Articles | Volume 42, issue 2
https://doi.org/10.5194/angeo-42-331-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-42-331-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity analysis of a Martian atmospheric column model with data from the Mars Science Laboratory
Space and Earth Observation Center, Finnish Meteorological Institute, Helsinki, Finland
Ari-Matti Harri
Space and Earth Observation Center, Finnish Meteorological Institute, Helsinki, Finland
Mark Paton
Space and Earth Observation Center, Finnish Meteorological Institute, Helsinki, Finland
Jouni Polkko
Space and Earth Observation Center, Finnish Meteorological Institute, Helsinki, Finland
Maria Hieta
Space and Earth Observation Center, Finnish Meteorological Institute, Helsinki, Finland
Hannu Savijärvi
Space and Earth Observation Center, Finnish Meteorological Institute, Helsinki, Finland
Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
Related authors
No articles found.
Maria Hieta, Iina Jaakonaho, Jouni Polkko, Andreas Lorek, Stephen Garland, Jean-Pierre de Vera, Maria Genzer, and Ari-Matti Harri
Geosci. Instrum. Method. Data Syst., 13, 337–351, https://doi.org/10.5194/gi-13-337-2024, https://doi.org/10.5194/gi-13-337-2024, 2024
Short summary
Short summary
This paper describes new humidity measurements performed with the humidity instruments of the MSL, Mars 2020 and ExoMars missions. Special facilities are needed to create Martian conditions, and a measurement campaign was performed at the German Aerospace Center (DLR) to obtain datasets for REMS-H, MEDA HS and METEO-H instruments. The results from the campaign improved the humidity data we receive from MEDA HS/Perseverance and can further improve the existing Martian relative humidity data.
Walter Schmidt, Ari-Matti Harri, Timo Nousiainen, Harri Hohti, Lasse Johansson, Olli Ojanperä, Erkki Viitala, Jarkko Niemi, Jani Turpeinen, Erkka Saukko, Topi Rönkkö, and Pekka Lahti
Geosci. Instrum. Method. Data Syst., 9, 397–406, https://doi.org/10.5194/gi-9-397-2020, https://doi.org/10.5194/gi-9-397-2020, 2020
Short summary
Short summary
Combining short-time forecast models, standardized interfaces to a wide range of environment detectors and a flexible user access interface, CITYZER provides decision-making authorities and private citizens with reliable information about the near-future development of critical environmental parameters like air quality and rain. The system can be easily adapted to different areas or different parameters. Alarms for critical situations can be set and used to support authority decisions.
Mark Paton, Ari-Matti Harri, Oliver Vierkens, and Hannu Savijärvi
Geosci. Instrum. Method. Data Syst., 8, 251–263, https://doi.org/10.5194/gi-8-251-2019, https://doi.org/10.5194/gi-8-251-2019, 2019
Short summary
Short summary
A software application for streamlining investigations of the Martian atmosphere is described. The main components are a 1-D model of the Martian atmosphere, observations of the Martian atmosphere and a software wrapper. We verify our model using the application. The model and observations agree except over the winter solstice where mechanical heating of the atmosphere, from downward flowing air, is likely warming the atmosphere. We update our model to include this effect.
Laura Rontu, Emily Gleeson, Petri Räisänen, Kristian Pagh Nielsen, Hannu Savijärvi, and Bent Hansen Sass
Adv. Sci. Res., 14, 195–215, https://doi.org/10.5194/asr-14-195-2017, https://doi.org/10.5194/asr-14-195-2017, 2017
Short summary
Short summary
This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the NWP model, without compromising on computational efficiency. Fast physically based radiation parametrizations are also valuable for high-resolution ensemble forecasting.
Tuomas Kynkäänniemi, Osku Kemppinen, Ari-Matti Harri, and Walter Schmidt
Geosci. Instrum. Method. Data Syst., 6, 217–229, https://doi.org/10.5194/gi-6-217-2017, https://doi.org/10.5194/gi-6-217-2017, 2017
Short summary
Short summary
The new wind reconstruction algorithm developed in this article extends the amount of available sols from the Viking Lander 1 (VL1) mission from 350 to 2245. The reconstruction of wind measurement data enables the study of both short-term phenomena, such as daily variations in wind conditions or dust devils, and long-term phenomena, such as the seasonal variations in Martian tides.
Ari-Matti Harri, Konstantin Pichkadze, Lev Zeleny, Luis Vazquez, Walter Schmidt, Sergey Alexashkin, Oleg Korablev, Hector Guerrero, Jyri Heilimo, Mikhail Uspensky, Valery Finchenko, Vyacheslav Linkin, Ignacio Arruego, Maria Genzer, Alexander Lipatov, Jouni Polkko, Mark Paton, Hannu Savijärvi, Harri Haukka, Tero Siili, Vladimir Khovanskov, Boris Ostesko, Andrey Poroshin, Marina Diaz-Michelena, Timo Siikonen, Matti Palin, Viktor Vorontsov, Alexander Polyakov, Francisco Valero, Osku Kemppinen, Jussi Leinonen, and Pilar Romero
Geosci. Instrum. Method. Data Syst., 6, 103–124, https://doi.org/10.5194/gi-6-103-2017, https://doi.org/10.5194/gi-6-103-2017, 2017
Short summary
Short summary
Investigations of Mars – its atmosphere, surface and interior – require simultaneous, distributed in situ measurements. We have developed an innovative prototype of the Mars Network Lander (MNL), a small lander/penetrator with a 20 % payload mass fraction. MNL features an innovative Entry, Descent and Landing System to increase reliability and reduce the system mass. It is ideally suited for piggy-backing on spacecraft, for network missions and pathfinders for high-value landed missions.
J. Köhler, R. F. Wimmer-Schweingruber, J. Appel, B. Ehresmann, C. Zeitlin, D. M. Hassler, G. Reitz, D. E. Brinza, S. Böttcher, E. Böhm, S. Burmeister, J. Guo, A.-M. Harri, H. Kahanpää, J. Krauss, H. Lohf, C. Martin, D. Matthiä, A. Posner, and S. Rafkin
Ann. Geophys., 34, 133–141, https://doi.org/10.5194/angeo-34-133-2016, https://doi.org/10.5194/angeo-34-133-2016, 2016
Short summary
Short summary
The Radiation Assessment Detector (RAD), on board the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. In this work we compare predicted electron/positron spectra with the signal measured by RAD.
We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics.
O. Kemppinen, J. E. Tillman, W. Schmidt, and A.-M. Harri
Geosci. Instrum. Method. Data Syst., 2, 61–69, https://doi.org/10.5194/gi-2-61-2013, https://doi.org/10.5194/gi-2-61-2013, 2013
M. D. Paton, A.-M. Harri, T. Mäkinen, and H. Savijärvi
Geosci. Instrum. Method. Data Syst., 2, 17–27, https://doi.org/10.5194/gi-2-17-2013, https://doi.org/10.5194/gi-2-17-2013, 2013
Related subject area
Subject: Terrestrial planets systems | Keywords: Mars
Influence of gravity waves on the climatology of high-altitude Martian carbon dioxide ice clouds
Erdal Yiğit, Alexander S. Medvedev, and Paul Hartogh
Ann. Geophys., 36, 1631–1646, https://doi.org/10.5194/angeo-36-1631-2018, https://doi.org/10.5194/angeo-36-1631-2018, 2018
Short summary
Short summary
Carbon dioxide (CO2) clouds have been frequently observed in the Martian middle atmosphere. There are still uncertainties concerning the formation of the clouds. Using an atmospheric model for Mars, including a gravity wave parameterization, we assess the role of gravity waves in cloud formation. Simulations suggest that gravity wave processes constitute a necessary physical mechanism for CO2 cloud formation in the Martian upper atmosphere during all seasons.
Cited articles
Blackadar, A. K.: The vertical distribution of wind and turbulent exchange in a neutral atmosphere, J. Geophys. Res. (1896–1977), 67, 3095–3102, https://doi.org/10.1029/JZ067i008p03095, 1962. a
Delage, Y. and Girard, C.: Stability functions correct at the free convection limit and consistent for for both the surface and Ekman layers, Bound.-Lay. Meteorol., 58, 19–31, 1992. a
Fischer, E., Martínez, G. M., Rennó, N. O., Tamppari, L. K., and Zent, A. P.: Relative Humidity on Mars: New Results From the Phoenix TECP Sensor, J. Geophys. Res.-Planets, 124, 2780–2792, https://doi.org/10.1029/2019JE006080, 2019. a, b
Gómez-Elvira, J., Armiens, C., Castañer, L., Domínguez, M., Genzer, M., Gómez, F., Haberle, R., Harri, A. M., Jiménez, V., Kahanpää, H., Kowalski, L., Lepinette, A., Martín, J., Martínez-Frías, J., McEwan, I., Mora, L., Moreno, J., Navarro, S., de Pablo, M. A., Peinado, V., Peña, A., Polkko, J., Ramos, M., Renno, N. O., Ricart, J., Richardson, M., Rodríguez-Manfredi, J., Romeral, J., Sebastián, E., Serrano, J., de la Torre Juárez, M., Torres, J., Torrero, F., Urquí, R., Vázquez, L., Velasco, T., Verdasca, J., Zorzano, M. P., and Martín-Torres, J.: REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Sci. Rev., 170, 583–640, https://doi.org/10.1007/s11214-012-9921-1, 2012. a, b
Hamilton, V. E., Vasavada, A. R., Sebastián, E., de la Torre Juárez, M., Ramos, M., Armiens, C., Arvidson, R. E., Carrasco, I., Christensen, P. R., De Pablo, M. A., Goetz, W., Gómez-Elvira, J., Lemmon, M. T., Madsen, M. B., Martín-Torres, F. J., Martínez-Frías, J., Molina, A., Palucis, M. C., Rafkin, S. C. R., Richardson, M. I., Yingst, R. A., and Zorzano, M.-P.: Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater, J. Geophys. Res.-Planets, 119, 745–770, https://doi.org/10.1002/2013JE004520, 2014. a, b
Harri, A.-M., Genzer, M., Kemppinen, O., Gomez-Elvira, J., Haberle, R., Polkko, J., Savijärvi, H., Rennó, N., Rodriguez-Manfredi, J. A., Schmidt, W., Richardson, M., Siili, T., Paton, M., Torre-Juarez, M. D., Mäkinen, T., Newman, C., Rafkin, S., Mischna, M., Merikallio, S., Haukka, H., Martin-Torres, J., Komu, M., Zorzano, M.-P., Peinado, V., Vazquez, L., and Urqui, R.: Mars Science Laboratory relative humidity observations: Initial results, J. Geophys. Res.-Planets, 119, 2132–2147, https://doi.org/10.1002/2013JE004514, 2014a. a, b, c
Harri, A.-M., Genzer, M., Kemppinen, O., Kahanpää, H., Gomez-Elvira, J., Rodriguez-Manfredi, J. A., Haberle, R., Polkko, J., Schmidt, W., Savijärvi, H., Kauhanen, J., Atlaskin, E., Richardson, M., Siili, T., Paton, M., de la Torre Juarez, M., Newman, C., Rafkin, S., Lemmon, M. T., Mischna, M., Merikallio, S., Haukka, H., Martin-Torres, J., Zorzano, M.-P., Peinado, V., Urqui, R., Lapinette, A., Scodary, A., Mäkinen, T., Vazquez, L., Rennó, N., and the REMS/MSL Science Team: Pressure observations by the Curiosity rover: Initial results, J. Geophys. Res.-Planets, 119, 82–92, https://doi.org/10.1002/2013JE004423, 2014b. a, b
Jakosky, B. M., Zent, A. P., and Zurek, R. W.: The Mars Water Cycle: Determining the Role of Exchange with the Regolith, Icarus, 130, 87–95, 1997. a
Kauhanen, J., Siili, T., Järvenoja, S., and Savijärvi, H.: The Mars limited area model and simulations of atmospheric circulations for the Phoenix landing area and season of operation, J. Geophys. Res., E00A14, https://doi.org/10.1029/2007JE003011, 2008. a
Kieffer, H. H., Jakosky, B. M., and Snyder, C. W.: The planet Mars: from antiquity to present, in: Mars, edited by: George, M., University of Arizona Press, 1–32, https://ui.adsabs.harvard.edu/abs/1992mars.book....1K, 1992a. a
Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S. (Eds.): Mars, University of Arizona Press, https://ui.adsabs.harvard.edu/abs/1992mars.book..835Z, 1992b.
Leino, J., Harri, A.-M., Paton, M., Polkko, J., Hieta, M., and Savijärvi, H.: Derived data products analyzed and presented in the manuscript “Sensitivity analysis of a Martian atmospheric column model with data from the Mars Science Laboratory”, Finnish Meteorological Institute [data set], https://doi.org/10.57707/FMI-B2SHARE.CAEC9FAFFD1A4166938715A0A8DA9125, 2024. a
Lemmon, M., Guzewich, S., Battalio, J., Malin, M., Vicente-Retortillo, A., Zorzano, M.-P., Martín-Torres, J., Sullivan, R., Maki, J., Smith, M., and Bell, J.: The Mars Science Laboratory record of optical depth measurements via solar imaging, Icarus, 408, 115 821, https://doi.org/10.1016/j.icarus.2023.115821, 2024. a, b
Louis, J. F.: A parametric model of vertical eddy fluxes in the atmosphere, Bound.-Lay. Meteorol., 17, 187–202, 1979. a
Manabe, S. and Wetherald, R. T.: Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity, J. Atmos. Sci., 24, 241–259, https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2, 1967. a
Martínez, G. M., Newman, C. N., De Vicente-Retortillo, A., Fischer, E., Renno, N. O., Richardson, M. I., Fairén, A. G., Genzer, M., Guzewich, S. D., Haberle, R. M., Harri, A. M., Kemppinen, O., Lemmon, M. T., Smith, M. D., de la Torre-Juárez, M., and Vasavada, A. R.: The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Sci. Rev., 212, 295–338, https://doi.org/10.1007/s11214-017-0360-x, 2017. a, b, c, d, e, f
McConnochie, T. H., Smith, M. D., Wolff, M. J., Bender, S., Lemmon, M., Wiens, R. C., Maurice, S., Gasnault, O., Lasue, J., Meslin, P.-Y., Harri, A.-M., Genzer, M., Kemppinen, O., Martínez, G. M., DeFlores, L., Blaney, D., Johnson, J. R., and Bell, J. F.: Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy, Icarus, 307, 294–326, https://doi.org/10.1016/j.icarus.2017.10.043, 2018. a, b, c, d
Millour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., Navarro, T., Montabone, L., Lefevre, F., Montmessin, F., Chaufray, J.-Y., Lopez-Valverde, M., Gonzalez-Galindo, F., Lewis, S., Read, P., Desjean, M.-C., and MCD/GCM Development Team: The Mars Climate Database (MCD version 5.3), in: EGU General Assembly Conference Abstracts, https://ui.adsabs.harvard.edu/abs/2017EGUGA..1912247M, p. 12247, 2017. a
Montmessin, F., Smith, M. D., Langevin, Y., Mellon, M. T., and Fedorova, A.: The Water Cycle, Cambridge Planetary Science, 338–373, https://doi.org/10.1017/9781139060172.011, 2017. a, b
Navarro, T., Madeleine, J.-B., Forget, F., Spiga, A., Millour, E., Montmessin, F., and Määttänen, A.: Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds, J. Geophys. Res.-Planets, 119, 1479–1495, https://doi.org/10.1002/2013JE004550, 2014. a
Paton, M., Harri, A.-M., Vierkens, O., and Savijärvi, H.: A user-orientated column modelling framework for efficient analyses of the Martian atmosphere, Geosci. Instrum. Method. Data Syst., 8, 251–263, https://doi.org/10.5194/gi-8-251-2019, 2019. a
Richardson, M. I. and Wilson, R. J.: Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model, J. Geophys. Res.-Planets, 107, 7-1–7-28, https://doi.org/10.1029/2001JE001536, 2002. a
Savijärvi, H.: A model study of the PBL structure on Mars and the Earth., Contributions to Atmospheric Physics/Beitraege zur Physik der Atmosphaere, 64, 219–229, 1991. a
Savijärvi, H.: Mars Boundary Layer Modeling: Diurnal Moisture Cycle and Soil Properties at the Viking Lander 1 Site, Icarus, 117, 120–127, https://doi.org/10.1006/icar.1995.1146, 1995. a, b
Savijärvi, H.: A model study of the atmospheric boundary layer in the Mars pathfinder lander conditions, Q. J. Roy. Meteor. Soc., 125, 483–493, https://doi.org/10.1002/qj.49712555406, 1999. a, b
Savijärvi, H. and Harri, A.-M.: Water vapor adsorption on Mars, Icarus, 357, 114 270, https://doi.org/10.1016/j.icarus.2020.114270, 2021. a, b, c
Savijärvi, H. and Määttänen, A.: Boundary-layer simulations for the Mars Phoenix lander site, Q. J. Roy. Meteor. Soc., 136, 1497–1505, https://doi.org/10.1002/qj.650, 2010. a
Savijärvi, H. and Siili, T.: The Martian slope winds and the nocturnal PBL jet, J. Atmos. Sci., 50, 77–88, 1993. a
Savijärvi, H., Paton, M., and Harri, A.-M.: New column simulations for the Viking landers: Winds, fog, frost, adsorption?, Icarus, 310, 48–53, https://doi.org/10.1016/j.icarus.2017.11.007, 2018. a
Savijärvi, H., McConnochie, T. H., Harri, A.-M., and Paton, M.: Water vapor mixing ratios and air temperatures for three martian years from Curiosity, Icarus, 326, 170–175, https://doi.org/10.1016/j.icarus.2019.03.020, 2019b. a, b, c
Savijärvi, H., Martinez, G., Fischer, E., Renno, N., Tamppari, L., Zent, A., and Harri, A.-M.: Humidity observations and column simulations for a warm period at the Mars Phoenix lander site: Constraining the adsorptive properties of regolith, Icarus, 343, 113 688, https://doi.org/10.1016/j.icarus.2020.113688, 2020a. a, b, c
Savijärvi, H., Martinez, G., Harri, A.-M., and Paton, M.: Curiosity observations and column model integrations for a martian global dust event, Icarus, 337, 113 515, https://doi.org/10.1016/j.icarus.2019.113515, 2020b. a, b
Savijärvi, H. I., Harri, A.-M., and Kemppinen, O.: Mars Science Laboratory diurnal moisture observations and column simulations, J. Geophys. Res.-Planets, 120, 1011–1021, https://doi.org/10.1002/2014JE004732, 2015. a, b, c, d
Siili, T., Haberle, R., Murphy, J., and Savijarvi, H.: Modelling of the combined late-winter ice cap edge and slope winds in Mars' Hellas and Argyre regions, Planet. Space Sci., 47, 951–970, https://doi.org/10.1016/S0032-0633(99)00016-1, 1999. a
Steele, L. J., Lewis, S. R., Patel, M. R., Montmessin, F., Forget, F., and Smith, M. D.: The seasonal cycle of water vapour on Mars from assimilation of Thermal Emission Spectrometer data, Icarus, 237, 97–115, https://doi.org/10.1016/j.icarus.2014.04.017, 2014. a
Stull, R. B.: An Introduction to Boundary Layer Meteorology, vol. 13 of Atmospheric and Oceanographic Sciences Library, Springer Netherlands, Dordrecht, ISBN 9027727694, 1988. a
Vasavada, A. R., Piqueux, S., Lewis, K. W., Lemmon, M. T., and Smith, M. D.: Thermophysical properties along Curiosity's traverse in Gale crater, Mars, derived from the REMS ground temperature sensor, Icarus, 284, 372–386, https://doi.org/10.1016/j.icarus.2016.11.035, 2017. a
Viúdez-Moreiras, D., Newman, C. E., Forget, F., Lemmon, M., Banfield, D., Spiga, A., Lepinette, A., Rodriguez-Manfredi, J. A., Gómez-Elvira, J., Pla-García, J., Muller, N., Grott, M., and the TWINS/InSight team: Effects of a Large Dust Storm in the Near-Surface Atmosphere as Measured by InSight in Elysium Planitia, Mars. Comparison With Contemporaneous Measurements by Mars Science Laboratory, J. Geophys. Res.-Planets, 125, e2020JE006 493, https://doi.org/10.1029/2020JE006493, 2020. a
Zent, A. P.: The Phoenix TECP relative humidity sensor, in: Eighth International Conference on Mars, https://ui.adsabs.harvard.edu/abs/2014LPICo1791.1474Z, Abstract 1474, 2014. a
Zurek, R. W., Barnes, J. R., Haberle, R. M., Pollack, J. B., Tillman, J. E., and Leovy, C. B.: Dynamics of the atmosphere of Mars, in: Mars, edited by: George, M., University of Arizona Press, https://ui.adsabs.harvard.edu/abs/1992mars.book..835Z, 835–934, 1992. a
Short summary
The 1-D column model has been used extensively in studying the Martian atmosphere. In this study, we investigated the sensitivity of the column model to its initialization. The results of the model were compared with Curiosity rover measurements. The initial value of airborne dust and surface temperature had the greatest influence on the temperature prediction, while the initial atmospheric moisture content and the shape of the initial moisture profile modified the humidity prediction the most.
The 1-D column model has been used extensively in studying the Martian atmosphere. In this...