Articles | Volume 41, issue 1
Regular paper
24 Jan 2023
Regular paper |  | 24 Jan 2023

Machine learning detection of dust impact signals observed by the Solar Orbiter

Andreas Kvammen, Kristoffer Wickstrøm, Samuel Kociscak, Jakub Vaverka, Libor Nouzak, Arnaud Zaslavsky, Kristina Rackovic Babic, Amalie Gjelsvik, David Pisa, Jan Soucek, and Ingrid Mann

Related authors

Interferometric Imaging with EISCAT_3D for Fine-Scale In-Beam Incoherent Scatter Spectra Measurements
Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer Hatch, and Karl M. Laundal
EGUsphere,,, 2024
Short summary
Improving the Magic constant – data-based calibration of phased array radars
Theresa Rexer, Björn Gustavsson, Juha Vierinen, Andres Spicher, Devin Ray Huyghebaert, Andreas Kvammen, Robert Gillies, and Asti Bhatt
Geosci. Instrum. Method. Data Syst. Discuss.,,, 2024
Preprint under review for GI
Short summary
Auroral classification ergonomics and the implications for machine learning
Derek McKay and Andreas Kvammen
Geosci. Instrum. Method. Data Syst., 9, 267–273,,, 2020
Short summary

Related subject area

Subject: Small bodies (dwarf planets, asteroids, comets) to dust | Keywords: Interplanetary dust
Impact Ionization Double Peaks Analyzed in High Temporal Resolution on Solar Orbiter
Samuel Kočiščák, Ingrid Mann, Nicole Meyer-Vernet, Audun Theodorsen, Jakub Vaverka, and Arnaud Zaslavsky
EGUsphere,,, 2023
Short summary
Dust sputtering within the inner heliosphere: a modelling study
Carsten Baumann, Margaretha Myrvang, and Ingrid Mann
Ann. Geophys., 38, 919–930,,, 2020
Short summary
Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter
Ingrid Mann, Libor Nouzák, Jakub Vaverka, Tarjei Antonsen, Åshild Fredriksen, Karine Issautier, David Malaspina, Nicole Meyer-Vernet, Jiří Pavlů, Zoltan Sternovsky, Joan Stude, Shengyi Ye, and Arnaud Zaslavsky
Ann. Geophys., 37, 1121–1140,,, 2019
Short summary

Cited articles

Alain, G. and Bengio, Y.: Understanding intermediate layers using linear classifier probes, ArXiv,, 2016. a
Aubier, M., Meyer-Vernet, N., and Pedersen, B.: Shot noise from grain and particle impacts in Saturn's ring plane, Geophys. Res. Lett., 10, 5–8, 1983. a
Babic, K. R., Zaslavsky, A., Issautier, K., Meyer-Vernet, N., and Onic, D.: An analytical model for dust impact voltage signals and its application to STEREO/WAVES data, Astron. Astrophys., 659, A15,, 2022. a
Boser, B. E., Guyon, I. M., and Vapnik, V. N.: A training algorithm for optimal margin classifiers, in: Proceedings of the fifth annual workshop on Computational learning theory, Association for Computing Machinery, 144–152,, 1992. a
Bougeret, J.-L., Kaiser, M. L., Kellogg, P. J., Manning, R., Goetz, K., Monson, S., Monge, N., Friel, L., Meetre, C., Perche, C., Sitruk, L., and Hoang, S.: Waves: The radio and plasma wave investigation on the Wind spacecraft, Space Sci. Rev., 71, 231–263, 1995. a
Short summary
Collisional fragmentation of asteroids, comets and meteoroids is the main source of dust in the solar system. The dust distribution is however uncharted and the role of dust in the solar system is largely unknown. At present, the interplanetary medium is explored by the Solar Orbiter spacecraft. We present a novel method, based on artificial intelligence, that can be used for detecting dust impacts in Solar Orbiter observations with high accuracy, advancing the study of dust in the solar system.