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Abstract. This article presents the results of automatic de-
tection of dust impact signals observed by the Solar Orbiter
– Radio and Plasma Waves instrument.

A sharp and characteristic electric field signal is observed
by the Radio and Plasma Waves instrument when a dust parti-
cle impacts the spacecraft at high velocity. In this way, ∼ 5–
20 dust impacts are daily detected as the Solar Orbiter trav-
els through the interplanetary medium. The dust distribution
in the inner solar system is largely uncharted and statistical
studies of the detected dust impacts will enhance our under-
standing of the role of dust in the solar system.

It is however challenging to automatically detect and sepa-
rate dust signals from the plural of other signal shapes for two
main reasons. Firstly, since the spacecraft charging causes
variable shapes of the impact signals, and secondly because
electromagnetic waves (such as solitary waves) may induce
resembling electric field signals.

In this article, we propose a novel machine learning-based
framework for detection of dust impacts. We consider two
different supervised machine learning approaches: the sup-
port vector machine classifier and the convolutional neu-
ral network classifier. Furthermore, we compare the perfor-
mance of the machine learning classifiers to the currently
used on-board classification algorithm and analyze 2 years
of Radio and Plasma Waves instrument data.

Overall, we conclude that detection of dust impact sig-
nals is a suitable task for supervised machine learning tech-
niques. The convolutional neural network achieves the high-
est performance with 96 %± 1 % overall classification accu-
racy and 94 %± 2 % dust detection precision, a significant
improvement to the currently used on-board classifier with
85 % overall classification accuracy and 75 % dust detection
precision. In addition, both the support vector machine and
the convolutional neural network classifiers detect more dust
particles (on average) than the on-board classification algo-
rithm, with 16 %± 1 % and 18 %± 8 % detection enhance-
ment, respectively.

The proposed convolutional neural network classifier (or
similar tools) should therefore be considered for post-
processing of the electric field signals observed by the Solar
Orbiter.

1 Introduction

1.1 The dust population in the inner solar system

The interplanetary dust population in the inner solar system
(≤ 1 AU) is formed by collisional fragmentation of asteroids,
comets and meteoroids. The meteoroids and the larger dust
particles are in bound orbits around the Sun and their life-
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time is limited by collisions, while the smaller particles that
form through collisional fragmentation are repelled from the
Sun by the radiation pressure force (Mann et al., 2004). The
sources and sinks of the interplanetary dust particles are well
studied at the orbit of Earth (Grün et al., 1985), while there
have been few observations inside 1 AU until recent years.

Model calculations show that the number density of dust
within 1 AU is diminished by collisional destruction (Ishi-
moto, 2000). However, there are a number of uncertainties
that enter the model calculations since the dust collision rates
depend both on the dust number density distribution and on
the relative velocities between the dust particles. These pa-
rameters are generally unknown inside the orbit of the Earth
and the estimated sizes of the fragmented dust particles are
currently based on empirical relations, inferred from labora-
tory measurements of accelerated dust particles (Mann and
Czechowski, 2005). Furthermore, there is an additional dust
population with an interstellar origin that streams through the
solar system. The interstellar dust distribution is largely un-
known and thus complicates the analysis of the interplanetary
dust population. Remote observations of the zodiacal light
and the Fraunhofer corona (F-corona) provide some infor-
mation of the dust population within 1 AU, but mainly of the
larger (> µm) dust particles (Mann et al., 2004). For all these
reasons, in situ measurements are needed in order to better
understand the role of dust in the inner solar system.

1.2 Exploration of the inner solar system

At present, the inner solar system is explored by the
Parker Solar Probe (Szalay et al., 2020), launched 12 Au-
gust 2018, and the Solar Orbiter (Müller et al., 2020),
launched 10 February 2020. Systematic studies of the dust
flux near 1 AU are conducted with the Solar Terrestrial Re-
lations Observatory (STEREO) (Zaslavsky et al., 2012) and
Wind (Malaspina et al., 2014). The first analyses show that
a large fraction of the observed dust particles are repelled
from the Sun, i.e., the dust particles are in unbound orbits
(Zaslavsky et al., 2021; Szalay et al., 2020; Malaspina et al.,
2020). Mann and Czechowski (2021) used model calcula-
tions to explain the impact rates observed by the Parker Solar
Probe. The dust production was modeled by collisional frag-
mentation near the Sun and the dust trajectories were cal-
culated with included radiation pressure and Lorentz force
terms. Mann and Czechowski (2021) showed that the ob-
served impact rates largely agree with the model calculations
for dust > 100 nm and proposed that the differences may be
explained by the influence of smaller particles and of other
dust components, such as dust in bound orbits and interstellar
dust.

In this work, we analyze data acquired by the Solar Or-
biter. The spacecraft orbits the Sun in an elliptic orbit with
a period of approximately 6 months. At perihelion, the Solar
Orbiter reaches a minimum solar distance of 0.28 AU, just
within the perihelion of the Mercury orbit. The expected mis-

sion duration is 7 years, with a possible 3-year extension. The
Solar Orbiter will thus provide long-term, in situ observa-
tions of the environment in the inner solar system with mul-
tiple instruments. One of these instruments is the Radio and
Plasma Waves instrument, allowing observations of the cos-
mic dust flux with typical diameters ranging from ∼ 100 to
∼ 500 nm (Zaslavsky et al., 2021).

1.3 Radio and plasma waves instruments for dust
detection

Radio and plasma waves instruments (i.e., antennas) have
been used for studying dust in the solar system since the Voy-
ager mission (Gurnett et al., 1983; Aubier et al., 1983). A
dust impact is observed by the spacecraft antennas as a sharp
and characteristic electric field signal, produced by the im-
pact ionization process.

The impact ionization process occurs when dust parti-
cles hit a target in space with impact speeds on the order
of ∼ km s−1 or larger, impact speeds which are typical for
space missions in the interplanetary medium. The kinetic en-
ergy of the impact is transferred into deformation, shattering,
melting and vaporization of the dust projectile – and target
material, producing a cloud of free electrons and ions on the
surface of the spacecraft. Laboratory measurements (Collette
et al., 2014) and model calculations (Hornung et al., 2000) in-
dicate that the free-charge yield depends on multiple param-
eters, where the most important are the dust impact velocity,
the dust mass, and the material of both the dust projectile
and the target (the spacecraft surface) (Mann et al., 2019).
The forming cloud of charged particles is partly expanding
into the ambient solar wind and is partly recollected by the
spacecraft. This induces the characteristic electric field sig-
nal, hereafter referred to as the dust impact signal/waveform.

Radio and plasma waves instruments allow for the en-
tire spacecraft body to serve as a dust detector, providing a
large collection area in comparison to dedicated dust detec-
tion instruments. Thus, radio and plasma waves instruments
can provide dust distribution estimates based on thousands
of dust impacts each year, statistical products that are diffi-
cult to acquire by dedicated dust instruments. Still, radio and
plasma waves instruments have lower sensitivities than ded-
icated dust detectors (Zaslavsky, 2015) and the shape of the
dust impact waveform is highly dependent on the potential
difference between the spacecraft and the ambient plasma
(Vaverka et al., 2017). This complicates the analysis of the
dust distribution in the solar system since statistical studies
rely on automatic dust detection with high accuracy, which
is difficult to attain with the software currently in use.

1.4 Machine learning classification of time series data

In this article, we present a machine learning-based frame-
work as a novel method for detecting dust impact signals in
radio and plasma waves instrument data. Machine learning
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methods, in particular neural networks in the recent decade,
have been extensively used for challenging time series classi-
fication problems, such as: speech recognition (Trosten et al.,
2019), heart rate monitoring (Wickstrøm et al., 2022) and hu-
man activity classification (Villar et al., 2016).

A neural network has previously been used for selecting
the signals of interest observed by the WAVES instrument on
board the Wind spacecraft (Bougeret et al., 1995). An unsu-
pervised method (self-organizing maps) was used for iden-
tifying and categorizing plasma waves in the magnetic field
data observed by the MMS1 spacecraft (Vech and Malaspina,
2021). Still, no machine learning tools have been developed
for classifying dust impacts in radio and plasma waves in-
strument data, although the characteristic signal produced by
the impact ionization process is distinctive and could there-
fore be suitable for machine learning detection.

1.5 Motivation and article structure

The main motivation for this work was to develop a dedi-
cated dust detection tool that can be used to automatically
process the large amount of data acquired by the Radio and
Plasma Waves instrument on board the Solar Orbiter. The
aim was to develop a classifier with a high overall classifica-
tion accuracy on a balanced data set that can make statistical
studies more reliable and easier to conduct. For this project,
we defined high accuracy to be (& 95 %) after some initial
testing. We considered (& 95 %) accuracy to be satisfactory
for meaningful statistical studies and a significant improve-
ment to the currently used classification system. In order to
achieve this objective, we used supervised machine learning
techniques to develop the dust classifiers, trained and tested
on a set of 3000 manually labeled observations.

The remaining of this article is structured as follows. Sec-
tion 2 explains the Solar Orbiter – Radio and Plasma Waves
observations and the on-board algorithm that is currently
used for dust impact detection. Section 3 describes the pro-
cedure that was used for developing the machine learning
classifiers, from the downloaded data to the training and test-
ing of the classifiers. Section 4 investigates the performance
of the classifiers and includes the resulting dust impact rates,
calculated by analyzing 2 years of automatically classified
Solar Orbiter data. Finally, Sect. 5 presents the overall con-
clusions of this project.

2 Observations and data acquisition

2.1 The Radio and Plasma Waves (RPW) Instrument
and the Time Domain Sampler (TDS) receiver

This work focuses on electric field signals (i.e., waveforms)
observed by the Radio and Plasma Waves (RPW) instrument
on board the Solar Orbiter (Maksimovic et al., 2020). The
RPW instrument consists of three antennas operating syn-
chronously and the measured electric potential is recorded

by the Time Domain Sampler (TDS) receiver unit (Soucek
et al., 2021).

The TDS receiver is designed to capture plasma waves
(such as ion acoustic and Langmuir waves) in the frequency
range 200 Hz–100 kHz, in addition to the dust impact signals
(Soucek et al., 2021). The antenna voltages are converted to
electric field values using the antenna effective lengths but
are otherwise uncalibrated. We consider only signals sam-
pled with a sampling rate of 262.1 kHz in snapshots of 16 384
time steps, acquired when the TDS receiver was operating in
the XLD1 mode.

The XLD1 mode is the most commonly used observa-
tional mode of the RPW–TDS system (Soucek et al., 2021).
XLD1 is a hybrid mode, where channel 3 (CH 3) is operat-
ing in monopole mode, while channel 1 (CH 1) and channel 2
(CH 2) are operating in dipole mode:
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where Vi −VSC denotes the potential difference between an-
tenna i and the spacecraft body along the antenna boom with
unit vector L̂i and effective lengthLi . For this work however,
the three RPW antenna signals are all converted to monopole
electric field signals (E1, E2, E3) by the following conver-
sion:
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The Solar Orbiter RPW–TDS detection threshold is ∼ 5 mV,
allowing dust impact identification of the cosmic dust flux
with typical diameters ranging from ∼ 100 to ∼ 500 nm (Za-
slavsky et al., 2021).
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Figure 1. Waveforms recorded by the TDS receiver and measured by one of the RPW antennas. The signal label, classified by the TDS
classification algorithm, is included for each snapshot in the subplot titles. The top row presents dust waveforms: (a) is a clean dust impact
waveform; (b) shows a dust impact that saturates the receiver unit (or reaches the non-linearity limit); and (c) presents a weak dust impact
signal that is strongly affected by noise. The middle row presents ambiguous waveforms: (d) might be a dust impact, but information
is limited by the signal framing; (e) is likely a dust impact, but the signal shape resembles solitary waves and is strongly affected by
noise; and (f) might be a dust impact, but noise and possible electromagnetic waves make the signal difficult to interpret. The bottom row
presents waveforms without dust: (g) shows Langmuir waves, characterized by the high-frequency E-field oscillations with a lower-frequency
amplitude modulation; (h) presents solitary waves, which sometimes resemble dust impact waveforms; and (i) shows a signal dominated by
noise, without any clear features. Note that the full (63 ms) snapshots are zoomed to 15 ms intervals around the interesting features and that
the signal amplitudes are normalized to ± 1 and centered around zero for illustrative purposes.

2.2 The Triggered Snapshot WaveForms (TSWF) data
product and the TDS classifier

For this project, we use the Triggered Snapshot WaveForms
(TSWF) data product, processed with software version 2.1.1
and acquired over a 25-month period, spanning between
15 June 2020 to 14 July 2022. The TSWF data product con-
sists of signal packets (63 ms snapshots) that are down-linked
only if the classification algorithm on board the Solar Orbiter
is triggered. The accuracy of the on-board classification al-
gorithm is therefore important in order to optimize the data
transfer and provide reliable data products for statistical anal-
ysis.

The input to the on-board classification algorithm, here-
after named the TDS classifier or the TDS classification al-

gorithm, is the 63 ms signal packet, while the output is cat-
egorized into one out of three labels: dust, wave or other.
Figure 1 presents a few examples of recorded snapshots with
included labels, as classified by the TDS classification algo-
rithm. The TDS classifier assigns the label based on three
extracted features as follows:

1. The snapshot peak amplitude (Vmax)

2. The ratio of the peak amplitude to the median absolute
value of the signal (Vmax/Vmed)

3. The full width half maximum (BW) of the main spectral
peak, identified by analyzing the discrete Fourier trans-
form of the signal.
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Figure 2. A dust waveform observed by antenna 2 on 8 Septem-
ber 2021. The panels illustrate the different stages of the pre-
processing procedure. (a) The electric field offset is removed and
the signal is centered around 0 mV m−1. (b) The signal is filtered by
a median filter over seven time steps to reduce the high-frequency
noise. (c) The signal is compressed by a factor of 4 to reduce the
data size. (d) The waveform is normalized by the maximum abso-
lute value of the signal in order to ease the parameter optimization
of the machine learning classifier. Note the waveform is zoomed to
a 15 ms time period around the dust impact in order to better visual-
ize the impact shape modification by the pre-processing procedure.

The signal label is then determined by comparing the ex-
tracted feature values against configurable thresholds. The
threshold criterion reflects that observations of waves are typ-
ically narrow band (low BW) and the peak of the signal is not
much larger than the median value (low Vmax/Vmed). In con-
trast, dust observations are sharp non-periodic signals (high
BW) that generally have a high maximum to median ampli-
tude ratio (high Vmax/Vmed). For more detailed descriptions
of the TDS classifier, see Soucek et al. (2021).

Figure 1 illustrates that it is challenging to detect and sep-
arate dust signals from the plural of other signal shapes. In
particular, the dust waveform in panel (c) is classified as
other, while the Langmuir wave and solitary wave snapshots
in panels (g) and (h) are erroneously classified as dust by the
TDS classification algorithm. For more information on ob-
servations of Langmuir and ion acoustic waves in the Solar
Orbiter data, see e.g., Soucek et al. (2021), and for an anal-
ysis of Wind observations of electrostatic solitary waves, see
Malaspina et al. (2013).

3 Machine learning-based framework for automatic
dust impact detection

The goal of the machine learning classifier is to take a
monopole RPW snapshot as an input and automatically out-
put if the signal contains a dust impact or not. For this pur-
pose, we use a supervised classifier. A supervised classifier
relies on manually labeled data to learn (i.e., train) the func-
tion that maps the input observation (the electric field signal)
to the output label. For this work, we focus exclusively on
detecting dust impact signals, we therefore use the binary la-
bels: dust or no dust. Additional labels, such as: ion-acoustic
waves, Langmuir waves and solitary waves, could however
be implemented in a similar machine learning-based frame-
work.

3.1 Data pre-processing for machine learning
classification

In order to construct a balanced data set, we selected ∼ 1500
waveforms classified as dust and ∼ 1500 waveforms classi-
fied as wave/other by the TDS classification algorithm. The
signals were randomly drawn from the TDS data archive and
acquired between 15 June 2020 to 16 December 2021. The
TDS signals were then pre-processed to standardize the input
to the classifier and speed up the training. Standardized data
further reduces bias effects and makes the manual labeling of
the signals easier to conduct. For this work, a four-step pre-
processing procedure was used independently on each an-
tenna signal, the pre-processing procedure applied on a sam-
ple signal is illustrated in Fig. 2.

1. Remove the signal offset. The electric field offset is re-
moved by subtracting the raw signal with the median
of a heavily filtered version of the raw data. A sliding
median filter over 21 time steps was selected by visual
inspection of the noise characteristics. The removal of
the electric field offset centers the signal around zero
and reduces bias effects from offset waveforms.

2. Filter the data. The signal is filtered using a sliding
median filter over seven time steps in order to re-
duce the high-frequency noise. The seven time-step fil-
ter was selected by inspecting the power spectrum of
impact signals and by noticing that most information
above (fN = 35 kHz) is buried in noise, although the
TDS sampling frequency is higher (fs = 262.1 kHz),
thus making a filter length (< fs/fN ≈ 7.5) appropriate
without significant loss of information.

3. Compress the data. The signal is re-sampled with a
compression factor of 4 using linear 1-dimensional in-
terpolation. The compression is done to speed up the
training of the classifier, resulting in a re-sampling
from 16 384 to 4096 time steps.
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Figure 3. Data flow, from the TDS data sets to the machine learning performance metrics. The diagram illustrates the data flow by the
black arrows and the applied process by the arrow label. The cylinders indicate the signal waveforms and the cylinder color indicates the
associated label. The gray circles mark data transformation processes. The random draw of the TDS data and the pre-processing is explained
in Sect. 3.1, while the manual labeling is described in Sect. 3.2. A description of the randomization and splitting of the manually labeled
data into a training and a testing set is included in Sect. 3.3. Sections 3.4 and 3.5 explain the training and testing of the machine learning
classifiers. Finally, the performances of the machine learning classifiers are compared and evaluated in Sect. 4.1.

4. Normalize the signal. The data are normalized to be be-
tween −1 and 1 by dividing all data samples with the
maximum absolute value of the signal. The normaliza-
tion makes the machine learning classifier more robust
to variations in the signal strength and eases the param-
eter optimization during training.

3.2 Manual waveform labeling

Manually labeled data are used both to train the machine
learning classifiers and to test the performance of the trained
models. Thus, great care is needed in order to construct a
high-quality labeled data set, without significant contamina-
tion of corrupted data files, biases and mislabeled signals.

We manually labeled the data into either dust or no dust.
Each signal was displayed without indications of the previ-
ously assigned label by the TDS classifier in order to reduce
bias effects. Furthermore, a zoom function was used to inves-
tigate the areas of interest, and options were included both
to correct labeling mistakes by the user and to indicate am-
biguous signals that do not clearly fit into any label (dust or
no dust). Appendix A presents the graphical user interface
(GUI) that was used to label the 3000 observations.

It should be noted that 134 signals (i.e., 4.5 %), out of
3000 manually labeled waveforms, were marked as ambigu-

ous and did not clearly fit into either the dust or no dust la-
bel, see the middle row of Fig. 1 for ambiguous examples.
Furthermore, the manual waveform labeling was done by
one scientist, although with consultations with other experts.
Thus, it is to be expected that different scientists will dis-
agree on a proportion (up to 5 %) of the manual labels. The
disagreement level could possibly be reduced if several ex-
perts labeled the same data set, and the labeling consensus
was used as the effective waveform label.

3.3 Developing the machine learning classifiers

The manually labeled data were split into a training set (con-
taining 80 % of the data) and a testing set (with the remain-
ing 20 %). The training data are used to optimize the free
parameters of the machine learning classifiers with respect
to the assigned labels, while the testing data are used as an
independent set to evaluate the performance of the trained
classifiers. The performance of a machine learning classifier
is quantified by comparing the outputs of the trained model
to the labels of the testing data. Figure 3 illustrates the data
flow, from the TDS data sets to the machine learning perfor-
mance metrics.

There are numerous machine learning techniques that are
suitable for time series classification. In this work, we focus
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Figure 4. (a) The (1× 2) feature vectors extracted from all (2400)
observations in the training data, the associated labels are indicated
in green (dust) and red (no dust). (b) The SVM decision line is
defined as a second-order polynomial, obtained by minimizing the
non-separable SVM cost function. The optimized SVM decision
line appears to be reasonable, and most observations are separable
in the training data.

on two well-known techniques: the support vector machine
(SVM), described in Sect. 3.4, and the convolutional neural
network (CNN), discussed in Sect. 3.5.

3.4 The support vector machine (SVM)

The support vector machine (Boser et al., 1992; Cortes and
Vapnik, 1995) is a robust and versatile classification algo-
rithm, considered to be one of the most influential approaches
in supervised learning (Goodfellow et al., 2016). SVMs learn
the decision hyperplane that maximizes the discriminative
power between the observations categorized into two classes
(in this case, dust or no dust). However, SVMs are highly de-
pendent on the representation of the data and often achieve
sub-optimal performance on high-dimensional data (when
used directly). In this case, the observations from three an-
tenna measurements, each with 4096 time steps, are both
high-dimensional and noisy (each time step contains little in-
formation). It is therefore common to extract important char-
acteristics (i.e., features) from the data to provide the SVM
with compactly represented information with less noise and
redundancies.

3.4.1 Feature extraction

In order to develop a baseline machine learning classifier,
comparable to the on-board TDS classification algorithm, a
simple 2-dimensional SVM classifier was considered. Thus,
every observation with dimension (3× 4096) is represented
by a 2-dimensional feature vector (1× 2). After some initial
testing, we selected two features that had a high discrimina-
tive power between the dust and no dust observations.

1. The standard deviation. The mean standard deviation is
calculated over the three antenna channels, each with
4096 time steps. The standard deviation is an appropri-
ate feature since normalized dust signals typically have
a lower mean standard deviation than normalized no
dust signals.

2. The convolution ratio. The log10 value of the convolu-
tion ratio (|conv|max/|conv|median) is calculated, where
|conv| is the absolute values of the convolution of the
antenna signals with a normalized Gaussian of width
0.5 ms. |conv|max is the maximum value of |conv|, while
|conv|median is the median. The convolution ratio was se-
lected as a feature since the dust signals typically have
a larger convolution ratio than the no dust signals. The
Gaussian width of 0.5 ms was experimentally found to
give high correlations with dust impact signals.

3.4.2 Training the support vector machine

The two features (standard deviation and convolution ratio)
were extracted from all observations in the training data. The
decision hyperplane, in this 2-dimensional case a decision
line, is defined by a polynomial of degree 2 that is optimized
by minimizing the non-separable SVM cost function, see
e.g., Theodoridis and Koutroumbas (2009) for details. The
SVM classifier was trained with a slack variable factor of 1
and equal weighting between the dust and no dust observa-
tions. The 2-dimensional SVM is computationally inexpen-
sive to optimize with a training time of ∼ 1 s on a modern
laptop. Figure 4 illustrates the training of the SVM classifier.

3.4.3 Testing the support vector machine

The performance of the trained SVM classifier is evaluated
using the independent testing data, i.e., the remaining man-
ually labeled data (20 %) that were not used for training the
classifier. Figure 5 presents the SVM classification perfor-
mance on the testing data.

Overall, the SVM classifier achieves a classification accu-
racy of 94 % on the testing data using the 2-dimensional fea-
ture vectors. Note that the inclusion of additional extracted
features can possibly enhance the SVM performance. Sev-
eral additional features can be considered, such as the mean
amplitude of the signal, the range between the signal max-
imum and minimum values and the cross-correlation length
(the time lag to the first zero crossing).
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Figure 5. (a) The (1× 2) feature vectors extracted from the testing data (600 observations with hidden labels). (b) The testing data are
classified using the trained SVM decision line, where all observations within the polynomial line are classified as dust, while all observations
outside are classified as no dust. (c) The “true” labels (from the manual labeling) are revealed. It is clear that some observations are confused,
predominantly near the decision line. Still, the SVM classifier achieves an overall classification accuracy of 94 %, calculated by comparing
the outputs from the SVM classification (b) to the “true” labels (c).

3.4.4 Explainability of the support vector machine

Ideally, we want to develop a machine learning classifier
that not only has a high accuracy, but also makes decisions
that are understandable for human experts (Holzinger et al.,
2019). In other words, we want to be able to explain why
the machine learning classifier selected the predicted class
for a given observation. In machine learning, this is often
referred to as the explainability of the trained classifier. Fig-
ure 5 presents the testing data in the 2-D feature vector space,
but this plot gives no clear indications of how different signal
shapes are distributed and which signatures are confused by
the SVM classifier. In order to better understand the decisions
made by the SVM classifier, the signal examples in Fig. 1 are
studied in detail. The analysis is presented in Fig. 6.

It should be noted that the signal examples in Fig. 6 are
not representative for the general distribution of observations
in the 2-D feature vector space, since most observations are
clustered in distinct dust and no dust regions, as can be seen
in Fig. 5. Figure 6 focuses mostly on signal examples that are
challenging to classify. Still, Fig. 6 indicates that the SVM
classifier provides mostly comprehensible outputs, but might
have difficulties classifying weak dust impact signals and sig-
nals with important signatures located at the edge of the snap-
shot frame.

3.5 The convolutional neural network (CNN)

Convolutional neural networks are algorithms designed for
processing grid-like data and have achieved premium perfor-
mance on a number of different tasks in the recent decade,
such as image (He et al., 2016; Kvammen et al., 2020), video
(Karpathy et al., 2014) and time series (Wang et al., 2017;
Wickstrøm et al., 2021) classification.

3.5.1 Feature extraction

Unlike the SVM, the CNN does not require pre-defined fea-
ture extraction routines. Instead, the CNN extracts the fea-
tures based on a chain of convolution operations and auto-
matically optimizes the convolution filters based on the train-
ing data and the associated labels.

For this work, we employed the three-layer fully convolu-
tional network architecture presented in Wang et al. (2017)
and suggested for time series classification after extensive
testing (Wickstrøm et al., 2022; Fawaz et al., 2020; Karim
et al., 2019). The rectified linear unit (ReLU) function (Glo-
rot et al., 2011) was used as the activation function and Batch
Normalization (BN) (Ioffe and Szegedy, 2015) was used at
each convolutional layer in order to regularize the network
and accelerate the training process. Figure 7 presents the em-
ployed CNN architecture.
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Figure 6. The signal examples are presented in (a)–(i), the manual labels are indicated along the y axis and the predicted labels, classified by
the SVM decision line, are presented in the subplot titles. Panel (j) presents the associated signal examples in the 2-D feature vector space
along with the SVM decision line. The dust signals are illustrated in green, the ambiguous signals are marked in yellow and the no dust
signals are indicated in red. The SVM classifier provides mostly explainable outputs. The clear dust signals (a–b) are located well within the
SVM decision line, the ambiguous signals (e–f) are located near the decision line, while the no dust signals (g–i) are clearly located outside.
However, dust signal (c) is erroneously located just outside the decision line, this can possibly be explained by the weak signal-to-noise ratio.
In addition, signal (d) is located well within the decision line, although this signal is labeled ambiguous-no dust due to the signal framing,
this indicates that the SVM might have difficulties classifying signatures located at the edge of the snapshot frame. Note that the signals are
zoomed to 15 ms intervals around the interesting features, similar to the examples in Fig. 1.

3.5.2 Training the convolutional neural network

The three-layer fully convolutional network consists
of 267 010 free parameters (weights and biases) that need
to be optimized to solve the dust impact classification
task. The free parameters are randomly initialized and
thereafter optimized using the ADAM gradient descent
optimizer (Kingma and Ba, 2014). The CNN was trained
for 225 epochs with a cross-entropy loss function using the
2400 labeled observations in the training data. CNNs are
computationally expensive to optimize, as compared to the

SVM classifier, and a training time of∼ 20 min was required
using TensorFlow on a MacBook Pro with a 32-core M1
Max GPU chip. For more details on neural network training
and optimization, see for example (Montavon et al., 2012).

3.5.3 Testing the convolutional neural network

In order to visualize the features extracted by the CNN, we
employ the t-distributed Stochastic Neighbor Embedding (t-
SNE) method (Van der Maaten and Hinton, 2008). The t-
SNE method is used for visualizing high-dimensional data by
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Figure 7. The three-layer fully convolutional network used for the dust impact classification task. The input to the network is the (3×
4096) waveform. The feature extraction process is defined by three convolutional layers, consisting of 128, 256 and 128 independent filters
with kernel lengths of 8, 5 and 3 weights, respectively. Batch normalization (BN) is used at each convolutional layer to regularize the
inputs and the rectified linear unit (ReLU) function was used as the activation function. Finally, the output of the convolutional layers (with
dimension 128×4096) is averaged in the global pooling layer to a feature vector with dimension (128×1). The class score is then determined
in a fully connected (FC) network layer and the output label probabilities (Pdust, Pno dust) are calculated using the softmax function. The
figure is adopted from Wickstrøm et al. (2021).

Figure 8. (a) The testing data (600 observations with hidden labels) are visualized by a dimension-reduced t-SNE map, where similar feature
vectors are modeled by nearby points, while dissimilar observations are modeled by distant points with high probability. (b) The testing data
classified by the trained CNN. (c) The “true” manual labels are presented. Only a few observations, predominantly in the transition region
between the dust and no dust observations, are confused. An overall classification accuracy of 96 % is calculated by comparing the labels
predicted by the CNN to the manual labels. Note that the presented testing data is the same data set that was used to test the SVM classifier,
illustrated in Fig. 5.

assigning each observation a location in a 2-D space such that
similar observations are modeled by nearby points, while dis-
similar observations are modeled by distant points with high
probability. The (128×1) testing feature vectors, extracted in
the global pooling layer, are presented in a 2-D t-SNE map
in Fig. 8, along with a visualization of the CNN classification
performance.

Overall, the CNN obtains a high (& 95 %) classification
accuracy and might therefore be suitable for automatic pro-
cessing of electric field signals observed by the RPW instru-
ment on board the Solar Orbiter.

3.5.4 Explainability of the convolutional neural
network

Neural networks have traditionally been regarded as black
boxes (Shwartz-Ziv and Tishby, 2017; Alain and Bengio,
2016), where the network carries out the desired task, but
the network decisions are difficult to interpret. However,
progress has been made in recent years for making the neu-
ral network decisions more accessible and easier to interpret
(i.e., explainable) for human users (Samek et al., 2021). In
this section, we analyze the CNN decisions by employing
class activation maps and the previously described t-SNE
method.
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Figure 9. The signal examples and the CAM analysis are presented in (a)–(i), the manual labels are indicated along the y axis and the
predicted label, classified by the CNN, is presented in the subplot titles. The highlighted green color indicates the CAM values associated
with the dust class, the green regions therefore emphasize the regions that are considered important by the CNN for detecting dust impact
signatures. Similarly, the red color indicates the regions that are influential for the no dust class. Note that the signals are zoomed to 15 ms
intervals around the interesting features, similar to Figs. 1 and 6. Panel (j) presents the associated signal examples in the t-SNE space along
with the training data signals as transparent points. The dust signals are illustrated by the green dots, the ambiguous signal examples are
marked in yellow and the no dust signals are indicated in red. The t-SNE map shows that the clear dust signals (a–b) are distinctly located in
a green (dust) region, whereas the clear no dust signal (i) is distinctly located in a red (no dust) region. The remaining signals are located in
more mixed regions. It should however be noted that the observations are represented by a 128-dimensional feature vector in the CNN and
that the (2-D) t-SNE representation presented in (j) diminishes a lot of information, meaning that even the signals located in a mixed region
of the t-SNE plot might be separable in the 128-dimensional feature vector space.

Class activation maps (CAMs) (Zhou et al., 2016) high-
light the regions of the data that are important for a consid-
ered label (l) by analyzing the features extracted in the global
pooling layer and the weights in the FC layer that are asso-
ciated with label (l), see e.g., (Wang et al., 2017) for a de-
tailed description. The outcome of the CAM analysis is that
we can visualize the sections of the signal that are influen-
tial for the CNN classification decision. Figure 9 presents the
CAM analysis of the signal examples in Fig. 1 along with
an illustration of the signal features in a dimension-reduced
t-SNE space. Note that the t-SNE mapping in Fig. 9 is differ-
ent from the t-SNE mapping in Fig. 8, since Fig. 9 considers
a different CNN where the signal examples are specifically
excluded from the training data.

The CAM analysis in Fig. 9 illustrates that the CNN
makes classification decisions that are comprehensible (in
most cases). It is however interesting to note that signal (c),
manually labeled as dust, is erroneously classified as no dust
by the CNN, and that this decision is largely based on the tail
(the relaxation period) of the impact signal. It should how-
ever be noted that it is more difficult to explain the no dust
predictions than the dust predictions, since the no dust CNN
decisions are based on the lack of a signature (dust impact)
rather than on the presence of a signature. In addition, signal
(d), manually labeled as ambiguous-no dust, is classified as
dust by the CNN, and this decision is based on a wide region
of the signal with emphasis on the tail of the (ambiguous)
dust impact signal, this section might not have been high-
lighted as particularly important by a human expert.
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Table 1. The TDS, SVM and CNN classification performance metrics: accuracy, precision, recall and F1-score. The SVM and CNN scores
and error values are the mean and the standard deviation across 10 training runs. The bold numbers indicate statistically enhanced perfor-
mance with a significance level of 0.01, computed using a t-test.

Classifier Accuracy Precision Recall F1 Score

TDS 0.850 0.746 0.944 0.833
SVM 0.936± 0.012 0.903± 0.027 0.941± 0.017 0.921± 0.015
CNN 0.964± 0.006 0.939± 0.020 0.972± 0.008 0.955± 0.008

Figure 10. (a) The confusion matrix entries are described by the
true (correctly classified) and false (erroneously classified) values;
compared to the manual labels (Lab), positive indicates dust pre-
dictions (Pred), and negative indicates no dust predictions. (b) The
TDS classifier confuses dust and no dust observations, where a sig-
nificant proportion (> 0.20) of dust predictions are manually la-
beled as no dust. (c) The SVM classifier predicts both dust and no
dust observations with a high (> 0.90) accuracy. (d) The CNN clas-
sifier predicts a very large (> 0.95) proportion of both dust and no
dust observations correctly.

In general however, the CNN achieves a high accuracy
(& 95 %) and makes decisions that are mostly in line with hu-
man interpretation. It is therefore reasonable to infer that the
CNN will have a performance comparable to the agreement
level between human experts, where disagreement predom-
inantly occurs for ambiguous and noisy signals, while clear
dust and clear no dust signals are classified correctly.

4 Results and discussions

4.1 Analysis of the classification performance

The average classification performance is obtained by train-
ing and testing the machine learning classifiers over 10 runs,
each run with different training and testing sets. The clas-
sifiers are initialized from scratch and the training and test-
ing sets are selected independently 10 times by randomiza-
tion and splitting of the manually labeled data, as indicated
by the gray circles in Fig. 3. The average class-wise perfor-
mance of the on-board TDS classifier and the machine learn-
ing SVM and CNN classifiers are summarized as confusion
matrices in Fig. 10. Overall, the CNN has the highest perfor-
mance for both dust and no dust classification. In addition,
both the SVM and the CNN classifiers obtain stable perfor-
mances with only small variations for each run.

The classification performance is further evaluated by the
accuracy, precision, recall and F1 score. The definitions for
the performance metrics are included in Appendix B. The av-
erage performance metrics, calculated over 10 runs, are sum-
marized in Table 1. Again, the CNN has the highest perfor-
mance across all metrics. The CNN obtains a significant im-
provement in the classification performance with a statistical
significance at a level of 0.01, computed using a t-test. The
t-test was computed in a pairwise manner between both the
CNN and the SVM scores and the CNN and the TDS scores.
In all cases, the enhanced performance of the CNN classifier
was significant.

The results from both the confusion matrices and the per-
formance metrics strongly suggest that the SVM and CNN
classifiers provide binary classification results with higher re-
liability than the TDS classifier and further that the CNN is
the most reliable classifier overall. We therefore propose that
the CNN classifier (or similar tools) should be considered for
post-processing of the TDS data product in statistical studies
of dust impacts observed by the Solar Orbiter RPW instru-
ment.

In addition, it should be noted that 134 signals (i.e., 4.5 %),
out of 3000 manually labeled waveforms, were marked as
ambiguous, illustrated by the yellow cylinder in Fig. 3, and
did not clearly fit into either the dust or no dust label,
see Fig. 1 for label examples. It is therefore improbable to
achieve a classification accuracy exceeding ∼ 98 % for the
considered data set, and an accuracy approaching ∼ 99 %
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should be considered suspicious and can be an indication of
over-fitting.

Both the trained SVM and CNN classifiers are computa-
tionally inexpensive to run. One thousand observations are
classified in 5 s using the SVM model, while the CNN clas-
sifier requires 50 s on a modern laptop, including the needed
time for pre-processing and feature extraction. The proposed
machine learning classifiers are therefore suitable for pro-
cessing large data sets with thousands of new observations
acquired every month as the Solar Orbiter continues its oper-
ation.

4.2 The dust impact rate

In this section, we use the trained classifiers to automati-
cally process a large data set, consisting of 104 032 observa-
tions. This data set contains all TSWF observations acquired
over a 25-month period, spanning between 15 June 2020 to
14 July 2022, that satisfy the criteria in Sect. 2.1 (sampling
rate of 262.1 kHz, 16 384 time steps and XLD1 mode).

Figure 11 presents the TDS, SVM and CNN daily impact
rates with included error estimates. The daily impact rate
is calculated from the automatically detected daily dust im-
pact number and the time-dependent TDS–RPW duty cycle.
The number of dust particles detected by the Solar Orbiter
on each day can be modeled as a Poisson process (Kočiščák
et al., 2022), where the variance in the daily count is equal to
the daily count number, resulting in the standard deviation er-
ror bars presented in Fig. 11. The impact rate function curves
are obtained by fitting the dust flux model from Zaslavsky
et al. (2021) with an included offset as follows:

R = F1AUScol

( r

1AU

)−2 νimpact

νβ

(
νimpact

νimpact(1AU)

)αδ
+C, (7)

where F1 AU is the unknown cumulative flux of particles
above the detection threshold at 1 AU and Scol = 8 m2

is the Solar Orbiter collection area, as defined in Za-
slavsky et al. (2021). Furthermore, r is the radial distance
from the sun, νimpact is the relative velocity between the
spacecraft and the dust particles, assuming a constant ra-
dial and azimuthal velocity vector for the dust particles,
νβ = [50 km s−1, 0 km s−1], and the product αδ = 1.3, as
suggested in Zaslavsky et al. (2021). The assumed constant
radial velocity is a good approximation for dust in hyperbolic
orbits originating near the Sun that is deflected outward by
the radiation pressure force. Finally, we included a constant
impact rate offset, C, in order to obtain an improved fit. The
description of the dust flux in Eq. (7) is based on the assump-
tion that the dust and spacecraft orbits are in the same orbital
plane.

Figure 11 shows that the machine learning classifiers de-
tected significantly more dust particles than the TDS classi-
fier. The SVMs obtained a dust impact detection enhance-
ment of 16 %± 1 %, while the CNNs had an 18 %± 8 % in-
crease. Both the SVM and the CNN classifiers obtain im-

pact rates that are notably higher around the aphelion and
distinctly lower in the vicinity of the perihelion, resulting in
a lower dynamic range of the impact rates than observed in
the TDS data product.

Furthermore, Fig. 11 illustrates that the fitted SVM and
CNN impact rate function cures are in very good agreement.
It is promising that two entirely different machine learning
approaches provide comparable impact rates after classify-
ing a large data set (consisting of 104 032 observations) when
trained and tested on a limited data set consisting of 3000 ob-
servations. This suggests that both the SVM and CNN clas-
sifiers have obtained stable performances and can be used to
classify observations outside the domain of the training and
testing data.

Still, the shape of the dust impact signal is dependent on
the local plasma environment, where influential parameters
are as follows: the electron plasma density, the mean elec-
tron velocity and the electron temperature (Zaslavsky, 2015;
Babic et al., 2022). These parameters will vary throughout
the spacecraft orbit. It should therefore be noted that the ma-
chine learning classifiers were trained and tested on wave-
forms acquired over a 1.5-year period, spanning between
15 June 2020 to 16 December 2021. During this period, the
Solar Orbiter sampled the interplanetary medium at solar dis-
tances ranging from ∼ 0.5 to ∼ 1.0 AU. The spacecraft will
however reach a minimum solar distance of 0.28 AU, and the
performance of the machine learning classifiers might suffer
if the observed dust impact shapes in the vicinity of∼ 0.3 AU
are significantly different from the dust impact shapes at
∼ 0.5 to ∼ 1.0 AU.

Finally, we note that a dip in the SVM and CNN dust im-
pact rates can be observed in Fig. 11, roughly 0.5–1 month
before perihelia 1 and 2 (no data for perihelion 3). This dip
is possibly due to a change in the relative velocity between
the spacecraft and the interstellar dust particles, which is up-
stream at 259◦ in the Ecliptic coordinate system. Still, there
is a large natural (Poisson) variation in the dust impact rates
at perihelion that make visual analysis difficult with the pre-
sented data set. In addition, complicating effects will have an
enhanced influence on the daily dust count number towards
the Sun, such as an enhancement in false detections due to in-
creased variability in the ambient plasma and validity degra-
dation of the dust flux model assumptions in Eq. (7) close to
the formation region of the hyperbolic dust particles.

5 Conclusions

5.1 Summary and scientific implications

We have presented a machine learning-based framework for
fully automated detection of dust impacts observed by the
Solar Orbiter – Radio and Plasma Waves (RPW) instrument.
Two different supervised machine learning approaches were
considered: the support vector machine (SVM) and the con-
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Figure 11. (a) The daily dust impact rates according to the TDS classifier. The full vertical lines indicate times when the Solar Orbiter is at
aphelion, while the dashed lines indicate times at perihelion. (b) The median of the daily impact rates classified by 10 trained SVM classifiers.
(c) The median of the daily impact rates from the 10 CNN classifiers. The impact rate function curves are obtained by fitting the dust flux
model from Zaslavsky et al. (2021), Eq. (7). (d) The impact rate function cures are compared. The SVM and CNN dust impact rates are
very similar, whereas the TDS provides notably smaller impact rates at aphelion and higher impact rates at perihelion. The accumulated dust
impact detections for the TDS classification algorithm and the mean and standard deviation of the dust impact detections for the 10 CNN
and SVM classifiers are presented in the subplot titles. Note that the large data gap around April 2022 (perihelion 3) is due to a different
observational setup for the Solar Orbiter RPW–TDS system, where the sampling frequency was doubled. These data were excluded since it
can not be reliably classified by the SVM/CNN methods without additional data processing and/or training.

volutional neural network (CNN). The CNN classifier ob-
tained the highest performance across all evaluation metrics
and achieved 96 %± 1 % overall classification accuracy and
94 %± 2 % dust detection precision, a significant improve-
ment to the currently used on-board TDS classification al-
gorithm with 85 % overall classification accuracy and 75 %
dust detection precision. We therefore conclude that the CNN

classifier (or similar tools) should be considered for post-
processing of the TDS data product for statistical studies of
dust impacts observed by the Solar Orbiter.

The SVM and CNN classifiers were used to analyze
104 032 observations acquired over a 2-year period, span-
ning between 15 June 2020 to 14 July 2022. On average,
the machine learning classifiers detected more dust parti-
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cles than the currently used TDS algorithm, the SVMs had
a 16 %± 1 % detection enhancement and the CNNs had
an 18 %± 8 % increase. Furthermore, the SVM and CNN
classifiers were in very good agreement and both classifiers
obtained a notably higher dust impact rate in the vicinity of
aphelion and a distinctly lower impact rate at perihelion, as
compared to the dynamic range of the TDS impact rates. This
might indicate a higher ambient dust distribution than previ-
ously observed. This result is significant since it suggests the
presence of dust populations other than the hyperbolic dust
particles in the data. Possible other populations are interstel-
lar dust and interplanetary dust in bound orbits.

The labeled data and the trained SVM and CNN clas-
sifiers are available online with included user instructions.
The proposed method and the presented classifiers can thus
provide the interplanetary dust community with thoroughly
tested and more reliable data products than those currently
in use. The daily dust count numbers from the CNN clas-
sification were employed by Kočiščák et al. (2022) to in-
fer meaningful physical properties of the dust population by
modeling the number of dust detections within a day as a
Poisson-distributed random variable. Kočiščák et al. (2022)
further demonstrated that the same procedure did not provide
dust parameters that were in line with prior knowledge when
using the daily dust detections from the TDS classification.
This result is independent of the manually labeled testing
data, which might be prone to biases, and further suggests
that the CNN approach provides more reliable data products
than the currently used TDS algorithm.

5.2 Outlook and method constraints

The presented machine learning classifiers may be consid-
ered for on board processing of the observed electric field
signals. However, the trained SVM and CNN classifiers pre-
sented in this article are trained on Triggered Snapshot Wave-
Forms (TSWF) data, and should not be used for processing
‘untriggered” signals without additional training and testing
on ‘untriggered” data. Additional training can also be used
to further enhance the performance of the machine learning
classifiers. In particular, adding labeled data acquired near
the Sun (∼ 0.3 AU) and during periods of strong solar ac-
tivity will likely improve the overall accuracy and make the
machine learning classifiers more robust to challenging con-
ditions.

It should also be noted that the classifiers presented in this
work are trained and tested on data labeled by one scien-
tist, although with consultations with other experts. Labeled
data from several experts can provide machine learning clas-
sifiers that are more in line with the labeling consensus in the
interplanetary dust community. Additional labeling can also
be used to extend the machine learning classifiers to include
automatic detection of other characteristic signatures, such
as ion acoustic, Langmuir and solitary waves (Soucek et al.,
2021).

Finally, we would like to highlight that a machine
learning-based framework can be developed for automatic
post-processing of data acquired by radio and plasma waves
instruments on board other spacecrafts, such as the Solar Ter-
restrial Relations Observatory (STEREO) (Zaslavsky et al.,
2012), Wind (Malaspina et al., 2014) and the Parker Solar
Probe (Szalay et al., 2020). Automatic and reliable detection
of dust impact signals observed by multiple instruments at
several locations and over several years will likely facilitate
statistical studies that will enhance our understanding of the
role of dust in the inner solar system, beyond what is attain-
able with the data products that are currently in use.

Appendix A: Graphical user interface for manual
labeling

Figure A1 presents the graphical user interface (GUI) that
was used to manually label all considered (3000) signals into
either dust or no dust. In addition, efforts were made to use
a similar setup (with the same monitor and figure resolution)
throughout the manual labeling in order to reduce bias ef-
fects.

Figure A1. The manual labeling user interface showing a signal
observed 28 July 2021. (a), (c) and (e) display the full snapshot
(from 0 to ∼ 63 ms) at all antennas. An area of interest is selected
by adjusting the red vertical lines. (b), (d) and (f) display the signal
within the area of interest. The signal can be labeled as dust by
pressing the [d] key on the keyboard and no dust by pressing the [r]
key. The signal is indicated to be ambiguous if the waveform does
not fit clearly into either of the two labels; note however that signals
indicated to be ambiguous were also labeled into either dust or no
dust using the [a] and [w] keys. There is also an option to correct [c]
the previously labeled signal (in case of an error), repeat [t] the area
of interest selection and quit [q] the manual labeling user interface.
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Appendix B: The classification performance metrics

The classification performance metrics are calculated using
the true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) values, defined by comparing the pre-
dicted classes and the manually labeled classes, illustrated in
Fig. 10.

The overall accuracy of the classifier is the proportion of
observations that were correctly predicted by the classifier.
The accuracy is mathematically defined as

Accuracy=
TP+TN

TP+TN+FP+FN
. (B1)

Precision (in this case) is defined as the proportion of data
points predicted by the classifier as dust, whose “true” label
is indeed dust. Precision is therefore calculated as

Precision=
TP

TP+FP
. (B2)

Recall (in this case) is the proportion of observations man-
ually labeled as dust, that were correctly predicted as dust by
the classifier. Recall is defined as

Recall=
TP

TP+FN
. (B3)

The F1 score acts as a weighted average of precision and
recall and is calculated as

F1= 2
(

Precision ·Recall
Precision+Recall

)
. (B4)

Code and data availability. The code used for this
work, the trained classifiers, and the training and test-
ing data sets can be accessed via the following link:
https://doi.org/10.5281/zenodo.7404457 (Kvammen, 2022).
The Triggered Snapshot WaveForms (TSWF) data files
can be accessed at the Solar Orbiter/RPW data archive:
https://rpw.lesia.obspm.fr/roc/data/pub/solo/rpw/data/L2/tds_wf_e/
(last access: 26 Ocotber 2022; made available by the Solar
Orbiter/RPW Investigation team – M. Maksimovic, PI).
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