Articles | Volume 42, issue 2
https://doi.org/10.5194/angeo-42-371-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-42-371-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Cluster spacecrafts' view of the motion of the high-latitude magnetopause
Niklas Grimmich
CORRESPONDING AUTHOR
Institut für Geophysik und Extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
Ferdinand Plaschke
Institut für Geophysik und Extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
Benjamin Grison
Department of Space Physics, Institute of Atmospheric Physics Czech Academy of Sciences, Praha, Czech Republic
Fabio Prencipe
Institut für Geophysik und Extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
Christophe Philippe Escoubet
ESA European Space Research and Technology Centre, Noordwijk, the Netherlands
Martin Owain Archer
Department of Physics, Imperial College London, London, UK
Ovidiu Dragos Constantinescu
Institut für Geophysik und Extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
Institute for Space Sciences, Bucharest, Romania
Stein Haaland
Birkeland Centre for Space Science, University of Bergen, Bergen, Norway
Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
The University Center in Svalbard, Longyearbyen, Norway
Rumi Nakamura
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
David Gary Sibeck
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Fabien Darrouzet
Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Mykhaylo Hayosh
Department of Space Physics, Institute of Atmospheric Physics Czech Academy of Sciences, Praha, Czech Republic
Romain Maggiolo
Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Related authors
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
Ann. Geophys., 43, 151–173, https://doi.org/10.5194/angeo-43-151-2025, https://doi.org/10.5194/angeo-43-151-2025, 2025
Short summary
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind, the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
Gerlinde Timmermann, David Fischer, Hans-Ulrich Auster, Ingo Richter, Benjamin Grison, and Ferdinand Plaschke
EGUsphere, https://doi.org/10.5194/egusphere-2025-4095, https://doi.org/10.5194/egusphere-2025-4095, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
We've compared the amplitude spectral densities of a fluxgate magnetometer (FGM) and an anisotropic magnetoresistive (AMR) magnetometer during ground testing with the amplitude spectral densities obtained in different regions of near-Earth space. The FGM can measure the fields in the different space regions and their fluctuations within a frequency range of 1 mHz to 2.5 Hz. The AMR magnetometer is only suitable for more turbulent regions such as the magnetosheath due to its higher noise levels.
Rumi Nakamura, Thierry Dudok de Wit, Geraint H. Jones, Matt G. G. T. Taylor, Nicolas C. Andre, Charlotte Goetz, Lina Z. Hadid, Laura A. Hayes, Heli Hietala, Caitriona M. Jackman, Larry Kepko, Aurelie Marchaudon, Adam Masters, Mathew Owens, Noora Partamies, Stefaan Poedts, Jonathan Rae, Yuri Shprits, Manuela Temmer, Daniel Verscharen, and Robert F. Wimmer-Schweingruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-3814, https://doi.org/10.5194/egusphere-2025-3814, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Heliophysics spans a wide range of disciplines covering the study of the Sun and the different Solar System bodies, such as Earth and other planets, moons, comets, and asteroids, and their interactions with the Sun, focusing on plasma and atmospheric processes. A grass-roots effort has been recently started toward establishing a European Heliophysics Community (https://www.heliophysics.eu/). This white paper outlines the motivation, priorities, and a future vision of Heliophysics in Europe.
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
Ann. Geophys., 43, 151–173, https://doi.org/10.5194/angeo-43-151-2025, https://doi.org/10.5194/angeo-43-151-2025, 2025
Short summary
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind, the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
Adrian Pöppelwerth, Georg Glebe, Johannes Z. D. Mieth, Florian Koller, Tomas Karlsson, Zoltán Vörös, and Ferdinand Plaschke
Ann. Geophys., 42, 271–284, https://doi.org/10.5194/angeo-42-271-2024, https://doi.org/10.5194/angeo-42-271-2024, 2024
Short summary
Short summary
In the magnetosheath, a near-Earth region of space, we observe increases in plasma velocity and density, so-called jets. As they propagate towards Earth, jets interact with the ambient plasma. We study this interaction with three spacecraft simultaneously to infer their sizes. While previous studies have investigated their size almost exclusively statistically, we demonstrate a new method of determining the sizes of individual jets.
Tomas Karlsson, Ferdinand Plaschke, Austin N. Glass, and Jim M. Raines
Ann. Geophys., 42, 117–130, https://doi.org/10.5194/angeo-42-117-2024, https://doi.org/10.5194/angeo-42-117-2024, 2024
Short summary
Short summary
The solar wind interacts with the planets in the solar system and creates a supersonic shock in front of them. The upstream region of this shock contains many complicated phenomena. One such phenomenon is small-scale structures of strong magnetic fields (SLAMS). These SLAMS have been observed at Earth and are important in determining the properties of space around the planet. Until now, SLAMS have not been observed at Mercury, but we show for the first time that SLAMS also exist there.
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463, https://doi.org/10.5194/angeo-41-449-2023, https://doi.org/10.5194/angeo-41-449-2023, 2023
Short summary
Short summary
The upper detection limit in reciprocal space, the spatial Nyquist limit, is derived for arbitrary spatial dimensions for the wave telescope analysis technique. This is important as future space plasma missions will incorporate larger numbers of spacecraft (>4). Our findings are a key element in planning the spatial distribution of future multi-point spacecraft missions. The wave telescope is a multi-dimensional power spectrum estimator; hence, this can be applied to other fields of research.
Livia R. Alves, Márcio E. S. Alves, Ligia A. da Silva, Vinicius Deggeroni, Paulo R. Jauer, and David G. Sibeck
Ann. Geophys., 41, 429–447, https://doi.org/10.5194/angeo-41-429-2023, https://doi.org/10.5194/angeo-41-429-2023, 2023
Short summary
Short summary
We derive the wave–particle interaction time (IT) equation considering the effects of special relativity theory for whistler-mode chorus waves and relativistic electrons in Earth's radiation belt. Results show that IT has a non-linear dependence on the wave group velocity, electrons' energy, and initial pitch angle. Our results show that the interaction time is generally longer when applying the complete relativistic approach compared to a non-relativistic calculation.
Martin O. Archer, Cara L. Waters, Shafiat Dewan, Simon Foster, and Antonio Portas
Geosci. Commun., 5, 119–123, https://doi.org/10.5194/gc-5-119-2022, https://doi.org/10.5194/gc-5-119-2022, 2022
Short summary
Short summary
Educational research highlights that improved careers education is needed to increase participation in science, technology, engineering, and mathematics (STEM). Current UK careers resources in the space sector, however, are found to perhaps not best reflect the diversity of roles present and may in fact perpetuate misconceptions about the usefulness of science. We, therefore, compile a more diverse set of space-related jobs, which will be used in the development of a new space careers resource.
Weijie Sun, James A. Slavin, Rumi Nakamura, Daniel Heyner, Karlheinz J. Trattner, Johannes Z. D. Mieth, Jiutong Zhao, Qiu-Gang Zong, Sae Aizawa, Nicolas Andre, and Yoshifumi Saito
Ann. Geophys., 40, 217–229, https://doi.org/10.5194/angeo-40-217-2022, https://doi.org/10.5194/angeo-40-217-2022, 2022
Short summary
Short summary
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's Earth flyby. FTE-type flux ropes are a well-known feature of magnetic reconnection on the magnetopause, and they can be used to constrain the location of reconnection X-lines. Our study suggests that the magnetopause X-line passed BepiColombo from the north as it traversed the magnetopause. Moreover, our results also strongly support coalescence creating larger flux ropes by combining smaller ones.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Martin O. Archer, Jennifer DeWitt, Charlotte Thorley, and Olivia Keenan
Geosci. Commun., 4, 147–168, https://doi.org/10.5194/gc-4-147-2021, https://doi.org/10.5194/gc-4-147-2021, 2021
Short summary
Short summary
We explore how best to support school students to experience undertaking research-level physics by evaluating provision in the PRiSE framework of
research in schoolsprojects. These experiences are received by students and teachers much more positively than typical forms of outreach. The intensive support offered is deemed necessary, with all elements appearing equally important. We suggest the framework could be adopted at other institutions applied to their own areas of scientific research.
Martin O. Archer and Jennifer DeWitt
Geosci. Commun., 4, 169–188, https://doi.org/10.5194/gc-4-169-2021, https://doi.org/10.5194/gc-4-169-2021, 2021
Short summary
Short summary
The impacts upon a diverse range of students, teachers, and schools from participating in a programme of protracted university-mentored projects based on cutting-edge physics research are assessed. The lasting impacts on confidence, skills, aspirations, and practice suggest that similar
research in schoolsinitiatives may have a role to play in aiding the increased uptake and diversity of physics/STEM in higher education as well as meaningfully enhancing the STEM environment within schools.
Martin O. Archer
Geosci. Commun., 4, 189–208, https://doi.org/10.5194/gc-4-189-2021, https://doi.org/10.5194/gc-4-189-2021, 2021
Short summary
Short summary
An evaluation of the accessibility and equity of a programme of independent research projects shows that, with the right support from both teachers and active researchers, schools' ability to succeed at undertaking cutting-edge research appears independent of typical societal inequalities.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Martin O. Archer, Natt Day, and Sarah Barnes
Geosci. Commun., 4, 57–67, https://doi.org/10.5194/gc-4-57-2021, https://doi.org/10.5194/gc-4-57-2021, 2021
Short summary
Short summary
We show that integrating evaluation tools both before and after a drop-in engagement activity enables the demonstration of change and, thus, short-term impact. In our case, young families who listened to space sounds exhibited changed language and conceptions about space in their graffiti wall responses afterwards, exemplifying the power of sound in science communication. We suggest that evaluation tools be adopted both before and after drop-in activities in general.
Yasuhito Narita, Ferdinand Plaschke, Werner Magnes, David Fischer, and Daniel Schmid
Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021, https://doi.org/10.5194/gi-10-13-2021, 2021
Short summary
Short summary
The systematic error of calibrated fluxgate magnetometer data is studied for a spinning spacecraft. The major error comes from the offset uncertainty when the ambient magnetic field is low, while the error represents the combination of non-orthogonality, misalignment to spacecraft reference direction, and gain when the ambient field is high. The results are useful in developing future high-precision magnetometers and an error estimate in scientific studies using magnetometer data.
Galina Korotova, David Sibeck, Mark Engebretson, Michael Balikhin, Scott Thaller, Craig Kletzing, Harlan Spence, and Robert Redmon
Ann. Geophys., 38, 1267–1281, https://doi.org/10.5194/angeo-38-1267-2020, https://doi.org/10.5194/angeo-38-1267-2020, 2020
Short summary
Short summary
We used multipoint magnetic field, electric field, plasma, and energetic particle observations to study the spatial, temporal, and spectral characteristics of compressional Pc5 pulsations observed deep within the magnetosphere at the end of a strong magnetic storm. We investigated the mode of the waves and their nodal structure. The energetic particles responded directly to the compressional Pc5 pulsations. We interpret the compressional Pc5 waves in terms of drift-mirror instability.
Ovidiu Dragoş Constantinescu, Hans-Ulrich Auster, Magda Delva, Olaf Hillenmaier, Werner Magnes, and Ferdinand Plaschke
Geosci. Instrum. Method. Data Syst., 9, 451–469, https://doi.org/10.5194/gi-9-451-2020, https://doi.org/10.5194/gi-9-451-2020, 2020
Short summary
Short summary
We propose a gradiometer-based technique for cleaning multi-sensor magnetic field data acquired on board spacecraft. The technique takes advantage on the fact that the maximum-variance direction of many AC disturbances on board spacecraft does not change over time. We apply the proposed technique to the SOSMAG instrument on board GeoKompsat-2A. We analyse the performance and limitations of the technique and discuss in detail how various disturbances are removed.
Alexander Lukin, Anton Artemyev, Evgeny Panov, Rumi Nakamura, Anatoly Petrukovich, Robert Ergun, Barbara Giles, Yuri Khotyaintsev, Per Arne Lindqvist, Christopher Russell, and Robert Strangeway
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-76, https://doi.org/10.5194/angeo-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
We have collected statistics of 81 fast plasma flow events in the magnetotail with clear MMS observations of kinetic Alfven waves (KAWs). We show that KAWs electric field magnitudes correlates with thermal/subthermal electron flux anisotropy: wider energy range of electron anisotropic population corresponds to higher KAWs’ electric field intensity. These results indicate on an important role of KAWs in production of thermal field-aligned electron population of the Earth’s magnetotail.
Cited articles
Alekseev, I. I.: The penetration of interplanetary magnetic and electric fields into the magnetosphere, J. Geomagn. Geoelectr., 38, 1199–1221, https://doi.org/10.5636/jgg.38.1199, 1986. a, b
Alexeev, I. I. and Kalegaev, V. V.: Magnetic field and plasma flow structure near the magnetopause, J. Geophys. Res.-Space Phys., 100, 19267–19276, https://doi.org/10.1029/95JA01345, 1995. a, b
Angelopoulos, V.: The THEMIS Mission, Space Sci. Rev., 141, 5–34, https://doi.org/10.1007/s11214-008-9336-1, 2008. a, b
Archer, M. O., Turner, D. L., Eastwood, J. P., Schwartz, S. J., and Horbury, T. S.: Global impacts of a Foreshock Bubble: Magnetosheath, magnetopause and ground-based observations, Planet. Space Sci., 106, 56–66, https://doi.org/10.1016/j.pss.2014.11.026, 2015. a
Archer, M. O., Hietala, H., Hartinger, M. D., Plaschke, F., and Angelopoulos, V.: Direct observations of a surface eigenmode of the dayside magnetopause, Nat. Commun., 10, 615, https://doi.org/10.1038/s41467-018-08134-5, 2019. a
Aubry, M. P., Russell, C. T., and Kivelson, M. G.: Inward motion of the magnetopause before a substorm, J. Geophys. Res., 75, 7018, https://doi.org/10.1029/JA075i034p07018, 1970. a, b
Balogh, A., Dunlop, M. W., Cowley, S. W. H., Southwood, D. J., Thomlinson, J. G., Glassmeier, K. H., Musmann, G., Luhr, H., Buchert, S., Acuna, M. H., Fairfield, D. H., Slavin, J. A., Riedler, W., Schwingenschuh, K., and Kivelson, M. G.: The Cluster Magnetic Field Investigation, Space Sci. Rev., 79, 65–91, https://doi.org/10.1023/A:1004970907748, 1997. a
Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann, G., Oddy, T., and Schwingenschuh, K.: The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results, Ann. Geophys., 19, 1207–1217, https://doi.org/10.5194/angeo-19-1207-2001, 2001. a
Baumjohann, W. and Treumann, R.: Basic Space Plasma Physics, Imperial College Press, 1997. a
Borovsky, J. E.: The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar-wind monitor at L1, J. Atmos. Solar-Terr. Phy., 177, 2–11, https://doi.org/10.1016/j.jastp.2017.03.014, 2018. a
Branduardi-Raymont, G., Wang, C., C.P. Escoubet, C. P., Adamovic, M., Agnolon, D., Berthomier, M., Carter, J. A., Chen, W., Colangeli, L., Collier, M., Connor, H. K., Dai, L., Dimmock, A., Djazovski, O., Donovan, E., Eastwood, J. P., Enno, G., Giannini, F., Huang, L., Kataria, D., Kuntz, K., Laakso, H., Li, J., Li, L., Lui, T., Loicq, J., Masson, A., Manuel, J., Parmar, A., Piekutowski, T., Read, A. M., Samsonov, A., Sembay, S., Raab, W., Ruciman, C., Shi, J. K., Sibeck, D. G., Spanswick, E. L., Sun, T., Symonds, K., Tong, J., Walsh, B., Wei, F., Zhao, D., Zheng, J., Zhu, X., and Zhu, Z.: SMILE definition study report, European Space Agency, ESA/SCI, 1, 2018. a, b
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L.: Magnetospheric Multiscale Overview and Science Objectives, Space Sci. Rev., 199, 5–21, https://doi.org/10.1007/s11214-015-0164-9, 2016. a
Burkholder, B. L., Nykyri, K., and Ma, X.: Use of the L1 Constellation as a Multispacecraft Solar Wind Monitor, J. Geophys. Res.-Space Phys., 125, e27978, https://doi.org/10.1029/2020JA027978, 2020. a, b
Case, N. A. and Wild, J. A.: The location of the Earth's magnetopause: A comparison of modeled position and in situ Cluster data, J. Geophys. Res.-Space Phys., 118, 6127–6135, https://doi.org/10.1002/jgra.50572, 2013. a, b
Chao, J. K., Wu, D. J., Lin, C. H., Yang, Y. H., Wang, X. Y., Kessel, M., Chen, S. H., and Lepping, R. P.: Models for the Size and Shape of the Earth's Magnetopause and Bow Shock, in: Space Weather Study Using Multipoint Techniques, edited by: Lyu, L.-H., p. 127, Elsevier, https://doi.org/10.1016/S0964-2749(02)80212-8, 2002. a
Dandouras, I., Barthe, A., Penou, E., Brunato, S., Rème, H., Kistler, L. M., Bavassano-Cattaneo, M. B., and Blagau, A.: Cluster ion spectrometry (CIS) data in the Cluster Active Archive (CAA), in: The Cluster Active Archive: Studying the Earth's Space Plasma Environment, edited by: Laakso, H., Taylor, M., and Escoubet, C. P., 51–72, Springer, https://doi.org/10.1007/978-90-481-3499-1_3, 2010. a, b
Dorville, N., Belmont, G., Rezeau, L., Grappin, R., and Retinò, A.: Rotational/compressional nature of the magnetopause: Application of the BV technique on a magnetopause case study, J. Geophys. Res.-Space Phys., 119, 1898–1908, https://doi.org/10.1002/2013JA018927, 2014. a
Dušík, Š., Granko, G., Šafránková, J., Němeček, Z., and Jelínek, K.: IMF cone angle control of the magnetopause location: Statistical study, Geophys. Res. Lett., 37, L19103, https://doi.org/10.1029/2010GL044965, 2010. a, b
Elphic, R. C.: Observations of Flux Transfer Events: A Review, Geophys. Monogr. Ser., 90, 225, https://doi.org/10.1029/GM090p0225, 1995. a, b
Escoubet, C. P., Fehringer, M., and Goldstein, M.: Introduction The Cluster mission, Ann. Geophys., 19, 1197–1200, https://doi.org/10.5194/angeo-19-1197-2001, 2001. a, b
Escoubet, C. P., Hwang, K. J., Toledo-Redondo, S., Turc, L., Haaland, S. E., Aunai, N., Dargent, J., Eastwood, J. P., Fear, R. C., Fu, H., Genestreti, K. J., Graham, D. B., Khotyaintsev, Y. V., Lapenta, G., Lavraud, B., Norgren, C., Sibeck, D. G., Varsani, A., Berchem, J., Dimmock, A. P., Paschmann, G., Dunlop, M., Bogdanova, Y. V., Roberts, O., Laakso, H., Masson, A., Taylor, M. G. G. T., Kajdič, P., Carr, C., Dandouras, I., Fazakerley, A., Nakamura, R., Burch, J. L., Giles, B. L., Pollock, C., Russell, C. T., and Torbert, R. B.: Cluster and MMS simultaneous observations of magnetosheath high speed jets and their impact on the magnetopause, Front. Astron. Space Sci., 6, 78, https://doi.org/10.3389/fspas.2019.00078, 2020. a, b
Escoubet, C. P., Masson, A., Laakso, H., Goldstein, M. L., Dimbylow, T., Bogdanova, Y. V., Hapgood, M., Sousa, B., Sieg, D., and Taylor, M. G. G. T.: Cluster After 20 Years of Operations: Science Highlights and Technical Challenges, J. Geophys. Res.-Space Phys., 126, e29474, https://doi.org/10.1029/2021JA029474, 2021. a
Fairfield, D. H.: Average and unusual locations of the Earth's magnetopause and bow shock, J. Geophys. Res., 76, 6700, https://doi.org/10.1029/JA076i028p06700, 1971. a
Fairfield, D. H., Baumjohann, W., Paschmann, G., Luehr, H., and Sibeck, D. G.: Upstream pressure variations associated with the bow shock and their effects on the magnetosphere, J. Geophys. Res., 95, 3773–3786, https://doi.org/10.1029/JA095iA04p03773, 1990. a
Fear, R. C., Trenchi, L., Coxon, J. C., and Milan, S. E.: How Much Flux Does a Flux Transfer Event Transfer?, J. Geophys. Res.-Space Phys., 122, 12310–12327, https://doi.org/10.1002/2017JA024730, 2017. a
Grimes, E. W., Harter, B., Hatzigeorgiu, N., Drozdov, A., Lewis, J. W., Angelopoulos, V., Cao, X., Chu, X., Hori, T., Matsuda, S., Jun, C.-W., Nakamura, S., Kitahara, M., Segawa, T., Miyoshi, Y., and Le Contel, O.: The Space Physics Environment Data Analysis System in Python, Front. Astron. Space Sci., 9, 1020815, https://doi.org/10.3389/fspas.2022.1020815, 2022 (code available at: https://github.com/spedas/pyspedas, last access: August 2024). a
Grimmich, N., Plaschke, F., Archer, M. O., Heyner, D., Mieth, J. Z. D., Nakamura, R., and Sibeck, D. G.: Study of Extreme Magnetopause Distortions Under Varying Solar Wind Conditions, J. Geophys. Res.-Space Phys., 128, e2023JA031603, https://doi.org/10.1029/2023JA031603, 2023a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa
Grimmich, N., Plaschke, F., Archer, M. O., Heyner, D., Mieth, J. Z. D., Nakamura, R., and Sibeck, D. G.: Database: THEMIS magnetopause crossings between 2007 and mid-2022, OSF [data set], https://doi.org/10.17605/OSF.IO/B6KUX, 2023b. a, b
Grimmich, N., Plaschke, F., Grison, B., Prencipe, F., Escoubet, C. P., Archer, M. O., Constantinescu, O. D., Haaland, S., Nakamura, R., Sibeck, D. G., Darrouzet, F., Hayosh, M., and Maggiolo, R.: Database: Cluster Magnetopause Crossings between 2001 and 2020, OSF [data set], https://doi.org/10.17605/OSF.IO/PXCTG, 2024a. a
Grimmich, N., Prencipe, F., Turner, D. L., Liu, T. Z., Plaschke, F., Archer, M. O., Nakamura, R., Sibeck, D. G., Mieth, J. Z. D., Auster, H.-U., Constantinescu, O. D., Fischer, D., and Magnes, W.: Multi Satellite Observation of a Foreshock Bubble Causing an Extreme Magnetopause Expansion, J. Geophys. Res.-Space Phys., 129, e2023JA032052, https://doi.org/10.1029/2023JA032052, 2024b. a, b
Grison, B., Darrouzet, F., Maggiolo, R., Hayosh, M., and Taylor, M.: Analysis of Cluster data with the publicly available GRMB (Geospace Region and Magnetospheric Boundary) dataset, EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024, EGU24-13267, https://doi.org/10.5194/egusphere-egu24-13267, 2024. a, b, c
Grygorov, K., Šafránková, J., Němeček, Z., Pi, G., Přech, L., and Urbář, J.: Shape of the equatorial magnetopause affected by the radial interplanetary magnetic field, Planet. Space Sci., 148, 28–34, https://doi.org/10.1016/j.pss.2017.09.011, 2017. a
Haaland, S., Reistad, J., Tenfjord, P., Gjerloev, J., Maes, L., DeKeyser, J., Maggiolo, R., Anekallu, C., and Dorville, N.: Characteristics of the flank magnetopause: Cluster observations, J. Geophys. Res.-Space Phys., 119, 9019–9037, https://doi.org/10.1002/2014JA020539, 2014. a, b
Haaland, S., Hasegawa, H., Paschmann, G., Sonnerup, B., and Dunlop, M.: 20 Years of Cluster Observations: The Magnetopause, J. Geophys. Res.-Space Phys., 126, e29362, https://doi.org/10.1029/2021JA029362, 2021. a
Howe, H. C. J. and Binsack, J. H.: Explorer 33 and 35 plasma observations of magnetosheath flow, J. Geophys. Res., 77, 3334, https://doi.org/10.1029/JA077i019p03334, 1972. a
Jacobsen, K. S., Phan, T. D., Eastwood, J. P., Sibeck, D. G., Moen, J. I., Angelopoulos, V., McFadden, J. P., Engebretson, M. J., Provan, G., Larson, D., and Fornaçon, K. H.: THEMIS observations of extreme magnetopause motion caused by a hot flow anomaly, J. Geophys. Res.-Space Phys., 114, A08210, https://doi.org/10.1029/2008JA013873, 2009. a
Kavosi, S. and Raeder, J.: Ubiquity of Kelvin-Helmholtz waves at Earth's magnetopause, Nat. Commun., 6, 7019, https://doi.org/10.1038/ncomms8019, 2015. a, b
Kim, H., Nakamura, R., Connor, H. K., Zou, Y., Plaschke, F., Grimmich, N., Walsh, B. M., McWilliams, K. A., and Ruohoniemi, J. M.: Localized Magnetopause Erosion at Geosynchronous Orbit by Reconnection, Geophys. Res. Lett., 51, e2023GL107085, https://doi.org/10.1029/2023GL107085, 2024. a, b
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res.-Space Phys., 110, A02104, https://doi.org/10.1029/2004JA010649, 2005 (data available at: https://omniweb.gsfc.nasa.gov, last access: August 2024). a, b, c
Laakso, H., Taylor, M., and Escoubet, C. P. (Eds.): The Cluster Active Archive, vol. 11 of Astrophysics and Space Science Proceedings, https://doi.org/10.1007/978-90-481-3499-1, 2010 (data available at: https://csa.esac.esa.int/csa-web/, last access: August 2024). a, b, c, d
Laundal, K. M. and Richmond, A. D.: Magnetic Coordinate Systems, Space Sci. Rev., 206, 27–59, https://doi.org/10.1007/s11214-016-0275-y, 2016. a, b
Lavraud, B., Fedorov, A., Budnik, E., Grigoriev, A., Cargill, P. J., Dunlop, M. W., Rème, H., Dandouras, I., and Balogh, A.: Cluster survey of the high-altitude cusp properties: a three-year statistical study, Ann. Geophys., 22, 3009–3019, https://doi.org/10.5194/angeo-22-3009-2004, 2004. a, b
Levy, R. H., Petschek, H. E., and Siscoe, G. L.: Aerodynamic aspects of the magnetospheric flow, AIAA Journal, 2, 2065–2076, https://doi.org/10.2514/3.2745, 1964. a
Lin, R. L., Zhang, X. X., Liu, S. Q., Wang, Y. L., and Gong, J. C.: A three-dimensional asymmetric magnetopause model, J. Geophys. Res.-Space Phys., 115, A04207, https://doi.org/10.1029/2009JA014235, 2010. a, b, c
Liu, T. Z., Hietala, H., Angelopoulos, V., and Turner, D. L.: Observations of a new foreshock region upstream of a foreshock bubble's shock, Geophys. Res. Lett., 43, 4708–4715, https://doi.org/10.1002/2016GL068984, 2016. a
Liu, Z. Q., Lu, J. Y., Kabin, K., Yang, Y. F., Zhao, M. X., and Cao, X.: Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations, J. Geophys. Res.-Space Phys., 117, A07207, https://doi.org/10.1029/2011JA017441, 2012. a, b, c
Liu, Z. Q., Lu, J. Y., Wang, C., Kabin, K., Zhao, J. S., Wang, M., Han, J. P., Wang, J. Y., and Zhao, M. X.: A three-dimensional high Mach number asymmetric magnetopause model from global MHD simulation, J. Geophys. Res.-Space Phys., 120, 5645–5666, https://doi.org/10.1002/2014JA020961, 2015. a
Mann, H. B. and Whitney, D. R.: On a test of whether one of two random variables is stochastically larger than the other, Ann. Math. Stat., 18, 50–60, https://doi.org/10.1214/aoms/1177730491, 1947. a
Merka, J., Szabo, A., Šafránková, J., and Němeček, Z.: Earth's bow shock and magnetopause in the case of a field-aligned upstream flow: Observation and model comparison, J. Geophys. Res.-Space Phys., 108, 1269, https://doi.org/10.1029/2002JA009697, 2003. a
Michael, A. T., Sorathia, K. A., Merkin, V. G., Nykyri, K., Burkholder, B., Ma, X., Ukhorskiy, A. Y., and Garretson, J.: Modeling Kelvin-Helmholtz Instability at the High-Latitude Boundary Layer in a Global Magnetosphere Simulation, Geophys. Res. Lett., 48, e94002, https://doi.org/10.1029/2021GL094002, 2021. a, b
Mieth, J. Z. D., Frühauff, D., and Glassmeier, K.-H.: Statistical analysis of magnetopause crossings at lunar distances, Ann. Geophys., 37, 163–169, https://doi.org/10.5194/angeo-37-163-2019, 2019. a, b
Nguyen, G., Aunai, N., Michotte de Welle, B., Jeandet, A., Lavraud, B., and Fontaine, D.: Massive Multi-Mission Statistical Study and Analytical Modeling of the Earth's Magnetopause: 1. A Gradient Boosting Based Automatic Detection of Near-Earth Regions, J. Geophys. Res.-Space Phys., 127, e29773, https://doi.org/10.1029/2021JA029773, 2022. a
O'Brien, C., Walsh, B. M., Zou, Y., Tasnim, S., Zhang, H., and Sibeck, D. G.: PRIME: a probabilistic neural network approach to solar wind propagation from L1, Front. Astron. Space Sci., 10, 1250779, https://doi.org/10.3389/fspas.2023.1250779, 2023. a
Park, J.-S., Shue, J.-H., Kim, K.-H., Pi, G., Němeček, Z., and Šafránková, J.: Global expansion of the dayside magnetopause for long-duration radial IMF events: Statistical study on GOES observations, J. Geophys. Res.-Space Phys., 121, 6480–6492, https://doi.org/10.1002/2016JA022772, 2016. a
Paschmann, G. and Sonnerup, B. U. Ö.: Proper Frame Determination and Walen Test, ISSI Scientific Reports Series, 8, 65–74, 2008. a
Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Sonnerup, B. U. O., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russel, C. T., and Elphic, R. C.: Plasma acceleration at the earth's magnetopause - Evidence for reconnection, Nature, 282, 243–246, https://doi.org/10.1038/282243a0, 1979. a
Paschmann, G., Øieroset, M., and Phan, T.: In-Situ Observations of Reconnection in Space, Space Sci. Rev., 178, 385–417, https://doi.org/10.1007/s11214-012-9957-2, 2013. a
Paschmann, G., Sonnerup, B. U. Ö., Haaland, S. E., Phan, T. D., and Denton, R. E.: Comparison of Quality Measures for Walén Relation, J. Geophys. Res.-Space Phys., 125, e28044, https://doi.org/10.1029/2020JA028044, 2020. a, b
Pitout, F. and Bogdanova, Y. V.: The Polar Cusp Seen by Cluster, J. Geophys. Res.-Space Phys., 126, e29582, https://doi.org/10.1029/2021JA029582, 2021. a, b, c
Plaschke, F., Glassmeier, K. H., Auster, H. U., Angelopoulos, V., Constantinescu, O. D., Fornaçon, K. H., Georgescu, E., Magnes, W., McFadden, J. P., and Nakamura, R.: Statistical study of the magnetopause motion: First results from THEMIS, J. Geophys. Res.-Space Phys., 114, A00C10, https://doi.org/10.1029/2008JA013423, 2009a. a, b, c, d, e
Plaschke, F., Glassmeier, K. H., Auster, H. U., Constantinescu, O. D., Magnes, W., Angelopoulos, V., Sibeck, D. G., and McFadden, J. P.: Standing Alfvén waves at the magnetopause, Geophys. Res. Lett., 36, L02104, https://doi.org/10.1029/2008GL036411, 2009b. a
Plaschke, F., Glassmeier, K.-H., Sibeck, D. G., Auster, H. U., Constantinescu, O. D., Angelopoulos, V., and Magnes, W.: Magnetopause surface oscillation frequencies at different solar wind conditions, Ann. Geophys., 27, 4521–4532, https://doi.org/10.5194/angeo-27-4521-2009, 2009c. a
Plaschke, F., Hietala, H., Archer, M., Blanco-Cano, X., Kajdič, P., Karlsson, T., Lee, S. H., Omidi, N., Palmroth, M., Roytershteyn, V., Schmid, D., Sergeev, V., and Sibeck, D.: Jets Downstream of Collisionless Shocks, Space Sci. Rev., 214, 81, https://doi.org/10.1007/s11214-018-0516-3, 2018. a
Rème, H., Bosqued, J. M., Sauvaud, J. A., Cros, A., Dandouras, J., Aoustin, C., Bouyssou, J., Camus, T., Cuvilo, J., Martz, C., Medale, J. L., Perrier, H., Romefort, D., Rouzaud, J., D`Uston, C., Mobius, E., Crocker, K., Granoff, M., Kistler, L. M., Popecki, M., Hovestadt, D., Klecker, B., Paschmann, G., Scholer, M., Carlson, C. W., Curtis, D. W., Lin, R. P., McFadden, J. P., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B., Baldetti, P., Belluci, G., Bruno, R., Chionchio, G., di Lellis, A., Shelley, E. G., Ghielmetti, A. G., Lennartsson, W., Korth, A., Rosenbauer, H., Lundin, R., Olsen, S., Parks, G. K., McCarthy, M., and Balsiger, H.: The Cluster Ion Spectrometry (cis) Experiment, Space Sci. Rev., 79, 303–350, https://doi.org/10.1023/A:1004929816409, 1997. a
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, Th., Coeur-Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey, C., Mazelle, C., d'Uston, C., Möbius, E., Kistler, L. M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P., McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B., Baldetti, P., Bruno, R., Chionchio, G., Di Lellis, A., Marcucci, M. F., Pallocchia, G., Korth, A., Daly, P. W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G., Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J.-B., Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Scudder, J., and Sonnerup, B.: First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 19, 1303–1354, https://doi.org/10.5194/angeo-19-1303-2001, 2001. a
Robert, P., Roux, A., Harvey, C. C., Dunlop, M. W., Daly, P. W., and Glassmeier, K.-H.: Tetrahedron Geometric Factors, ISSI Scientific Reports Series, 1, 323–348, 1998. a
Samsonov, A. A., Němeček, Z., Šafránková, J., and Jelínek, K.: Why does the subsolar magnetopause move sunward for radial interplanetary magnetic field?, J. Geophys. Res.-Space Phys., 117, A05221, https://doi.org/10.1029/2011JA017429, 2012. a
Samsonov, A. A., Bogdanova, Y. V., Branduardi-Raymont, G., Safrankova, J., Nemecek, Z., and Park, J. S.: Long-Term Variations in Solar Wind Parameters, Magnetopause Location, and Geomagnetic Activity Over the Last Five Solar Cycles, J. Geophys. Res.-Space Phys., 124, 4049–4063, https://doi.org/10.1029/2018JA026355, 2019. a
Shue, J. H. and Chao, J. K.: The role of enhanced thermal pressure in the earthward motion of the Earth's magnetopause, J. Geophys. Res.-Space Phys., 118, 3017–3026, https://doi.org/10.1002/jgra.50290, 2013. a
Shue, J. H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R., and Kawano, H.: Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17691–17700, https://doi.org/10.1029/98JA01103, 1998. a, b, c, d, e, f, g
Shue, J. H., Chao, J. K., Song, P., McFadden, J. P., Suvorova, A., Angelopoulos, V., Glassmeier, K. H., and Plaschke, F.: Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields, Geophys. Res. Lett., 36, L18112, https://doi.org/10.1029/2009GL039842, 2009. a
Sibeck, D. G., Lopez, R. E., and Roelof, E. C.: Solar wind control of the magnetopause shape, location, and motion, J. Geophys. Res., 96, 5489–5495, https://doi.org/10.1029/90JA02464, 1991. a, b, c, d
Sibeck, D. G., Borodkova, N. L., Schwartz, S. J., Owen, C. J., Kessel, R., Kokubun, S., Lepping, R. P., Lin, R., Liou, K., Lühr, H., McEntire, R. W., Meng, C. I., Mukai, T., Němeček, Z., Parks, G., Phan, T. D., Romanov, S. A., Šafránková, J., Sauvaud, J. A., Singer, H. J., Solovyev, S. I., Szabo, A., Takahashi, K., Williams, D. J., Yumoto, K., and Zastenker, G. N.: Comprehensive study of the magnetospheric response to a hot flow anomaly, J. Geophys. Res., 104, 4577–4594, https://doi.org/10.1029/1998JA900021, 1999. a
Sibeck, D. G., Kudela, K., Lepping, R. P., Lin, R., Němeček, Z., Nozdrachev, M. N., Phan, T. D., Prech, L., Šafránková, J., Singer, H., and Yermolaev, Y.: Magnetopause motion driven by interplanetary magnetic field variations, J. Geophys. Res., 105, 25155–25170, https://doi.org/10.1029/2000JA900109, 2000. a
Soucek, J. and Escoubet, C. P.: Predictive model of magnetosheath plasma flow and its validation against Cluster and THEMIS data, Ann. Geophys., 30, 973–982, https://doi.org/10.5194/angeo-30-973-2012, 2012. a
Staples, F. A., Rae, I. J., Forsyth, C., Smith, A. R. A., Murphy, K. R., Raymer, K. M., Plaschke, F., Case, N. A., Rodger, C. J., Wild, J. A., Milan, S. E., and Imber, S. M.: Do Statistical Models Capture the Dynamics of the Magnetopause During Sudden Magnetospheric Compressions?, J. Geophys. Res.-Space Phys., 125, e27289, https://doi.org/10.1029/2019JA027289, 2020. a, b
Suvorova, A. V., Shue, J. H., Dmitriev, A. V., Sibeck, D. G., McFadden, J. P., Hasegawa, H., Ackerson, K., Jelínek, K., Šafránková, J., and Němeček, Z.: Magnetopause expansions for quasi-radial interplanetary magnetic field: THEMIS and Geotail observations, J. Geophys. Res.-Space Phys., 115, A10216, https://doi.org/10.1029/2010JA015404, 2010. a
Turner, D. L., Eriksson, S., Phan, T. D., Angelopoulos, V., Tu, W., Liu, W., Li, X., Teh, W. L., McFadden, J. P., and Glassmeier, K. H.: Multispacecraft observations of a foreshock-induced magnetopause disturbance exhibiting distinct plasma flows and an intense density compression, J. Geophys. Res.-Space Phys., 116, A04230, https://doi.org/10.1029/2010JA015668, 2011. a
Šafránková, J., Nĕmeček, Z., Dušík, Š., Přech, L., Sibeck, D. G., and Borodkova, N. N.: The magnetopause shape and location: a comparison of the Interball and Geotail observations with models, Ann. Geophys., 20, 301–309, https://doi.org/10.5194/angeo-20-301-2002, 2002. a, b, c, d
Šafránková, J., Dušík, Š., and Němeček, Z.: The shape and location of the high-latitude magnetopause, Adv. Space Res., 36, 1934–1939, https://doi.org/10.1016/j.asr.2004.05.009, 2005. a, b, c
Vuorinen, L., LaMoury, A. T., Hietala, H., and Koller, F.: Magnetosheath Jets Over Solar Cycle 24: An Empirical Model, J. Geophys. Res.-Space Phys., 128, e2023JA031493, https://doi.org/10.1029/2023JA031493, 2023. a, b
Wang, C. and Sun, T.: Methods to derive the magnetopause from soft X-ray images by the SMILE mission, Geosci. Lett., 9, 30, https://doi.org/10.1186/s40562-022-00240-z, 2022. a
Weimer, D. R., Ober, D. M., Maynard, N. C., Collier, M. R., McComas, D. J., Ness, N. F., Smith, C. W., and Watermann, J.: Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res.-Space Phys., 108, 1026, https://doi.org/10.1029/2002JA009405, 2003. a
Zhang, H., Zong, Q., Connor, H., Delamere, P., Facskó, G., Han, D., Hasegawa, H., Kallio, E., Kis, Á., Le, G., Lembège, B., Lin, Y., Liu, T., Oksavik, K., Omidi, N., Otto, A., Ren, J., Shi, Q., Sibeck, D., and Yao, S.: Dayside Transient Phenomena and Their Impact on the Magnetosphere and Ionosphere, Space Sci. Rev., 218, 40, https://doi.org/10.1007/s11214-021-00865-0, 2022. a
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
In our study, we looked at the boundary between the Earth's magnetic field and the...