richmond, A. D.: Magnetic Coordinate Systems, Space Sci. Rev., 206, 27–59, https://doi.org/10.1007/s11214-016-0275-y, 2016. a, b
Lavraud, B., Fedorov, A., Budnik, E., Grigoriev, A., Cargill, P. J., Dunlop, M. W., Rème, H., Dandouras, I., and Balogh, A.: Cluster survey of the high-altitude cusp properties: a three-year statistical study, Ann. Geophys., 22, 3009–3019, https://doi.org/10.5194/angeo-22-3009-2004, 2004. a, b
Levy, R. H., Petschek, H. E., and Siscoe, G. L.: Aerodynamic aspects of the magnetospheric flow, AIAA Journal, 2, 2065–2076, https://doi.org/10.2514/3.2745, 1964. a
Lin, R. L., Zhang, X. X., Liu, S. Q., Wang, Y. L., and Gong, J. C.: A three-dimensional asymmetric magnetopause model, J. Geophys. Res.-Space Phys., 115, A04207, https://doi.org/10.1029/2009JA014235, 2010. a, b, c
Liu, T. Z., Hietala, H., Angelopoulos, V., and Turner, D. L.: Observations of a new foreshock region upstream of a foreshock bubble's shock, Geophys. Res. Lett., 43, 4708–4715, https://doi.org/10.1002/2016GL068984, 2016. a
Liu, Z. Q., Lu, J. Y., Kabin, K., Yang, Y. F., Zhao, M. X., and Cao, X.: Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations, J. Geophys. Res.-Space Phys., 117, A07207, https://doi.org/10.1029/2011JA017441, 2012. a, b, c
Liu, Z. Q., Lu, J. Y., Wang, C., Kabin, K., Zhao, J. S., Wang, M., Han, J. P., Wang, J. Y., and Zhao, M. X.: A three-dimensional high Mach number asymmetric magnetopause model from global MHD simulation, J. Geophys. Res.-Space Phys., 120, 5645–5666, https://doi.org/10.1002/2014JA020961, 2015. a
Mann, H. B. and Whitney, D. R.: On a test of whether one of two random variables is stochastically larger than the other, Ann. Math. Stat., 18, 50–60, https://doi.org/10.1214/aoms/1177730491, 1947. a
Merka, J., Szabo, A., Šafránková, J., and Němeček, Z.: Earth's bow shock and magnetopause in the case of a field-aligned upstream flow: Observation and model comparison, J. Geophys. Res.-Space Phys., 108, 1269, https://doi.org/10.1029/2002JA009697, 2003. a
Michael, A. T., Sorathia, K. A., Merkin, V. G., Nykyri, K., Burkholder, B., Ma, X., Ukhorskiy, A. Y., and Garretson, J.: Modeling Kelvin-Helmholtz Instability at the High-Latitude Boundary Layer in a Global Magnetosphere Simulation, Geophys. Res. Lett., 48, e94002, https://doi.org/10.1029/2021GL094002, 2021. a, b
Mieth, J. Z. D., Frühauff, D., and Glassmeier, K.-H.: Statistical analysis of magnetopause crossings at lunar distances, Ann. Geophys., 37, 163–169, https://doi.org/10.5194/angeo-37-163-2019, 2019. a, b
Nguyen, G., Aunai, N., Michotte de Welle, B., Jeandet, A., Lavraud, B., and Fontaine, D.: Massive Multi-Mission Statistical Study and Analytical Modeling of the Earth's Magnetopause: 1. A Gradient Boosting Based Automatic Detection of Near-Earth Regions, J. Geophys. Res.-Space Phys., 127, e29773, https://doi.org/10.1029/2021JA029773, 2022. a
O'Brien, C., Walsh, B. M., Zou, Y., Tasnim, S., Zhang, H., and Sibeck, D. G.: PRIME: a probabilistic neural network approach to solar wind propagation from L1, Front. Astron. Space Sci., 10, 1250779, https://doi.org/10.3389/fspas.2023.1250779, 2023. a
Park, J.-S., Shue, J.-H., Kim, K.-H., Pi, G., Němeček, Z., and Šafránková, J.: Global expansion of the dayside magnetopause for long-duration radial IMF events: Statistical study on GOES observations, J. Geophys. Res.-Space Phys., 121, 6480–6492, https://doi.org/10.1002/2016JA022772, 2016. a
Paschmann, G. and Sonnerup, B. U. Ö.: Proper Frame Determination and Walen Test, ISSI Scientific Reports Series, 8, 65–74, 2008. a
Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Sonnerup, B. U. O., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russel, C. T., and Elphic, R. C.: Plasma acceleration at the earth's magnetopause - Evidence for reconnection, Nature, 282, 243–246, https://doi.org/10.1038/282243a0, 1979. a
Paschmann, G., Øieroset, M., and Phan, T.: In-Situ Observations of Reconnection in Space, Space Sci. Rev., 178, 385–417, https://doi.org/10.1007/s11214-012-9957-2, 2013. a
Paschmann, G., Sonnerup, B. U. Ö., Haaland, S. E., Phan, T. D., and Denton, R. E.: Comparison of Quality Measures for Walén Relation, J. Geophys. Res.-Space Phys., 125, e28044, https://doi.org/10.1029/2020JA028044, 2020. a, b
Pitout, F. and Bogdanova, Y. V.: The Polar Cusp Seen by Cluster, J. Geophys. Res.-Space Phys., 126, e29582, https://doi.org/10.1029/2021JA029582, 2021. a, b, c
Plaschke, F., Glassmeier, K. H., Auster, H. U., Angelopoulos, V., Constantinescu, O. D., Fornaçon, K. H., Georgescu, E., Magnes, W., McFadden, J. P., and Nakamura, R.: Statistical study of the magnetopause motion: First results from THEMIS, J. Geophys. Res.-Space Phys., 114, A00C10, https://doi.org/10.1029/2008JA013423, 2009a. a, b, c, d, e
Plaschke, F., Glassmeier, K. H., Auster, H. U., Constantinescu, O. D., Magnes, W., Angelopoulos, V., Sibeck, D. G., and McFadden, J. P.: Standing Alfvén waves at the magnetopause, Geophys. Res. Lett., 36, L02104, https://doi.org/10.1029/2008GL036411, 2009b. a
Plaschke, F., Glassmeier, K.-H., Sibeck, D. G., Auster, H. U., Constantinescu, O. D., Angelopoulos, V., and Magnes, W.: Magnetopause surface oscillation frequencies at different solar wind conditions, Ann. Geophys., 27, 4521–4532, https://doi.org/10.5194/angeo-27-4521-2009, 2009c. a
Plaschke, F., Hietala, H., Archer, M., Blanco-Cano, X., Kajdič, P., Karlsson, T., Lee, S. H., Omidi, N., Palmroth, M., Roytershteyn, V., Schmid, D., Sergeev, V., and Sibeck, D.: Jets Downstream of Collisionless Shocks, Space Sci. Rev., 214, 81, https://doi.org/10.1007/s11214-018-0516-3, 2018. a
Rème, H., Bosqued, J. M., Sauvaud, J. A., Cros, A., Dandouras, J., Aoustin, C., Bouyssou, J., Camus, T., Cuvilo, J., Martz, C., Medale, J. L., Perrier, H., Romefort, D., Rouzaud, J., D`Uston, C., Mobius, E., Crocker, K., Granoff, M., Kistler, L. M., Popecki, M., Hovestadt, D., Klecker, B., Paschmann, G., Scholer, M., Carlson, C. W., Curtis, D. W., Lin, R. P., McFadden, J. P., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B., Baldetti, P., Belluci, G., Bruno, R., Chionchio, G., di Lellis, A., Shelley, E. G., Ghielmetti, A. G., Lennartsson, W., Korth, A., Rosenbauer, H., Lundin, R., Olsen, S., Parks, G. K., McCarthy, M., and Balsiger, H.: The Cluster Ion Spectrometry (cis) Experiment, Space Sci. Rev., 79, 303–350, https://doi.org/10.1023/A:1004929816409, 1997. a
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, Th., Coeur-Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey, C., Mazelle, C., d'Uston, C., Möbius, E., Kistler, L. M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P., McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B., Baldetti, P., Bruno, R., Chionchio, G., Di Lellis, A., Marcucci, M. F., Pallocchia, G., Korth, A., Daly, P. W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G., Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J.-B., Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Scudder, J., and Sonnerup, B.: First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 19, 1303–1354, https://doi.org/10.5194/angeo-19-1303-2001, 2001. a
Robert, P., Roux, A., Harvey, C. C., Dunlop, M. W., Daly, P. W., and Glassmeier, K.-H.: Tetrahedron Geometric Factors, ISSI Scientific Reports Series, 1, 323–348, 1998. a
Samsonov, A. A., Němeček, Z., Šafránková, J., and Jelínek, K.: Why does the subsolar magnetopause move sunward for radial interplanetary magnetic field?, J. Geophys. Res.-Space Phys., 117, A05221, https://doi.org/10.1029/2011JA017429, 2012. a
Samsonov, A. A., Bogdanova, Y. V., Branduardi-Raymont, G., Safrankova, J., Nemecek, Z., and Park, J. S.: Long-Term Variations in Solar Wind Parameters, Magnetopause Location, and Geomagnetic Activity Over the Last Five Solar Cycles, J. Geophys. Res.-Space Phys., 124, 4049–4063, https://doi.org/10.1029/2018JA026355, 2019. a
Shue, J. H. and Chao, J. K.: The role of enhanced thermal pressure in the earthward motion of the Earth's magnetopause, J. Geophys. Res.-Space Phys., 118, 3017–3026, https://doi.org/10.1002/jgra.50290, 2013. a
Shue, J. H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R., and Kawano, H.: Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17691–17700, https://doi.org/10.1029/98JA01103, 1998. a, b, c, d, e, f, g
Shue, J. H., Chao, J. K., Song, P., McFadden, J. P., Suvorova, A., Angelopoulos, V., Glassmeier, K. H., and Plaschke, F.: Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields, Geophys. Res. Lett., 36, L18112, https://doi.org/10.1029/2009GL039842, 2009. a
Sibeck, D. G., Lopez, R. E., and Roelof, E. C.: Solar wind control of the magnetopause shape, location, and motion, J. Geophys. Res., 96, 5489–5495, https://doi.org/10.1029/90JA02464, 1991. a, b, c, d
Sibeck, D. G., Borodkova, N. L., Schwartz, S. J., Owen, C. J., Kessel, R., Kokubun, S., Lepping, R. P., Lin, R., Liou, K., Lühr, H., McEntire, R. W., Meng, C. I., Mukai, T., Němeček, Z., Parks, G., Phan, T. D., Romanov, S. A., Šafránková, J., Sauvaud, J. A., Singer, H. J., Solovyev, S. I., Szabo, A., Takahashi, K., Williams, D. J., Yumoto, K., and Zastenker, G. N.: Comprehensive study of the magnetospheric response to a hot flow anomaly, J. Geophys. Res., 104, 4577–4594, https://doi.org/10.1029/1998JA900021, 1999. a
Sibeck, D. G., Kudela, K., Lepping, R. P., Lin, R., Němeček, Z., Nozdrachev, M. N., Phan, T. D., Prech, L., Šafránková, J., Singer, H., and Yermolaev, Y.: Magnetopause motion driven by interplanetary magnetic field variations, J. Geophys. Res., 105, 25155–25170, https://doi.org/10.1029/2000JA900109, 2000. a
Soucek, J. and Escoubet, C. P.: Predictive model of magnetosheath plasma flow and its validation against Cluster and THEMIS data, Ann. Geophys., 30, 973–982, https://doi.org/10.5194/angeo-30-973-2012, 2012. a
Staples, F. A., Rae, I. J., Forsyth, C., Smith, A. R. A., Murphy, K. R., Raymer, K. M., Plaschke, F., Case, N. A., Rodger, C. J., Wild, J. A., Milan, S. E., and Imber, S. M.: Do Statistical Models Capture the Dynamics of the Magnetopause During Sudden Magnetospheric Compressions?, J. Geophys. Res.-Space Phys., 125, e27289, https://doi.org/10.1029/2019JA027289, 2020. a, b
Suvorova, A. V., Shue, J. H., Dmitriev, A. V., Sibeck, D. G., McFadden, J. P., Hasegawa, H., Ackerson, K., Jelínek, K., Šafránková, J., and Němeček, Z.: Magnetopause expansions for quasi-radial interplanetary magnetic field: THEMIS and Geotail observations, J. Geophys. Res.-Space Phys., 115, A10216, https://doi.org/10.1029/2010JA015404, 2010. a
Turner, D. L., Eriksson, S., Phan, T. D., Angelopoulos, V., Tu, W., Liu, W., Li, X., Teh, W. L., McFadden, J. P., and Glassmeier, K. H.: Multispacecraft observations of a foreshock-induced magnetopause disturbance exhibiting distinct plasma flows and an intense density compression, J. Geophys. Res.-Space Phys., 116, A04230, https://doi.org/10.1029/2010JA015668, 2011. a
Šafránková, J., Nĕmeček, Z., Dušík, Š., Přech, L., Sibeck, D. G., and Borodkova, N. N.: The magnetopause shape and location: a comparison of the Interball and Geotail observations with models, Ann. Geophys., 20, 301–309, https://doi.org/10.5194/angeo-20-301-2002, 2002. a, b, c, d
Šafránková, J., Dušík, Š., and Němeček, Z.: The shape and location of the high-latitude magnetopause, Adv. Space Res., 36, 1934–1939, https://doi.org/10.1016/j.asr.2004.05.009, 2005. a, b, c
Vuorinen, L., LaMoury, A. T., Hietala, H., and Koller, F.: Magnetosheath Jets Over Solar Cycle 24: An Empirical Model, J. Geophys. Res.-Space Phys., 128, e2023JA031493, https://doi.org/10.1029/2023JA031493, 2023. a, b
Wang, C. and Sun, T.: Methods to derive the magnetopause from soft X-ray images by the SMILE mission, Geosci. Lett., 9, 30, https://doi.org/10.1186/s40562-022-00240-z, 2022. a
Weimer, D. R., Ober, D. M., Maynard, N. C., Collier, M. R., McComas, D. J., Ness, N. F., Smith, C. W., and Watermann, J.: Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res.-Space Phys., 108, 1026, https://doi.org/10.1029/2002JA009405, 2003. a
Zhang, H., Zong, Q., Connor, H., Delamere, P., Facskó, G., Han, D., Hasegawa, H., Kallio, E., Kis, Á., Le, G., Lembège, B., Lin, Y., Liu, T., Oksavik, K., Omidi, N., Otto, A., Ren, J., Shi, Q., Sibeck, D., and Yao, S.: Dayside Transient Phenomena and Their Impact on the Magnetosphere and Ionosphere, Space Sci. Rev., 218, 40, https://doi.org/10.1007/s11214-021-00865-0, 2022. a
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
In our study, we looked at the boundary between the Earth's magnetic field and the...