Articles | Volume 41, issue 2
https://doi.org/10.5194/angeo-41-339-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-41-339-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysis of in situ measurements of electron, ion and neutral temperatures in the lower thermosphere–ionosphere
Panagiotis Pirnaris
CORRESPONDING AUTHOR
Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
Theodoros Sarris
CORRESPONDING AUTHOR
Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
Related authors
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Joachim Vogt, Octav Marghitu, Adrian Blagau, Leonie Pick, Nele Stachlys, Stephan Buchert, Theodoros Sarris, Stelios Tourgaidis, Thanasis Balafoutis, Dimitrios Baloukidis, and Panagiotis Pirnaris
Geosci. Instrum. Method. Data Syst., 12, 239–257, https://doi.org/10.5194/gi-12-239-2023, https://doi.org/10.5194/gi-12-239-2023, 2023
Short summary
Short summary
Motivated by recent community interest in a satellite mission to the atmospheric lower thermosphere and ionosphere (LTI) region (100–200 km altitude), the DIPCont project is concerned with the reconstruction quality of vertical profiles of key LTI variables using dual- and single-spacecraft observations. The report introduces the probabilistic DIPCont modeling framework, demonstrates its usage by means of a set of self-consistent parametric non-isothermal models, and discusses first results.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Theodoros E. Sarris, Elsayed R. Talaat, Minna Palmroth, Iannis Dandouras, Errico Armandillo, Guram Kervalishvili, Stephan Buchert, Stylianos Tourgaidis, David M. Malaspina, Allison N. Jaynes, Nikolaos Paschalidis, John Sample, Jasper Halekas, Eelco Doornbos, Vaios Lappas, Therese Moretto Jørgensen, Claudia Stolle, Mark Clilverd, Qian Wu, Ingmar Sandberg, Panagiotis Pirnaris, and Anita Aikio
Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, https://doi.org/10.5194/gi-9-153-2020, 2020
Short summary
Short summary
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the Earth's
ignorosphere. Here, intriguing and complex processes govern the deposition and transport of energy. The aim is to quantify this energy by measuring effects caused by electrodynamic processes in this region. The concept is based on a mother satellite that carries a suite of instruments, along with smaller satellites carrying a subset of instruments that are released into the atmosphere.
Theodore E. Sarris and Xinlin Li
Ann. Geophys., 35, 629–638, https://doi.org/10.5194/angeo-35-629-2017, https://doi.org/10.5194/angeo-35-629-2017, 2017
Short summary
Short summary
In this paper we describe a novel way to approximate the decomposition of magnetospheric ultra low-frequency (ULF) wave power in key azimuthal wavenumbers m, which is a parameter describing the number of azimuthal wavelengths that fit within a particle drift orbit. This is a critical parameter that is required in estimates of the rates of radial diffusion, and we show for the first time that there is a local time and geomagnetic activity dependence in the distribution of power in wavenumbers m.
Theodore E. Sarris and Xinlin Li
Ann. Geophys., 34, 565–571, https://doi.org/10.5194/angeo-34-565-2016, https://doi.org/10.5194/angeo-34-565-2016, 2016
K. Konstantinidis and T. Sarris
Geosci. Model Dev., 8, 2967–2975, https://doi.org/10.5194/gmd-8-2967-2015, https://doi.org/10.5194/gmd-8-2967-2015, 2015
Short summary
Short summary
The 2nd & 3rd adiabatic invariants (in particular their proxies I & L*) are commonly used to characterize charged particle motion in a magnetic field. However care should be taken when calculating them, as the assumption of their conservation is not valid everywhere in the Earth’s magnetosphere. In this paper we compare calculations of I and L* using LANLstar, SPENVIS, IRBEM and a 3D particle tracer, and we map the areas in the Earth’s magnetosphere where I & L* can be assumed to be conserved.
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Ionosphere–atmosphere interactions
Polar mesospheric summer echo (PMSE) multilayer properties during the solar maximum and solar minimum
Calibrating estimates of ionospheric long-term change
On the importance of middle-atmosphere observations on ionospheric dynamics using WACCM-X and SAMI3
Effects of the terdiurnal tide on the sporadic E (Es) layer development at low latitudes over the Brazilian sector
Mid-latitude neutral wind responses to sub-auroral polarization streams
Arecibo measurements of D-region electron densities during sunset and sunrise: implications for atmospheric composition
Entangled dynamos and Joule heating in the Earth's ionosphere
Evidence of vertical coupling: meteorological storm Fabienne on 23 September 2018 and its related effects observed up to the ionosphere
Quasi-10 d wave modulation of an equatorial ionization anomaly during the Southern Hemisphere stratospheric warming of 2002
Quarterdiurnal signature in sporadic E occurrence rates and comparison with neutral wind shear
Dorota Jozwicki, Puneet Sharma, Devin Huyghebaert, and Ingrid Mann
Ann. Geophys., 42, 431–453, https://doi.org/10.5194/angeo-42-431-2024, https://doi.org/10.5194/angeo-42-431-2024, 2024
Short summary
Short summary
We investigated the relationship between polar mesospheric summer echo (PMSE) layers and the solar cycle. Our results indicate that the average altitude of PMSEs, the echo power in the PMSEs and the thickness of the layers are, on average, higher during the solar maximum than during the solar minimum. We infer that higher electron densities at ionospheric altitudes might be necessary to observe multilayered PMSEs. We observe that the thickness decreases as the number of multilayers increases.
Christopher John Scott, Matthew N. Wild, Luke Anthony Barnard, Bingkun Yu, Tatsuhiro Yokoyama, Michael Lockwood, Cathryn Mitchel, John Coxon, and Andrew Kavanagh
Ann. Geophys., 42, 395–418, https://doi.org/10.5194/angeo-42-395-2024, https://doi.org/10.5194/angeo-42-395-2024, 2024
Short summary
Short summary
Long-term change in the ionosphere are expected due to increases in greenhouse gases in the lower atmosphere. Empirical formulae are used to estimate height. Through comparison with independent data we show that there are seasonal and long-term biases introduced by the empirical model. We conclude that estimates of long-term changes in ionospheric height need to account for these biases.
Fabrizio Sassi, Angeline G. Burrell, Sarah E. McDonald, Jennifer L. Tate, and John P. McCormack
Ann. Geophys., 42, 255–269, https://doi.org/10.5194/angeo-42-255-2024, https://doi.org/10.5194/angeo-42-255-2024, 2024
Short summary
Short summary
This study shows how middle-atmospheric data (starting at 40 km) affect day-to-day ionospheric variability. We do this by using lower atmospheric measurements that include and exclude the middle atmosphere in a coupled ionosphere–thermosphere model. Comparing the two simulations reveals differences in two thermosphere–ionosphere coupling mechanisms. Additionally, comparison against observations showed that including the middle-atmospheric data improved the resulting ionosphere.
Pedro Alves Fontes, Marcio Tadeu de Assis Honorato Muella, Laysa Cristina Araújo Resende, Vânia Fátima Andrioli, Paulo Roberto Fagundes, Valdir Gil Pillat, Paulo Prado Batista, and Alexander Jose Carrasco
Ann. Geophys., 41, 209–224, https://doi.org/10.5194/angeo-41-209-2023, https://doi.org/10.5194/angeo-41-209-2023, 2023
Short summary
Short summary
In the terrestrial ionosphere, sporadic (metallic) layers are formed. The formation of these layers are related to the action of atmospheric waves. These waves, also named tides, are due to the absorption of solar radiation in the atmosphere. We investigated the role of the tides with 8 h period in the formation of the sporadic layers. The study was conducted using ionosonde and meteor radar data, as well as computing simulations. The 8 h tides intensified the density of the sporadic layers.
Daniel D. Billett, Kathryn A. McWilliams, Robert B. Kerr, Jonathan J. Makela, Alex T. Chartier, J. Michael Ruohoniemi, Sudha Kapali, Mike A. Migliozzi, and Juanita Riccobono
Ann. Geophys., 40, 571–583, https://doi.org/10.5194/angeo-40-571-2022, https://doi.org/10.5194/angeo-40-571-2022, 2022
Short summary
Short summary
Sub-auroral polarisation streams (SAPSs) are very fast plasma flows that occur at mid-latitudes, which can affect the atmosphere. In this paper, we use four ground-based radars to obtain a wide coverage of SAPSs that occurred over the USA, along with interferometer cameras in Virginia and Massachusetts to measure winds. The winds are strongly affected but in different ways, implying that the balance forces on the atmosphere is strongly dependent on proximity to the disturbance.
Carsten Baumann, Antti Kero, Shikha Raizada, Markus Rapp, Michael P. Sulzer, Pekka T. Verronen, and Juha Vierinen
Ann. Geophys., 40, 519–530, https://doi.org/10.5194/angeo-40-519-2022, https://doi.org/10.5194/angeo-40-519-2022, 2022
Short summary
Short summary
The Arecibo radar was used to probe free electrons of the ionized atmosphere between 70 and 100 km altitude. This is also the altitude region were meteors evaporate and form secondary particulate matter, the so-called meteor smoke particles (MSPs). Free electrons attach to these MSPs when the sun is below the horizon and cause a drop in the number of free electrons, which are the subject of these measurements. We also identified a different number of free electrons during sunset and sunrise.
Stephan C. Buchert
Ann. Geophys., 38, 1019–1030, https://doi.org/10.5194/angeo-38-1019-2020, https://doi.org/10.5194/angeo-38-1019-2020, 2020
Short summary
Short summary
Winds in the Earth's upper atmosphere cause magnetic and electric variations both at the ground and in space all over the Earth. According to the model of entangled dynamos the true cause is wind differences between regions in the Northern and Southern Hemispheres that are connected by the Earth's dipole-like magnetic field. The power produced in the southern dynamo heats the northern upper atmosphere and vice versa. The dynamos exist owing to this entanglement, an analogy to quantum mechanics.
Petra Koucká Knížová, Kateřina Podolská, Kateřina Potužníková, Daniel Kouba, Zbyšek Mošna, Josef Boška, and Michal Kozubek
Ann. Geophys., 38, 73–93, https://doi.org/10.5194/angeo-38-73-2020, https://doi.org/10.5194/angeo-38-73-2020, 2020
Short summary
Short summary
Severe meteorological storm Fabienne passing above central Europe was observed. Significant variations of atmospheric and ionospheric parameters were detected. Above Europe, stratospheric temperature and wind significantly changed in coincidence with frontal transition. Within ionospheric parameters, we have detected significant wave-like activity shortly after the cold front crossed the observational point. During the storm event, we have observed strong horizontal plasma flow shears.
Xiaohua Mo and Donghe Zhang
Ann. Geophys., 38, 9–16, https://doi.org/10.5194/angeo-38-9-2020, https://doi.org/10.5194/angeo-38-9-2020, 2020
Christoph Jacobi, Christina Arras, Christoph Geißler, and Friederike Lilienthal
Ann. Geophys., 37, 273–288, https://doi.org/10.5194/angeo-37-273-2019, https://doi.org/10.5194/angeo-37-273-2019, 2019
Short summary
Short summary
Sporadic E (Es) layers in the Earth's ionosphere are produced by ion convergence due to vertical wind shear in the presence of a horizontal component of the Earth's magnetic field. We present analyses of the 6 h tidal signatures in ES occurrence rates derived from GPS radio observations. Times of maxima in ES agree well with those of negative wind shear obtained from radar observation. The global distribution of ES amplitudes agrees with wind shear amplitudes from numerical modeling.
Cited articles
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, OSTI.GOV,
https://www.osti.gov/biblio/5936274 (last access: 10 March 2021), 1987. a
Becker, E., Goncharenko, L., Harvey, V. L., and Vadas, S. L.: Multi-Step
Vertical Coupling During the January 2017 Sudden Stratospheric Warming,
J. Geophys. Res.-Space, 127, e2022JA030866,
https://doi.org/10.1029/2022JA030866, 2022. a, b
Benson, R. F., Bauer, P., Brace, L. H., Carlson, H. C., Hagen, J., Hanson,
W. B., Hoegy, W. R., Torr, M. R., Wand, R. H., and Wickwar, V. B.: Electron
and ion temperatures-A comparison of ground-based incoherent scatter and
AE-C satellite measurements, J. Geophys. Res., 82, 36–42,
https://doi.org/10.1029/ja082i001p00036, 1977. a, b, c, d, e, f, g, h, i, j, k, l, m
Bilitza, D., Rawer, K., Bossy, L., and Gulyaeva, T.: International reference
ionosphere – past, present, and future: II. Plasma temperatures, ion
composition and ion drift, Adv. Space Res., 13, 15–23,
https://doi.org/10.1016/0273-1177(93)90241-3, 1993. a
Bilitza, D., Papitashvili, N., and King, J.: Atmosphere Explorer C, D, And E 15-Sec Data, SPDF NASA [data set], https://spdf.gsfc.nasa.gov/pub/data/ae/ (last access: 15 January 2020), 1995. a
Bilitza, D., Pezzopane, M., Truhlik, V., Altadill, D., Reinisch, B. W., and
Pignalberi, A.: The International Reference Ionosphere Model: A Review and
Description of an Ionospheric Benchmark, Rev. Geophys., 60,
e2022RG000792, https://doi.org/10.1029/2022RG000792, 2022. a
Billingsley, P.: Probability and Measure, John Wiley and Sons, 2nd Edn., ISBN: 978-0471804789,
1986. a
Block, L. P.: A double layer review, Astrophys. Space Sci., 55,
59–83, https://doi.org/10.1007/bf00642580, 1978. a
Brace, L. H., Theis, R. F., and Dalgarno, A.: The cylindrical electrostatic
probes for Atmosphere Explorer C, D and E, Radio Science, 8, 341–348,
1973. a
Buchert, S. and Hoz, C. L.: Extreme ionospheric effects in the presence of high
electric fields, Nature, 333, 438–440, 1988. a
Burch, J. and Hoffman, R.: Introduction to the Dynamics Explorer mission, in:
23rd Aerospace Sciences Meeting, American Institute of Aeronautics and
Astronautics, https://doi.org/10.2514/6.1985-61, 1985. a
Chandra, S., Spencer, N. W., Krankowsky, D., and Lammerzahl, P.: A Comparison
of Measured and Inferred Temperatures from Aeros-B, Geophys. Res. Lett., 3, 718–720,
https://doi.org/10.1029/GL003i012p00718,
1976. a
Chen, S.-L. and Sekiguchi, T.: Instantaneous Direct-Display System of Plasma
Parameters by Means of Triple Probe, J. Appl. Phys., 36,
2363–2375, https://doi.org/10.1063/1.1714492, 1965. a
Chen, Y.-T., Lin, C. H., Chen, C. H., Liu, J. Y., Huba, J. D., Chang, L. C.,
Liu, H.-L., Lin, J. T., and Rajesh, P. K.: Theoretical study of the
ionospheric plasma cave in the equatorial ionization anomaly region, J. Geophys. Res.-Space, 119, 10324–10335,
https://doi.org/10.1002/2014JA020235, 2014. a, b, c
Christensen, A. B., Paxton, L. J., Avery, S., Craven, J., Crowley, G., Humm,
D. C., Kil, H., Meier, R. R., Meng, C.-I., Morrison, D., Ogorzalek, B. S.,
Straus, P., Strickland, D. J., Swenson, R. M., Walterscheid, R. L., Wolven,
B., and Zhang, Y.: Initial observations with the Global Ultraviolet Imager
(GUVI) in the NASA TIMED satellite mission, J. Geophys. Res.-Space, 108, A12, https://doi.org/10.1029/2003JA009918, 2003. a
Dalgarno, A., Hanson, W. B., Spencer, N. W., and Schmerling, E. R.: The
Atmosphere Explorer mission, Radio Sci., 8, 263–266,
https://doi.org/10.1029/RS008i004p00263, 1973. a
DeForest, S. E.: Spacecraft charging at synchronous orbit, J. Geophys. Res., 77, 651–659,
https://doi.org/10.1029/JA077i004p00651, 1972. a
Dobbin, A. L.: Modelling studies of possible coupling mechanisms between the
upper and middle atmosphere, PhD thesis, University of London, University College London,
UK, 2005. a
Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones Jr., M.,
Mlynczak, M. G., Bernath, P. F., Chu, X., Doornbos, E., Funke, B.,
Goncharenko, L. P., Hervig, M. E., Schwartz, M. J., Sheese, P. E., Vargas,
F., Williams, B. P., and Yuan, T.: NRLMSIS 2.0: A Whole-Atmosphere Empirical
Model of Temperature and Neutral Species Densities, Earth Space Sci.,
8, e2020EA001321, https://doi.org/10.1029/2020EA001321, 2021. a
England, S. L., Greer, K. R., Solomon, S. C., Eastes, R. W., McClintock, W. E.,
and Burns, A. G.: Observation of Thermospheric Gravity Waves in the Southern
Hemisphere With GOLD, J. Geophys. Res.-Space, 125,
e2019JA027405, https://doi.org/10.1029/2019JA027405, 2020. a, b
Ergun, R. E., Andersson, L. A., Fowler, C. M., and Thaller, S. A.: Kinetic
Modeling of Langmuir Probes in Space and Application to the MAVEN Langmuir
Probe and Waves Instrument, J. Geophys. Res.-Space,
126, e2020JA028956, https://doi.org/10.1029/2020JA028956,
2021. a, b, c
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1,
https://doi.org/10.1029/2001RG000106, 2003. a
Ginzburg, V., Kurnosova, L., Logachev, V., Rozarenov, L., Sirotkin, I., and
Fradkin, M.: Investigation of charged particle intensity during the flights
of the second and third space-ships, Planet. Space Sci., 9,
845–846, https://doi.org/10.1016/0032-0633(62)90113-7, 1962. a
Gledhill, J. A.: Aeronomic effects of the South Atlantic Anomaly, Rev.
Geophys., 14, 173–187, https://doi.org/10.1029/RG014i002p00173,
1976. a
Hanley, K. G., McFadden, J. P., Mitchell, D. L., Fowler, C. M., Stone, S. W.,
Yelle, R. V., Mayyasi, M., Ergun, R. E., Andersson, L., Benna, M., Elrod,
M. K., and Jakosky, B. M.: In Situ Measurements of Thermal Ion Temperature in
the Martian Ionosphere, J. Geophys. Res.-Space, 126,
e2021JA029531, https://doi.org/10.1029/2021JA029531, 2021. a, b, c
Hanson, W. B. and Heelis, R. A.: Techniques for measuring bulk gas-motions from
satellites, Spa. Sci. Instrum., 1, 493–524, 1975. a
Hanson, W. B., Frame, D. R., and Midgley, J. E.: Errors in retarding potential
analyzers caused by nonuniformity of the grid-plane potential, J. Geophys. Res., 77, 1914–1922, https://doi.org/10.1029/ja077i010p01914, 1972. a
Hanson, W. B., Zuccaro, D. R., Lippincott, C. R., and Sanatani, S.: The
retarding potential analyzer on Atmosphere Explorer, Radio Sci., 8,
333–339, https://doi.org/10.1029/RS008i004p00333, 1973. a, b
Hanson, W. B., Heelis, R. A., Power, R. A., Lippincott, C. R.,
Zuccaro, D. R., Holt, B. J., Harmon, L. H., and Sanatani, S.: The
Retarding Potential Analyzer for Dynamics Explorer-B, Space Sci.
Instrum., 5, 503–510, 1981. a
Harris, M. J.: A new coupled middle atmosphere and thermosphere general
circulation model: Studies of dynamic, energetic and photochemical coupling
in the middle and upper atmosphere, University of London, University College
London, UK, 2001. a
Hastings, D. E.: A review of plasma interactions with spacecraft in low Earth
orbit, J. Geophys. Res.-Space, 100, 14457–14483,
https://doi.org/10.1029/94JA03358, 1995. a
Heelis, R. A. and Hanson, W. B.: Measurement Techniques in Space Plasmas, no.
102 in Geophysical Monograph Series, American Geophysical Union (AGU),
Washington, DC, ISBN: 978-1-118-66438-4, 1998. a
Hierro, R., Steiner, A. K., de la Torre, A., Alexander, P., Llamedo, P., and
Cremades, P.: Orographic and convective gravity waves above the Alps and
Andes Mountains during GPS radio occultation events – a case study,
Atmos. Meas.t Tech., 11, 3523–3539,
https://doi.org/10.5194/amt-11-3523-2018, 2018. a
Hopwood, J., Guarnieri, C. R., Whitehair, S. J., and Cuomo, J. J.: Langmuir
probe measurements of a radio frequency induction plasma, J. Vacuum
Sci. Technol. A,
11, 152–156, https://doi.org/10.1116/1.578282, 1993. a
Jakosky, B. M., Lin, R. P., Grebowsky, J. M., et al.:
The Mars atmosphere and volatile evolution (MAVEN) mission, Space Sci.
Rev., 195, 3–48, 2015. a
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.:
The International Best Track Archive for Climate Stewardship (IBTrACS):
Unifying Tropical Cyclone Data, Bull. Am. Meteorol.
Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1, 2010. a
Knapp, K. R., Diamond, H. J., Kossin, J. P., Kruk, M. C., and Schreck, C. J.:
International Best Track Archive for Climate Stewardship (IBTrACS) Project,
Version 4, NOAA National Centers for Environmental Information, https://doi.org/10.25921/82TY-9E16, 2018. a
Kofman, W. and Lathuillere, C.: Observation by the incoherent scatter technique
of the hot spots in the auroral zone ionosphere, Geophys. Res.
Lett., 14, 1158–1161, 1987. a
Lee, I. T., Liu, J. Y., Lin, C. H., Oyama, K.-I., Chen, C. Y., and Chen, C. H.:
Ionospheric plasma caves under the equatorial ionization anomaly, J.
Geophys. Res.-Space, 117, A11309,
https://doi.org/10.1029/2012JA017868, 2012. a
Liu, H.-L.: Quantifying gravity wave forcing using scale invariance, Nat.
Commun., 10, 2605, https://doi.org/10.1038/s41467-019-10527-z, 2019. a
Liu, J. Y., Lin, C. Y., Lin, C. H., Tsai, H. F., Solomon, S. C., Sun, Y. Y.,
Lee, I. T., Schreiner, W. S., and Kuo, Y. H.: Artificial plasma cave in the
low-latitude ionosphere results from the radio occultation inversion of the
FORMOSAT-3/COSMIC, J. Geophys. Res.-Space, 115, A07319,
https://doi.org/10.1029/2009JA015079, 2010. a, b
NASA, W.: WATS Description Processing,
https://spdf.gsfc.nasa.gov/pub/data/de/de2/neutral_gas_wats/description_processing.txt (last access: 16 January 2020),
1998. a
Nenovski, P., Kutiev, I., and Karadimov, M.: Effect of RPA transparency
dependence on ion masses upon ion temperature and density determination with
direct space measurements, J. Phys. E, 13,
1011–1016, https://doi.org/10.1088/0022-3735/13/9/028, 1980. a
Palmroth, M., Grandin, M., Sarris, T., Doornbos, E., Tourgaidis, S., Aikio, A.,
Buchert, S., Clilverd, M. A., Dandouras, I., Heelis, R., Hoffmann, A.,
Ivchenko, N., Kervalishvili, G., Knudsen, D. J., Kotova, A., Liu, H.-L.,
Malaspina, D. M., March, G., Marchaudon, A., Marghitu, O., Matsuo, T.,
Miloch, W. J., Moretto-Jørgensen, T., Mpaloukidis, D., Olsen, N.,
Papadakis, K., Pfaff, R., Pirnaris, P., Siemes, C., Stolle, C., Suni, J.,
van den IJssel, J., Verronen, P. T., Visser, P., and Yamauchi, M.:
Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring
techniques and models, Ann. Geophys., 39, 189–237,
https://doi.org/10.5194/angeo-39-189-2021, 2021. a, b
Peterson, W. K.: Perspective on Energetic and Thermal Atmospheric
Photoelectrons, Front. Astron. Space Sci., 8, 655309,
https://doi.org/10.3389/fspas.2021.655309, 2021. a, b
Peterson, W. K., Maruyama, N., Richards, P., Erickson, P. J., Christensen,
A. B., and Yau, A. W.: What Is the Altitude of Thermal Equilibrium?,
Geophys. Res. Lett., 50, e2023GL102758,
https://doi.org/10.1029/2023GL102758, 2023. a, b, c, d
Pfaff, R. F.: The Near-Earth Plasma Environment, Space Sci. Rev., 168,
23–112, https://doi.org/10.1007/s11214-012-9872-6, 2012. a
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00
empirical model of the atmosphere: Statistical comparisons and scientific
issues, J. Geophys. Res.-Space, 107,
15–16, https://doi.org/10.1029/2002JA009430, 2002. a
Pirnaris, P. and Sarris, T. E.: Common Observations/measurements Between
Incoherent Scatter Radars (ISR) and Atmosphere Explorers (AE) -C, -D, -E,
Dynamic Explorer 2, Zenodo, https://doi.org/10.5281/zenodo.7967432, 2023. a
Richards, P. G.: Ionospheric photoelectrons: A lateral thinking approach,
Front. Astron. Space Sci., 9, 952226,
https://doi.org/10.3389/fspas.2022.952226, 2022. a
Rosenblatt, M.: Remarks on Some Nonparametric Estimates of a Density
Function, Ann. Mathemat. Stat., 27, 832–837,
https://doi.org/10.1214/aoms/1177728190, 1956. a
Rossini, A. J.: “Applied Smoothing Techniques for Data
Analysis: The Kernel Approach with S-Plus Illustrations”
by Adrian W. Bowman and Adelchi Azzalini, Comput. Stat., 15,
301–302, https://doi.org/10.1007/s001800000033, 2000. a
Sarris, T., Palmroth, M., Aikio, A., Buchert, S. C., Clemmons, J., Clilverd,
M., Dandouras, I., Doornbos, E., Goodwin, L. V., Grandin, M., Heelis, R.,
Ivchenko, N., Moretto-Jørgensen, T., Kervalishvili, G., Knudsen, D., Liu,
H.-L., Lu, G., Malaspina, D. M., Marghitu, O., Maute, A., Miloch, W. J.,
Olsen, N., Pfaff, R., Stolle, C., Talaat, E., Thayer, J., Tourgaidis, S.,
Verronen, P. T., and Yamauchi, M.: Plasma-neutral interactions in the lower
thermosphere-ionosphere: The need for in situ measurements to address focused
questions, Front. Astron. Space Sci., 9, 1063190,
https://doi.org/10.3389/fspas.2022.1063190, 2023. a
Sarris, T. E.: Understanding the ionosphere thermosphere response to solar and
magnetospheric drivers: status, challenges and open issues, Philos.
T. R. Soc. A, 377, 20180101, https://doi.org/10.1098/rsta.2018.0101, 2019. a, b
Sarris, T. E., Talaat, E. R., Palmroth, M., Dandouras, I., Armandillo, E., Kervalishvili, G., Buchert, S., Tourgaidis, S., Malaspina, D. M., Jaynes, A. N., Paschalidis, N., Sample, J., Halekas, J., Doornbos, E., Lappas, V., Moretto Jørgensen, T., Stolle, C., Clilverd, M., Wu, Q., Sandberg, I., Pirnaris, P., and Aikio, A.: Daedalus: a low-flying spacecraft for in situ exploration of the lower thermosphere–ionosphere, Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, 2020. a, b
Sasaki, S. and Kawashima, N.: rocket measurement of ion and neutral
temperatures in the lower ionosphere, J. Geophys. Res., 80, 2824–2828, https://doi.org/10.1029/JA080i019p02824,
1975. a, b
Schunk, R. and Nagy, A.: Ionospheres: Physics, Plasma Physics, and Chemistry,
Cambridge Atmospheric and Space Science Series, Cambridge University Press, 2nd
Edn., https://doi.org/10.1017/CBO9780511635342, 2009. a
Schwabedissen, A., Benck, E. C., and Roberts, J. R.: Langmuir probe
measurements in an inductively coupled plasma source, Phys. Rev. E, 55,
3450–3459, https://doi.org/10.1103/physreve.55.3450, 1997.
a
Scott, D. W.: Multivariate Density Estimation, Wiley,
https://doi.org/10.1002/9780470316849, 1992. a
Spencer, N. W., H, U. N., and Carignan, G. R.: The Neutral-Atmosphere
Temperature Instrument, Radio Sci., 8, 287–296, https://doi.org/10.1029/RS008i004p00287, 1973. a, b, c
Spencer, N. W., Pelz, D. T., Niemann, H. B., Carignan, G. R., and Caldwell,
J. R.: The Neutral Atmosphere Temperature Experiment, J. Geophys., 40, 613–624, 1974. a
Spencer, N. W., Theis, R. F., Wharton, L. E., and Carignan, G. R.: Local
Vertical Motions and Kinetic Temperature from AE-C as Evidence for
Aurora-Induced Gravity Waves, Geophys. Res. Lett., 3, 313–316,
https://doi.org/10.1029/GL003i006p00313, 1976. a
Stanojević, M., Čerček, M., and Gyergyek, T.: Experimental
Study of Planar Langmuir Probe Characteristics in Electron Current-Carrying
Magnetized Plasma, Contrib. Plasma Phys., 39, 197–222,
https://doi.org/10.1002/ctpp.2150390303, 1999. a
Vadas, S. L. and Azeem, I.: Concentric Secondary Gravity Waves in the
Thermosphere and Ionosphere Over the Continental United States on March
25–26, 2015 From Deep Convection, J. Geophys. Res.-Space, 126, e2020JA028275, https://doi.org/10.1029/2020JA028275,
2021. a
Vernov, S. and Chudakov, A.: Terrestrial corpuscular radiation and cosmic rays,
Space Res., 125, 751, 1960. a
Walterscheid, R. L.: Dynamical cooling induced by dissipating internal gravity
waves, Geophys. Res. Lett., 8, 1235–1238,
https://doi.org/10.1029/GL008i012p01235, 1981. a
Whipple, E. C.: Potentials of surfaces in space, Report. Prog.
Phys., 44, 1197, https://doi.org/10.1088/0034-4885/44/11/002, 1981. a
Whipple Jr., E. C.: The ion-trap results in “exploration of the upper
atmosphere with the help of the third soviet sputnik”,
https://www.osti.gov/biblio/4108305 (last access: 16 January 2020), 1961. a
Wulff, A. and Gledhill, J.: Atmospheric ionization by precipitated electrons,
J. Atmos. Terr. Phys., 36, 79–91,
https://doi.org/10.1016/0021-9169(74)90068-3, 1974. a
Yiğit, E. and Medvedev, A. S.: Heating and cooling of the thermosphere by
internal gravity waves, Geophys. Res. Lett., 36, L14807,
https://doi.org/10.1029/2009GL038507, 2009. a, b
Yoshida, S., Ludwig, G. H., and Van Allen, J. A.: Distribution of trapped
radiation in the geomagnetic field, J. Geophys. Res., 65, 807–813, https://doi.org/10.1029/JZ065i003p00807,
1960. a
Editor-in-chief
The research presented in this paper includes a large number of events during which the neutral temperatures were higher than the ion temperatures. This feature is against what we know from textbooks, suggesting that further investigations on this issue should be performed.
The research presented in this paper includes a large number of events during which the neutral...
Short summary
The relation between electron, ion and neutral temperatures in the lower thermosphere–ionosphere (LTI) is key to understanding the energy balance and transfer between species. However, their simultaneous measurement is rare in the LTI. Based on data from the AE-C, AE-D, AE-E and DE-2 satellites of the 1970s and 1980s, a large number of events where neutrals are hotter than ions are identified and statistically analyzed. Potential mechanisms that could trigger these events are proposed.
The relation between electron, ion and neutral temperatures in the lower thermosphere–ionosphere...