Articles | Volume 41, issue 2
https://doi.org/10.5194/angeo-41-551-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-41-551-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Local bow shock environment during magnetosheath jet formation: results from a hybrid-Vlasov simulation
Department of Physics, University of Helsinki, Helsinki, Finland
Minna Palmroth
Department of Physics, University of Helsinki, Helsinki, Finland
Space and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Lucile Turc
Department of Physics, University of Helsinki, Helsinki, Finland
Markus Battarbee
Department of Physics, University of Helsinki, Helsinki, Finland
Giulia Cozzani
Department of Physics, University of Helsinki, Helsinki, Finland
Maxime Dubart
Department of Physics, University of Helsinki, Helsinki, Finland
Urs Ganse
Department of Physics, University of Helsinki, Helsinki, Finland
Harriet George
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA
Evgeny Gordeev
Department of Physics, University of Helsinki, Helsinki, Finland
Konstantinos Papadakis
Department of Physics, University of Helsinki, Helsinki, Finland
Yann Pfau-Kempf
Department of Physics, University of Helsinki, Helsinki, Finland
Vertti Tarvus
Department of Physics, University of Helsinki, Helsinki, Finland
Fasil Tesema
Department of Physics, University of Helsinki, Helsinki, Finland
Hongyang Zhou
Department of Physics, University of Helsinki, Helsinki, Finland
Related authors
Abiyot Bires Workayehu, Minna Palmroth, Maxime Grandin, Liisa Juusola, Markku Alho, Ivan Zaitsev, Venla Koikkalainen, Konstantinos Horaites, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, and Jonas Suni
EGUsphere, https://doi.org/10.5194/egusphere-2025-2282, https://doi.org/10.5194/egusphere-2025-2282, 2025
Short summary
Short summary
We investigate the ionospheric signatures of BBFs in the magnetotail utilising a global 6D hybrid-Vlasov simulation coupled with an ionospheric model. We analyse changes in the magnitudes of ionospheric observables and use them as the ionospheric manifestations of bursty bulk flows. Our results reveal that reconnection-driven BBF induce vortices that generate FACs, which map to the ionosphere with distinct east-west alignment and exhibit a characteristic westward drift.
Venla Koikkalainen, Maxime Grandin, Emilia Kilpua, Abiyot Workayehu, Ivan Zaitsev, Liisa Juusola, Shi Tao, Markku Alho, Lauri Pänkäläinen, Giulia Cozzani, Konstantinos Horaites, Jonas Suni, Yann Pfau-Kempf, Urs Ganse, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2265, https://doi.org/10.5194/egusphere-2025-2265, 2025
Short summary
Short summary
We use a numerical simulation to study phenomena that occur between the Earth’s dipolar magnetic field and the nightside of near-Earth space. We observe the formation of large-scale vortex flows with scales of several Earth radii. On the ionospheric grid of the simulation we find that the field-aligned currents formed in the simulation reflect the vortex flow in the transition region. The main finding is that the vortex flow is a result of a combination of flow dynamics and a plasma instability.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev., 18, 511–527, https://doi.org/10.5194/gmd-18-511-2025, https://doi.org/10.5194/gmd-18-511-2025, 2025
Short summary
Short summary
Vlasiator is a kinetic space plasma model that simulates the behavior of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations have been run without any interaction with the ionosphere, the uppermost layer of Earth's atmosphere. In this paper, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space plasma and Earth's ionosphere interact.
Yann Pfau-Kempf, Konstantinos Papadakis, Markku Alho, Markus Battarbee, Giulia Cozzani, Lauri Pänkäläinen, Urs Ganse, Fasil Kebede, Jonas Suni, Konstantinos Horaites, Maxime Grandin, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-26, https://doi.org/10.5194/angeo-2024-26, 2024
Revised manuscript accepted for ANGEO
Short summary
Short summary
Flux ropes are peculiar structures of twisted magnetic field occurring in many regions of space, near Earth and other planets, at the Sun, and in astrophysical objects. We developed a new way of detecting flux ropes in large supercomputer simulations of near-Earth space and we use it to follow the evolution of flux ropes for long distances past the Earth in the flow direction. This will be useful in future studies as these flux ropes are involved in the transport of matter and energy in space.
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Abiyot Bires Workayehu, Minna Palmroth, Maxime Grandin, Liisa Juusola, Markku Alho, Ivan Zaitsev, Venla Koikkalainen, Konstantinos Horaites, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, and Jonas Suni
EGUsphere, https://doi.org/10.5194/egusphere-2025-2282, https://doi.org/10.5194/egusphere-2025-2282, 2025
Short summary
Short summary
We investigate the ionospheric signatures of BBFs in the magnetotail utilising a global 6D hybrid-Vlasov simulation coupled with an ionospheric model. We analyse changes in the magnitudes of ionospheric observables and use them as the ionospheric manifestations of bursty bulk flows. Our results reveal that reconnection-driven BBF induce vortices that generate FACs, which map to the ionosphere with distinct east-west alignment and exhibit a characteristic westward drift.
Venla Koikkalainen, Maxime Grandin, Emilia Kilpua, Abiyot Workayehu, Ivan Zaitsev, Liisa Juusola, Shi Tao, Markku Alho, Lauri Pänkäläinen, Giulia Cozzani, Konstantinos Horaites, Jonas Suni, Yann Pfau-Kempf, Urs Ganse, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2265, https://doi.org/10.5194/egusphere-2025-2265, 2025
Short summary
Short summary
We use a numerical simulation to study phenomena that occur between the Earth’s dipolar magnetic field and the nightside of near-Earth space. We observe the formation of large-scale vortex flows with scales of several Earth radii. On the ionospheric grid of the simulation we find that the field-aligned currents formed in the simulation reflect the vortex flow in the transition region. The main finding is that the vortex flow is a result of a combination of flow dynamics and a plasma instability.
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2394, https://doi.org/10.5194/egusphere-2025-2394, 2025
Short summary
Short summary
Key properties of the ionospheric electrodynamics are electric fields, currents, and conductances. They provide a window to the vast and distant near-Earth space, cause Joule heating that affect satellite orbits, and drive geomagnetically induced currents (GICs) in technological conductor networks. We have developed a new method for solving the key properties of ionospheric electrodynamics from ground-based magnetic field observations.
Shi Tao, Markku Alho, Ivan Zaitsev, Lucile Turc, Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1340, https://doi.org/10.5194/egusphere-2025-1340, 2025
Short summary
Short summary
Plasma convection is the movement of plasma that drags the magnetic field lines with it. Magnetic field in the solar wind interacts with the Earth's magnetic field and drags the dayside field lines of the Earth's magnetosphere toward nightside, causing the plasma inside the magnetosphere to circulate around the Earth in a process called the Dungey Cycle. Our simulation and methodology desribe this cycle in detail and find features in the convection that are not explained by fluid models.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys., 43, 217–240, https://doi.org/10.5194/angeo-43-217-2025, https://doi.org/10.5194/angeo-43-217-2025, 2025
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation through the novel combination of both magnetospheric modelling and atmospheric modelling. We first simulate fluxes of auroral electrons and then use these fluxes to model their atmospheric impact. We find an increase of more than 200 % in thermospheric odd nitrogen and a corresponding decrease in stratospheric ozone of around 0.8 %. The produced auroral electron precipitation is realistic and shows potential for future studies.
Anton Fetzer, Mikko Savola, Adnane Osmane, Vili-Arttu Ketola, Philipp Oleynik, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1279, https://doi.org/10.5194/egusphere-2025-1279, 2025
Short summary
Short summary
Extreme events can pose serious risks to satellites, potentially disrupting communication, navigation, and power systems. Our study estimates the worst-case radiation levels during such an event and assesses their impact on electronics and solar panels.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev., 18, 511–527, https://doi.org/10.5194/gmd-18-511-2025, https://doi.org/10.5194/gmd-18-511-2025, 2025
Short summary
Short summary
Vlasiator is a kinetic space plasma model that simulates the behavior of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations have been run without any interaction with the ionosphere, the uppermost layer of Earth's atmosphere. In this paper, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space plasma and Earth's ionosphere interact.
Yann Pfau-Kempf, Konstantinos Papadakis, Markku Alho, Markus Battarbee, Giulia Cozzani, Lauri Pänkäläinen, Urs Ganse, Fasil Kebede, Jonas Suni, Konstantinos Horaites, Maxime Grandin, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-26, https://doi.org/10.5194/angeo-2024-26, 2024
Revised manuscript accepted for ANGEO
Short summary
Short summary
Flux ropes are peculiar structures of twisted magnetic field occurring in many regions of space, near Earth and other planets, at the Sun, and in astrophysical objects. We developed a new way of detecting flux ropes in large supercomputer simulations of near-Earth space and we use it to follow the evolution of flux ropes for long distances past the Earth in the flow direction. This will be useful in future studies as these flux ropes are involved in the transport of matter and energy in space.
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Fasil Tesema, Noora Partamies, Daniel K. Whiter, and Yasunobu Ogawa
Ann. Geophys., 40, 1–10, https://doi.org/10.5194/angeo-40-1-2022, https://doi.org/10.5194/angeo-40-1-2022, 2022
Short summary
Short summary
In this study, we present the comparison between an auroral model and EISCAT radar electron densities during pulsating aurorae. We test whether an overpassing satellite measurement of the average energy spectrum is a reasonable estimate for pulsating aurora electron precipitation. When patchy pulsating aurora is dominant in the morning sector, the overpass-averaged spectrum is found to be a reasonable estimate – but not when there is a mix of pulsating aurora types in the post-midnight sector.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
Noora Partamies, Fasil Tesema, Emma Bland, Erkka Heino, Hilde Nesse Tyssøy, and Erlend Kallelid
Ann. Geophys., 39, 69–83, https://doi.org/10.5194/angeo-39-69-2021, https://doi.org/10.5194/angeo-39-69-2021, 2021
Short summary
Short summary
About 200 nights of substorm activity have been analysed for their magnetic disturbance magnitude and the level of cosmic radio noise absorption. We show that substorms with a single expansion phase have limited lifetimes and spatial extents. Starting from magnetically quiet conditions, the strongest absorption occurs after 1 to 2 nights of substorm activity. This prolonged activity is thus required to accelerate particles to energies, which may affect the atmospheric chemistry.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Fasil Tesema, Noora Partamies, Hilde Nesse Tyssøy, and Derek McKay
Ann. Geophys., 38, 1191–1202, https://doi.org/10.5194/angeo-38-1191-2020, https://doi.org/10.5194/angeo-38-1191-2020, 2020
Short summary
Short summary
In this study, we present the ionization level from EISCAT radar experiments and cosmic noise absorption level
from KAIRA riometer observations during pulsating auroras. We found thick layers of ionization that reach down
to 70 km (harder precipitation) and higher cosmic noise absorption during patchy pulsating aurora than
during amorphous pulsating and patchy auroras.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Cited articles
Amata, E., Savin, S. P., Ambrosino, D., Bogdanova, Y. V., Marcucci, M. F., Romanov, S., and Skalsky, A.: High Kinetic Energy Density Jets in the Earth's Magnetosheath: A Case Study, Planet. Space Sci., 59, 482–494, https://doi.org/10.1016/j.pss.2010.07.021, 2011. a
Andrés, N., Meziane, K., Mazelle, C., Bertucci, C., and Gómez, D.: The ULF Wave Foreshock Boundary: Cluster Observations, J. Geophys. Res.-Space, 120, 4181–4193, https://doi.org/10.1002/2014JA020783, 2015. a
Archer, M., Horbury, T. S., Lucek, E. A., Mazelle, C., Balogh, A., and Dandouras, I.: Size and Shape of ULF Waves in the Terrestrial Foreshock, J. Geophys. Res.-Space, 110, A05208, https://doi.org/10.1029/2004JA010791, 2005. a
Archer, M. O., Horbury, T. S., and Eastwood, J. P.: Magnetosheath Pressure Pulses: Generation Downstream of the Bow Shock from Solar Wind Discontinuities, J. Geophys. Res.-Space, 117, A05228, https://doi.org/10.1029/2011JA017468, 2012. a, b
Archer, M. O., Horbury, T. S., Eastwood, J. P., Weygand, J. M., and Yeoman, T. K.: Magnetospheric Response to Magnetosheath Pressure Pulses: A Low-pass Filter Effect, J. Geophys. Res.-Space, 118, 5454–5466, https://doi.org/10.1002/jgra.50519, 2013. a
Battarbee, M., Ganse, U., Pfau-Kempf, Y., Turc, L., Brito, T., Grandin, M., Koskela, T., and Palmroth, M.: Non-locality of Earth's quasi-parallel bow shock: injection of thermal protons in a hybrid-Vlasov simulation, Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, 2020. a, b
Battarbee, M., Hannuksela, O. A., Pfau-Kempf, Y., Alfthan, S. V., Ganse, U., Järvinen, R., Kotipalo, L., Suni, J., Alho, M., Turc, L., Honkonen, I., Brito, T., and Grandin, M.: Fmihpc/Analysator: V0.9, Zenodo [software], https://doi.org/10.5281/ZENODO.4462515, 2021. a
Baumjohann, W. and Treumann, R. A.: Basic Space Plasma Physics, Imperial College Press, London, https://doi.org/10.1142/p015, 1996. a
Blanco-Cano, X., Omidi, N., and Russell, C. T.: Global Hybrid Simulations: Foreshock Waves and Cavitons under Radial Interplanetary Magnetic Field Geometry: FORESHOCK WAVES AND CAVITONS, J. Geophys. Res.-Space, 114, A01216, https://doi.org/10.1029/2008JA013406, 2009. a
Dimmock, A. P., Nykyri, K., and Pulkkinen, T. I.: A Statistical Study of Magnetic Field Fluctuations in the Dayside Magnetosheath and Their Dependence on Upstream Solar Wind Conditions, J. Geophys. Res.-Space, 119, 6231–6248, https://doi.org/10.1002/2014JA020009, 2014. a
Dmitriev, A. and Suvorova, A.: Traveling Magnetopause Distortion Related to a Large-scale Magnetosheath Plasma Jet: THEMIS and Ground-based Observations, J. Geophys. Res., 117, A08217, https://doi.org/10.1029/2011ja016861, 2012. a
Dmitriev, A. V. and Suvorova, A. V.: Large-Scale Jets in the Magnetosheath and Plasma Penetration across the Magnetopause: THEMIS Observations, J. Geophys. Res.-Space, 120, 4423–4437, https://doi.org/10.1002/2014JA020953, 2015. a
Eastwood, J. P., Balogh, A., Lucek, E. A., Mazelle, C., and Dandouras, I.: Quasi-Monochromatic ULF Foreshock Waves as Observed by the Four-Spacecraft Cluster Mission: 1. Statistical Properties, J. Geophys. Res.-Space, 110, A11219, https://doi.org/10.1029/2004JA010617, 2005a. a
Eastwood, J. P., Lucek, E. A., Mazelle, C., Meziane, K., Narita, Y., Pickett, J., and Treumann, R. A.: The Foreshock, Space Sci. Rev., 118, 41–94, https://doi.org/10.1007/s11214-005-3824-3, 2005b. a, b
Gary, S.: Electromagnetic Ion/Ion Instabilities and Their Consequences in Space Plasmas: A Review, Space Sci. Rev., 56, 373–415, https://doi.org/10.1007/BF00196632, 1991. a
Gingell, I., Schwartz, S. J., Burgess, D., Johlander, A., Russell, C. T., Burch, J. L., Ergun, R. E., Fuselier, S., Gershman, D. J., Giles, B. L., Goodrich, K. A., Khotyaintsev, Y. V., Lavraud, B., Lindqvist, P.-A., Strangeway, R. J., Trattner, K., Torbert, R. B., Wei, H., and Wilder, F.: MMS Observations and Hybrid Simulations of Surface Ripples at a Marginally Quasi-Parallel Shock, J. Geophys. Res.-Space, 122, 11003–11017, https://doi.org/10.1002/2017JA024538, 2017. a
Goncharov, O., Gunell, H., Hamrin, M., and Chong, S.: Evolution of High-Speed Jets and Plasmoids Downstream of the Quasi-Perpendicular Bow Shock, J. Geophys. Res.-Space, 125, e2019JA027667, https://doi.org/10.1029/2019JA027667, 2020. a
Gunell, H., Stenberg Wieser, G., Mella, M., Maggiolo, R., Nilsson, H., Darrouzet, F., Hamrin, M., Karlsson, T., Brenning, N., De Keyser, J., André, M., and Dandouras, I.: Waves in high-speed plasmoids in the magnetosheath and at the magnetopause, Ann. Geophys., 32, 991–1009, https://doi.org/10.5194/angeo-32-991-2014, 2014. a
Gutynska, O., Sibeck, D. G., and Omidi, N.: Magnetosheath Plasma Structures and Their Relation to Foreshock Processes, J. Geophys. Res.-Space, 120, 7687–7697, https://doi.org/10.1002/2014JA020880, 2015. a
Hao, Y., Lembege, B., Lu, Q., and Guo, F.: Formation of Downstream High-Speed Jets by a Rippled Nonstationary Quasi-Parallel Shock: 2-D Hybrid Simulations, J. Geophys. Res.-Space, 121, 2080–2094, https://doi.org/10.1002/2015JA021419, 2016. a
Hietala, H. and Plaschke, F.: On the Generation of Magnetosheath High-speed Jets by Bow Shock Ripples, J. Geophys. Res., 118, 7237–7245, https://doi.org/10.1002/2013ja019172, 2013. a
Hietala, H., Laitinen, T. V., Andréeová, K., Vainio, R., Vaivads, A., Palmroth, M., Pulkkinen, T. I., Koskinen, H. E. J., Lucek, E. A., and Rème, H.: Supermagnetosonic Jets behind a Collisionless Quasiparallel Shock, Phys. Rev. Lett., 103, 245001, https://doi.org/10.1103/PhysRevLett.103.245001, 2009. a, b
Hietala, H., Partamies, N., Laitinen, T. V., Clausen, L. B. N., Facskó, G., Vaivads, A., Koskinen, H. E. J., Dandouras, I., Rème, H., and Lucek, E. A.: Supermagnetosonic subsolar magnetosheath jets and their effects: from the solar wind to the ionospheric convection, Ann. Geophys., 30, 33–48, https://doi.org/10.5194/angeo-30-33-2012, 2012. a, b, c
Hietala, H., Phan, T. D., Angelopoulos, V., Oieroset, M., Archer, M. O., Karlsson, T., and Plaschke, F.: In Situ Observations of a Magnetosheath High-Speed Jet Triggering Magnetopause Reconnection, Geophys. Res. Lett., 45, 1732–1740, https://doi.org/10.1002/2017GL076525, 2018. a
Hoppe, M. M., Russell, C. T., Frank, L. A., Eastman, T. E., and Greenstadt, E. W.: Upstream Hydromagnetic Waves and Their Association with Backstreaming Ion Populations: ISEE 1 and 2 Observations, J. Geophys. Res.-Space, 86, 4471–4492, https://doi.org/10.1029/JA086iA06p04471, 1981. a
Johlander, A., Battarbee, M., Turc, L., Ganse, U., Pfau-Kempf, Y., Grandin, M., Suni, J., Tarvus, V., Bussov, M., Zhou, H., Alho, M., Dubart, M., George, H., Papadakis, K., and Palmroth, M.: Quasi-parallel Shock Reformation Seen by Magnetospheric Multiscale and Ion-kinetic Simulations, Geophys. Res. Lett., 49, e2021GL096335, https://doi.org/10.1029/2021GL096335, 2022. a, b, c
Karimabadi, H., Roytershteyn, V., Vu, H. X., Omelchenko, Y. A., Scudder, J., Daughton, W., Dimmock, A., Nykyri, K., Wan, M., Sibeck, D., Tatineni, M., Majumdar, A., Loring, B., and Geveci, B.: The Link between Shocks, Turbulence, and Magnetic Reconnection in Collisionless Plasmas, Phys. Plasmas, 21, 062308, https://doi.org/10.1063/1.4882875, 2014. a
Karlsson, T., Brenning, N., Nilsson, H., Trotignon, J.-G., Vallières, X., and Facsko, G.: Localized Density Enhancements in the Magnetosheath: Three-dimensional Morphology and Possible Importance for Impulsive Penetration, J. Geophys. Res.-Space, 117, A03227, https://doi.org/10.1029/2011JA017059, 2012. a
Karlsson, T., Kullen, A., Liljeblad, E., Brenning, N., Nilsson, H., Gunell, H., and Hamrin, M.: On the Origin of Magnetosheath Plasmoids and Their Relation to Magnetosheath Jets, J. Geophys. Res.-Space, 120, 7390–7403, https://doi.org/10.1002/2015JA021487, 2015. a, b, c, d
Koller, F., Temmer, M., Preisser, L., Plaschke, F., Geyer, P., Jian, L. K., Roberts, O. W., Hietala, H., and LaMoury, A. T.: Magnetosheath Jet Occurrence Rate in Relation to CMEs and SIRs, J. Geophys. Res.-Space, 127, e2021JA030124, https://doi.org/10.1029/2021JA030124, 2022. a
Koller, F., Plaschke, F., Temmer, M., Preisser, L., Roberts, O. W., and Vörös, Z.: Magnetosheath Jet Formation Influenced by Parameters in Solar Wind Structures, J. Geophys. Res.-Space, 128, e2023JA031339, https://doi.org/10.1029/2023JA031339, 2023. a
LaMoury, A. T., Hietala, H., Plaschke, F., Vuorinen, L., and Eastwood, J. P.: Solar Wind Control of Magnetosheath Jet Formation and Propagation to the Magnetopause, J. Geophys. Res.-Space, 126, e2021JA029592, https://doi.org/10.1029/2021JA029592, 2021. a
Liu, T. Z., Hao, Y., Wilson, L. B., Turner, D. L., and Zhang, H.: Magnetospheric Multiscale Observations of Earth's Oblique Bow Shock Reformation by Foreshock Ultralow-Frequency Waves, Geophys. Res. Lett., 48, e2020GL091184, https://doi.org/10.1029/2020GL091184, 2021. a, b
Lucek, E. A., Horbury, T. S., Dunlop, M. W., Cargill, P. J., Schwartz, S. J., Balogh, A., Brown, P., Carr, C., Fornacon, K.-H., and Georgescu, E.: Cluster magnetic field observations at a quasi-parallel bow shock, Ann. Geophys., 20, 1699–1710, https://doi.org/10.5194/angeo-20-1699-2002, 2002. a
Lucek, E. A., Horbury, T. S., Balogh, A., Dandouras, I., and Rème, H.: Cluster observations of structures at quasi-parallel bow shocks, Ann. Geophys., 22, 2309–2313, https://doi.org/10.5194/angeo-22-2309-2004, 2004. a
Lucek, E. A., Constantinescu, D., Goldstein, M. L., Pickett, J., Pinçon, J. L., Sahraoui, F., Treumann, R. A., and Walker, S. N.: The Magnetosheath, Space Sci. Rev., 118, 95–152, https://doi.org/10.1007/s11214-005-3825-2, 2005. a
Lucek, E. A., Horbury, T. S., Dandouras, I., and Rème, H.: Cluster Observations of the Earth's Quasi-Parallel Bow Shock, J. Geophys. Res.-Space, 113, A07S02, https://doi.org/10.1029/2007JA012756, 2008. a
Ma, X., Nykyri, K., Dimmock, A., and Chu, C.: Statistical Study of Solar Wind, Magnetosheath, and Magnetotail Plasma and Field Properties: 12+ Years of THEMIS Observations and MHD Simulations, J. Geophys. Res.-Space, 125, e2020JA028209, https://doi.org/10.1029/2020JA028209, 2020. a
Němeček, Z., Šafránková, J., Přech, L., Sibeck, D. G., Kokubun, S., and Mukai, T.: Transient Flux Enhancements in the Magnetosheath, Geophys. Res. Lett., 25, 1273–1276, https://doi.org/10.1029/98GL50873, 1998. a, b
Ng, J., Chen, L.-J., Omelchenko, Y., Zou, Y., and Lavraud, B.: Hybrid Simulations of the Cusp and Dayside Magnetosheath Dynamics Under Quasi-Radial Interplanetary Magnetic Fields, J. Geophys. Res.-Space, 127, e2022JA030359, https://doi.org/10.1029/2022JA030359, 2022. a
Omelchenko, Y. A., Chen, L.-J., and Ng, J.: 3D Space-Time Adaptive Hybrid Simulations of Magnetosheath High-Speed Jets, J. Geophys. Res.-Space, 126, e2020JA029035, https://doi.org/10.1029/2020JA029035, 2021. a, b, c
Omidi, N., Berchem, J., Sibeck, D., and Zhang, H.: Impacts of Spontaneous Hot Flow Anomalies on the Magnetosheath and Magnetopause, J. Geophys. Res.-Space, 121, 3155–3169, https://doi.org/10.1002/2015JA022170, 2016. a
Palmroth, M., Archer, M., Vainio, R., Hietala, H., Pfau-Kempf, Y., Hoilijoki, S., Hannuksela, O., Ganse, U., Sandroos, A., Alfthan, S. V., and Eastwood, J. P.: ULF Foreshock under Radial IMF: THEMIS Observations and Global Kinetic Simulation Vlasiator Results Compared: ULF WAVES IN THE RADIAL FORESHOCK, J. Geophys. Res.-Space, 120, 8782–8798, https://doi.org/10.1002/2015JA021526, 2015. a
Palmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L., Brito, T., Grandin, M., Hoilijoki, S., Sandroos, A., and von Alfthan, S.: Vlasov Methods in Space Physics and Astrophysics, Living Reviews in Computational Astrophysics, 4, 1, https://doi.org/10.1007/s41115-018-0003-2, 2018a. a, b
Palmroth, M., Hietala, H., Plaschke, F., Archer, M., Karlsson, T., Blanco-Cano, X., Sibeck, D., Kajdič, P., Ganse, U., Pfau-Kempf, Y., Battarbee, M., and Turc, L.: Magnetosheath jet properties and evolution as determined by a global hybrid-Vlasov simulation, Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, 2018b. a, b
Palmroth, M., Raptis, S., Suni, J., Karlsson, T., Turc, L., Johlander, A., Ganse, U., Pfau-Kempf, Y., Blanco-Cano, X., Akhavan-Tafti, M., Battarbee, M., Dubart, M., Grandin, M., Tarvus, V., and Osmane, A.: Magnetosheath jet evolution as a function of lifetime: global hybrid-Vlasov simulations compared to MMS observations, Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, 2021. a, b, c, d, e, f
Paschmann, G. and Daly, P. W.: Analysis Methods for Multi-Spacecraft Data, ISSI Scientific Reports Series SR-001, ESA/ISSI, Vol. 1, ISSI Scientific Reports Series, 1, ISBN 1608-280X, 1998. a
Pfau-Kempf, Y., Hietala, H., Milan, S. E., Juusola, L., Hoilijoki, S., Ganse, U., von Alfthan, S., and Palmroth, M.: Evidence for transient, local ion foreshocks caused by dayside magnetopause reconnection, Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, 2016. a
Pfau-Kempf, Y., Von Alfthan, S., Sandroos, A., Ganse, U., Koskela, T., Battarbee, M., Hannuksela, O. A., Ilja, Papadakis, K., Grandin, M., Pokhotelov, D., Zhou, H., Leo, and Alho, M.: Fmihpc/Vlasiator: Vlasiator 5.1, Zenodo [code], https://doi.org/10.5281/ZENODO.4719554, 2021a. a
Pfau-Kempf, Y., Von Alfthan, S., Sandroos, A., Ganse, U., Koskela, T., Battarbee, M., Hannuksela, O. A., Ilja, Papadakis, K., Grandin, M., Pokhotelov, D., Zhou, H., Leo, and Alho, M.: Vlasiator Simulation Data (Runs ABA, ABC, AEA, AEC), Fairdata.fi [data set], http://urn.fi/urn:nbn:fi:att:b508942a-ffc0-4e21-8b8b-b91fcfdbd6ee (last access: 1 December 2023), 2021b. a
Plaschke, F. and Hietala, H.: Plasma flow patterns in and around magnetosheath jets, Ann. Geophys., 36, 695–703, https://doi.org/10.5194/angeo-36-695-2018, 2018. a
Plaschke, F., Hietala, H., Angelopoulos, V., and Nakamura, R.: Geoeffective Jets Impacting the Magnetopause Are Very Common, J. Geophys. Res.-Space, 121, 3240–3253, https://doi.org/10.1002/2016JA022534, 2016. a
Plaschke, F., Karlsson, T., Hietala, H., Archer, M., Vörös, Z., Vörös, Z., Z. Voros, Nakamura, R., Magnes, W., Baumjohann, W., Torbert, R. B., Russell, C. T., and Giles, B. L.: Magnetosheath High-Speed Jets: Internal Structure and Interaction with Ambient Plasma, J. Geophys. Res., 122, 10157–10175, https://doi.org/10.1002/2017ja024471, 2017. a
Plaschke, F., Hietala, H., Archer, M., Blanco-Cano, X., Kajdic, P., Karlsson, T., Lee, S. H., Omidi, N., Palmroth, M., Roytershteyn, V., Schmid, D., Sergeev, V., and Sibeck, D.: Jets Downstream of Collisionless Shocks, Space Sci. Rev., 214, 81, https://doi.org/10.1007/s11214-018-0516-3, 2018. a, b
Plaschke, F., Hietala, H., and Vörös, Z.: Scale Sizes of Magnetosheath Jets, J. Geophys. Res.-Space, 125, e2020JA027962, https://doi.org/10.1029/2020JA027962, 2020. a
Raptis, S., Karlsson, T., Plaschke, F., Kullen, A., and Lindqvist, P.-A.: Classifying Magnetosheath Jets Using MMS: Statistical Properties, J. Geophys. Res.-Space, 125, e2019JA027754, https://doi.org/10.1029/2019JA027754, 2020. a, b
Raptis, S., Karlsson, T., Vaivads, A., Lindberg, M., Johlander, A., and Trollvik, H.: On Magnetosheath Jet Kinetic Structure and Plasma Properties, Geophys. Res. Lett., 49, e2022GL100678, https://doi.org/10.1029/2022GL100678, 2022a. a
Savin, S., Amata, E., Zelenyi, L., Budaev, V., Consolini, G., Treumann, R., Lucek, E., Safrankova, J., Nemecek, Z., Khotyaintsev, Y., Andre, M., Buechner, J., Alleyne, H., Song, P., Blecki, J., Rauch, J. L., Romanov, S., Klimov, S., and Skalsky, A.: High Energy Jets in the Earth's Magnetosheath: Implications for Plasma Dynamics and Anomalous Transport, JETP Lett., 87, 593–599, https://doi.org/10.1134/S0021364008110015, 2008. a
Savin, S., Amata, E., Zelenyi, L., Lutsenko, V., Safrankova, J., Nemecek, Z., Borodkova, N., Buechner, J., Daly, P. W., Kronberg, E. A., Blecki, J., Budaev, V., Kozak, L., Skalsky, A., and Lezhen, L.: Super fast plasma streams as drivers of transient and anomalous magnetospheric dynamics, Ann. Geophys., 30, 1–7, https://doi.org/10.5194/angeo-30-1-2012, 2012. a
Schwartz, S. J.: Shock and Discontinuity Normals, Mach Numbers, and Related Parameters, ISSI Scientific Reports Series, 1, 249–270, 1998. a
Schwartz, S. J. and Burgess, D.: Quasi-Parallel Shocks: A Patchwork of Three-Dimensional Structures, Geophys. Res. Lett., 18, 373–376, https://doi.org/10.1029/91GL00138, 1991. a, b, c
Suni, J., Palmroth, M., Turc, L., Battarbee, M., Johlander, A., Tarvus, V., Alho, M., Bussov, M., Dubart, M., Ganse, U., Grandin, M., Horaites, K., Manglayev, T., Papadakis, K., Pfau-Kempf, Y., and Zhou, H.: Connection Between Foreshock Structures and the Generation of Magnetosheath Jets: Vlasiator Results, Geophys. Res. Lett., 48, e2021GL095655, https://doi.org/10.1029/2021GL095655, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Turc, L., Ganse, U., Pfau-Kempf, Y., Hoilijoki, S., Battarbee, M., Juusola, L., Jarvinen, R., Brito, T., Grandin, M., and Palmroth, M.: Foreshock Properties at Typical and Enhanced Interplanetary Magnetic Field Strengths: Results From Hybrid-Vlasov Simulations, J. Geophys. Res.-Space, 123, 5476–5493, https://doi.org/10.1029/2018JA025466, 2018. a
Turc, L., Roberts, O. W., Verscharen, D., Dimmock, A. P., Kajdič, P., Palmroth, M., Pfau-Kempf, Y., Johlander, A., Dubart, M., Kilpua, E. K. J., Soucek, J., Takahashi, K., Takahashi, N., Battarbee, M., and Ganse, U.: Transmission of Foreshock Waves through Earth's Bow Shock, Nat. Phys., 19, 78–86, https://doi.org/10.1038/s41567-022-01837-z, 2023. a, b
Vuorinen, L., Hietala, H., and Plaschke, F.: Jets in the magnetosheath: IMF control of where they occur, Ann. Geophys., 37, 689–697, https://doi.org/10.5194/angeo-37-689-2019, 2019. a
Wang, B., Nishimura, Y., Hietala, H., Lyons, L., Angelopoulos, V., Plaschke, F., Ebihara, Y., and Weatherwax, A.: Impacts of Magnetosheath High-Speed Jets on the Magnetosphere and Ionosphere Measured by Optical Imaging and Satellite Observations, J. Geophys. Res.-Space, 123, 4879–4894, https://doi.org/10.1029/2017JA024954, 2018. a
Wang, B., Nishimura, Y., Hietala, H., and Angelopoulos, V.: Investigating the Role of Magnetosheath High-Speed Jets in Triggering Dayside Ground Magnetic Ultra-Low Frequency Waves, Geophys. Res. Lett., 49, e2022GL099768, https://doi.org/10.1029/2022GL099768, 2022. a
Wilson, L. B.: Low Frequency Waves at and Upstream of Collisionless Shocks, in: Geophysical Monograph Series, edited by: Keiling, A., Lee, D.-H., and Nakariakov, V., 269–291, John Wiley & Sons, Inc, Hoboken, NJ, https://doi.org/10.1002/9781119055006.ch16, 2016. a
Wilson, L. B., Sibeck, D. G., Breneman, A. W., Contel, O. L., Cully, C., Turner, D. L., Angelopoulos, V., and Malaspina, D. M.: Quantified Energy Dissipation Rates in the Terrestrial Bow Shock: 1. Analysis Techniques and Methodology, J. Geophys. Res.-Space, 119, 6455–6474, https://doi.org/10.1002/2014JA019929, 2014. a
Winterhalter, D. and Kivelson, M. G.: Observations of the Earth's Bow Shock under High Mach Number/High Plasma Beta Solar Wind Conditions, Geophys. Res. Lett., 15, 1161–1164, https://doi.org/10.1029/GL015i010p01161, 1988. a
Zhang, H., Zong, Q., Connor, H., Delamere, P., Facskó, G., Han, D., Hasegawa, H., Kallio, E., Kis, Á., Le, G., Lembège, B., Lin, Y., Liu, T., Oksavik, K., Omidi, N., Otto, A., Ren, J., Shi, Q., Sibeck, D., and Yao, S.: Dayside Transient Phenomena and Their Impact on the Magnetosphere and Ionosphere, Space Sci. Rev., 218, 40, https://doi.org/10.1007/s11214-021-00865-0, 2022. a
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of...