Articles | Volume 41, issue 2
https://doi.org/10.5194/angeo-41-339-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-41-339-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysis of in situ measurements of electron, ion and neutral temperatures in the lower thermosphere–ionosphere
Panagiotis Pirnaris
CORRESPONDING AUTHOR
Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
Theodoros Sarris
CORRESPONDING AUTHOR
Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
Related authors
Stelios Tourgaidis, Dimitrios Baloukidis, Panagiotis Pirnaris, Theodoros Sarris, Aaron Ridley, and Gang Lu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2679, https://doi.org/10.5194/egusphere-2025-2679, 2025
Short summary
Short summary
During geomagnetic storms, Joule heating is a major heating source of the upper atmosphere that is not well estimated, due to a lack of measurements. This leads to uncertainties in orbital calculations. We present simulations with commonly used physics-based models and empirical models that provide measurements of Joule heating. The results show great discrepancies, pointing to the need for measurements in the Earth's Lower Thermosphere-Ionosphere at altitudes where Joule heating maximizes.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Stelios Tourgaidis, Dimitrios Baloukidis, Panagiotis Pirnaris, Theodoros Sarris, Aaron Ridley, and Gang Lu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2679, https://doi.org/10.5194/egusphere-2025-2679, 2025
Short summary
Short summary
During geomagnetic storms, Joule heating is a major heating source of the upper atmosphere that is not well estimated, due to a lack of measurements. This leads to uncertainties in orbital calculations. We present simulations with commonly used physics-based models and empirical models that provide measurements of Joule heating. The results show great discrepancies, pointing to the need for measurements in the Earth's Lower Thermosphere-Ionosphere at altitudes where Joule heating maximizes.
Joachim Vogt, Octav Marghitu, Adrian Blagau, Leonie Pick, Nele Stachlys, Stephan Buchert, Theodoros Sarris, Stelios Tourgaidis, Thanasis Balafoutis, Dimitrios Baloukidis, and Panagiotis Pirnaris
Geosci. Instrum. Method. Data Syst., 12, 239–257, https://doi.org/10.5194/gi-12-239-2023, https://doi.org/10.5194/gi-12-239-2023, 2023
Short summary
Short summary
Motivated by recent community interest in a satellite mission to the atmospheric lower thermosphere and ionosphere (LTI) region (100–200 km altitude), the DIPCont project is concerned with the reconstruction quality of vertical profiles of key LTI variables using dual- and single-spacecraft observations. The report introduces the probabilistic DIPCont modeling framework, demonstrates its usage by means of a set of self-consistent parametric non-isothermal models, and discusses first results.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Cited articles
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, OSTI.GOV,
https://www.osti.gov/biblio/5936274 (last access: 10 March 2021), 1987. a
Becker, E., Goncharenko, L., Harvey, V. L., and Vadas, S. L.: Multi-Step
Vertical Coupling During the January 2017 Sudden Stratospheric Warming,
J. Geophys. Res.-Space, 127, e2022JA030866,
https://doi.org/10.1029/2022JA030866, 2022. a, b
Benson, R. F., Bauer, P., Brace, L. H., Carlson, H. C., Hagen, J., Hanson,
W. B., Hoegy, W. R., Torr, M. R., Wand, R. H., and Wickwar, V. B.: Electron
and ion temperatures-A comparison of ground-based incoherent scatter and
AE-C satellite measurements, J. Geophys. Res., 82, 36–42,
https://doi.org/10.1029/ja082i001p00036, 1977. a, b, c, d, e, f, g, h, i, j, k, l, m
Bilitza, D., Rawer, K., Bossy, L., and Gulyaeva, T.: International reference
ionosphere – past, present, and future: II. Plasma temperatures, ion
composition and ion drift, Adv. Space Res., 13, 15–23,
https://doi.org/10.1016/0273-1177(93)90241-3, 1993. a
Bilitza, D., Papitashvili, N., and King, J.: Atmosphere Explorer C, D, And E 15-Sec Data, SPDF NASA [data set], https://spdf.gsfc.nasa.gov/pub/data/ae/ (last access: 15 January 2020), 1995. a
Bilitza, D., Pezzopane, M., Truhlik, V., Altadill, D., Reinisch, B. W., and
Pignalberi, A.: The International Reference Ionosphere Model: A Review and
Description of an Ionospheric Benchmark, Rev. Geophys., 60,
e2022RG000792, https://doi.org/10.1029/2022RG000792, 2022. a
Billingsley, P.: Probability and Measure, John Wiley and Sons, 2nd Edn., ISBN: 978-0471804789,
1986. a
Block, L. P.: A double layer review, Astrophys. Space Sci., 55,
59–83, https://doi.org/10.1007/bf00642580, 1978. a
Brace, L. H., Theis, R. F., and Dalgarno, A.: The cylindrical electrostatic
probes for Atmosphere Explorer C, D and E, Radio Science, 8, 341–348,
1973. a
Buchert, S. and Hoz, C. L.: Extreme ionospheric effects in the presence of high
electric fields, Nature, 333, 438–440, 1988. a
Burch, J. and Hoffman, R.: Introduction to the Dynamics Explorer mission, in:
23rd Aerospace Sciences Meeting, American Institute of Aeronautics and
Astronautics, https://doi.org/10.2514/6.1985-61, 1985. a
Chandra, S., Spencer, N. W., Krankowsky, D., and Lammerzahl, P.: A Comparison
of Measured and Inferred Temperatures from Aeros-B, Geophys. Res. Lett., 3, 718–720,
https://doi.org/10.1029/GL003i012p00718,
1976. a
Chen, S.-L. and Sekiguchi, T.: Instantaneous Direct-Display System of Plasma
Parameters by Means of Triple Probe, J. Appl. Phys., 36,
2363–2375, https://doi.org/10.1063/1.1714492, 1965. a
Chen, Y.-T., Lin, C. H., Chen, C. H., Liu, J. Y., Huba, J. D., Chang, L. C.,
Liu, H.-L., Lin, J. T., and Rajesh, P. K.: Theoretical study of the
ionospheric plasma cave in the equatorial ionization anomaly region, J. Geophys. Res.-Space, 119, 10324–10335,
https://doi.org/10.1002/2014JA020235, 2014. a, b, c
Christensen, A. B., Paxton, L. J., Avery, S., Craven, J., Crowley, G., Humm,
D. C., Kil, H., Meier, R. R., Meng, C.-I., Morrison, D., Ogorzalek, B. S.,
Straus, P., Strickland, D. J., Swenson, R. M., Walterscheid, R. L., Wolven,
B., and Zhang, Y.: Initial observations with the Global Ultraviolet Imager
(GUVI) in the NASA TIMED satellite mission, J. Geophys. Res.-Space, 108, A12, https://doi.org/10.1029/2003JA009918, 2003. a
Dalgarno, A., Hanson, W. B., Spencer, N. W., and Schmerling, E. R.: The
Atmosphere Explorer mission, Radio Sci., 8, 263–266,
https://doi.org/10.1029/RS008i004p00263, 1973. a
DeForest, S. E.: Spacecraft charging at synchronous orbit, J. Geophys. Res., 77, 651–659,
https://doi.org/10.1029/JA077i004p00651, 1972. a
Dobbin, A. L.: Modelling studies of possible coupling mechanisms between the
upper and middle atmosphere, PhD thesis, University of London, University College London,
UK, 2005. a
Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones Jr., M.,
Mlynczak, M. G., Bernath, P. F., Chu, X., Doornbos, E., Funke, B.,
Goncharenko, L. P., Hervig, M. E., Schwartz, M. J., Sheese, P. E., Vargas,
F., Williams, B. P., and Yuan, T.: NRLMSIS 2.0: A Whole-Atmosphere Empirical
Model of Temperature and Neutral Species Densities, Earth Space Sci.,
8, e2020EA001321, https://doi.org/10.1029/2020EA001321, 2021. a
England, S. L., Greer, K. R., Solomon, S. C., Eastes, R. W., McClintock, W. E.,
and Burns, A. G.: Observation of Thermospheric Gravity Waves in the Southern
Hemisphere With GOLD, J. Geophys. Res.-Space, 125,
e2019JA027405, https://doi.org/10.1029/2019JA027405, 2020. a, b
Ergun, R. E., Andersson, L. A., Fowler, C. M., and Thaller, S. A.: Kinetic
Modeling of Langmuir Probes in Space and Application to the MAVEN Langmuir
Probe and Waves Instrument, J. Geophys. Res.-Space,
126, e2020JA028956, https://doi.org/10.1029/2020JA028956,
2021. a, b, c
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1,
https://doi.org/10.1029/2001RG000106, 2003. a
Ginzburg, V., Kurnosova, L., Logachev, V., Rozarenov, L., Sirotkin, I., and
Fradkin, M.: Investigation of charged particle intensity during the flights
of the second and third space-ships, Planet. Space Sci., 9,
845–846, https://doi.org/10.1016/0032-0633(62)90113-7, 1962. a
Gledhill, J. A.: Aeronomic effects of the South Atlantic Anomaly, Rev.
Geophys., 14, 173–187, https://doi.org/10.1029/RG014i002p00173,
1976. a
Hanley, K. G., McFadden, J. P., Mitchell, D. L., Fowler, C. M., Stone, S. W.,
Yelle, R. V., Mayyasi, M., Ergun, R. E., Andersson, L., Benna, M., Elrod,
M. K., and Jakosky, B. M.: In Situ Measurements of Thermal Ion Temperature in
the Martian Ionosphere, J. Geophys. Res.-Space, 126,
e2021JA029531, https://doi.org/10.1029/2021JA029531, 2021. a, b, c
Hanson, W. B. and Heelis, R. A.: Techniques for measuring bulk gas-motions from
satellites, Spa. Sci. Instrum., 1, 493–524, 1975. a
Hanson, W. B., Frame, D. R., and Midgley, J. E.: Errors in retarding potential
analyzers caused by nonuniformity of the grid-plane potential, J. Geophys. Res., 77, 1914–1922, https://doi.org/10.1029/ja077i010p01914, 1972. a
Hanson, W. B., Zuccaro, D. R., Lippincott, C. R., and Sanatani, S.: The
retarding potential analyzer on Atmosphere Explorer, Radio Sci., 8,
333–339, https://doi.org/10.1029/RS008i004p00333, 1973. a, b
Hanson, W. B., Heelis, R. A., Power, R. A., Lippincott, C. R.,
Zuccaro, D. R., Holt, B. J., Harmon, L. H., and Sanatani, S.: The
Retarding Potential Analyzer for Dynamics Explorer-B, Space Sci.
Instrum., 5, 503–510, 1981. a
Harris, M. J.: A new coupled middle atmosphere and thermosphere general
circulation model: Studies of dynamic, energetic and photochemical coupling
in the middle and upper atmosphere, University of London, University College
London, UK, 2001. a
Hastings, D. E.: A review of plasma interactions with spacecraft in low Earth
orbit, J. Geophys. Res.-Space, 100, 14457–14483,
https://doi.org/10.1029/94JA03358, 1995. a
Heelis, R. A. and Hanson, W. B.: Measurement Techniques in Space Plasmas, no.
102 in Geophysical Monograph Series, American Geophysical Union (AGU),
Washington, DC, ISBN: 978-1-118-66438-4, 1998. a
Hierro, R., Steiner, A. K., de la Torre, A., Alexander, P., Llamedo, P., and
Cremades, P.: Orographic and convective gravity waves above the Alps and
Andes Mountains during GPS radio occultation events – a case study,
Atmos. Meas.t Tech., 11, 3523–3539,
https://doi.org/10.5194/amt-11-3523-2018, 2018. a
Hopwood, J., Guarnieri, C. R., Whitehair, S. J., and Cuomo, J. J.: Langmuir
probe measurements of a radio frequency induction plasma, J. Vacuum
Sci. Technol. A,
11, 152–156, https://doi.org/10.1116/1.578282, 1993. a
Jakosky, B. M., Lin, R. P., Grebowsky, J. M., et al.:
The Mars atmosphere and volatile evolution (MAVEN) mission, Space Sci.
Rev., 195, 3–48, 2015. a
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.:
The International Best Track Archive for Climate Stewardship (IBTrACS):
Unifying Tropical Cyclone Data, Bull. Am. Meteorol.
Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1, 2010. a
Knapp, K. R., Diamond, H. J., Kossin, J. P., Kruk, M. C., and Schreck, C. J.:
International Best Track Archive for Climate Stewardship (IBTrACS) Project,
Version 4, NOAA National Centers for Environmental Information, https://doi.org/10.25921/82TY-9E16, 2018. a
Kofman, W. and Lathuillere, C.: Observation by the incoherent scatter technique
of the hot spots in the auroral zone ionosphere, Geophys. Res.
Lett., 14, 1158–1161, 1987. a
Lee, I. T., Liu, J. Y., Lin, C. H., Oyama, K.-I., Chen, C. Y., and Chen, C. H.:
Ionospheric plasma caves under the equatorial ionization anomaly, J.
Geophys. Res.-Space, 117, A11309,
https://doi.org/10.1029/2012JA017868, 2012. a
Liu, H.-L.: Quantifying gravity wave forcing using scale invariance, Nat.
Commun., 10, 2605, https://doi.org/10.1038/s41467-019-10527-z, 2019. a
Liu, J. Y., Lin, C. Y., Lin, C. H., Tsai, H. F., Solomon, S. C., Sun, Y. Y.,
Lee, I. T., Schreiner, W. S., and Kuo, Y. H.: Artificial plasma cave in the
low-latitude ionosphere results from the radio occultation inversion of the
FORMOSAT-3/COSMIC, J. Geophys. Res.-Space, 115, A07319,
https://doi.org/10.1029/2009JA015079, 2010. a, b
NASA, W.: WATS Description Processing,
https://spdf.gsfc.nasa.gov/pub/data/de/de2/neutral_gas_wats/description_processing.txt (last access: 16 January 2020),
1998. a
Nenovski, P., Kutiev, I., and Karadimov, M.: Effect of RPA transparency
dependence on ion masses upon ion temperature and density determination with
direct space measurements, J. Phys. E, 13,
1011–1016, https://doi.org/10.1088/0022-3735/13/9/028, 1980. a
Palmroth, M., Grandin, M., Sarris, T., Doornbos, E., Tourgaidis, S., Aikio, A.,
Buchert, S., Clilverd, M. A., Dandouras, I., Heelis, R., Hoffmann, A.,
Ivchenko, N., Kervalishvili, G., Knudsen, D. J., Kotova, A., Liu, H.-L.,
Malaspina, D. M., March, G., Marchaudon, A., Marghitu, O., Matsuo, T.,
Miloch, W. J., Moretto-Jørgensen, T., Mpaloukidis, D., Olsen, N.,
Papadakis, K., Pfaff, R., Pirnaris, P., Siemes, C., Stolle, C., Suni, J.,
van den IJssel, J., Verronen, P. T., Visser, P., and Yamauchi, M.:
Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring
techniques and models, Ann. Geophys., 39, 189–237,
https://doi.org/10.5194/angeo-39-189-2021, 2021. a, b
Peterson, W. K.: Perspective on Energetic and Thermal Atmospheric
Photoelectrons, Front. Astron. Space Sci., 8, 655309,
https://doi.org/10.3389/fspas.2021.655309, 2021. a, b
Peterson, W. K., Maruyama, N., Richards, P., Erickson, P. J., Christensen,
A. B., and Yau, A. W.: What Is the Altitude of Thermal Equilibrium?,
Geophys. Res. Lett., 50, e2023GL102758,
https://doi.org/10.1029/2023GL102758, 2023. a, b, c, d
Pfaff, R. F.: The Near-Earth Plasma Environment, Space Sci. Rev., 168,
23–112, https://doi.org/10.1007/s11214-012-9872-6, 2012. a
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00
empirical model of the atmosphere: Statistical comparisons and scientific
issues, J. Geophys. Res.-Space, 107,
15–16, https://doi.org/10.1029/2002JA009430, 2002. a
Pirnaris, P. and Sarris, T. E.: Common Observations/measurements Between
Incoherent Scatter Radars (ISR) and Atmosphere Explorers (AE) -C, -D, -E,
Dynamic Explorer 2, Zenodo, https://doi.org/10.5281/zenodo.7967432, 2023. a
Richards, P. G.: Ionospheric photoelectrons: A lateral thinking approach,
Front. Astron. Space Sci., 9, 952226,
https://doi.org/10.3389/fspas.2022.952226, 2022. a
Rosenblatt, M.: Remarks on Some Nonparametric Estimates of a Density
Function, Ann. Mathemat. Stat., 27, 832–837,
https://doi.org/10.1214/aoms/1177728190, 1956. a
Rossini, A. J.: “Applied Smoothing Techniques for Data
Analysis: The Kernel Approach with S-Plus Illustrations”
by Adrian W. Bowman and Adelchi Azzalini, Comput. Stat., 15,
301–302, https://doi.org/10.1007/s001800000033, 2000. a
Sarris, T., Palmroth, M., Aikio, A., Buchert, S. C., Clemmons, J., Clilverd,
M., Dandouras, I., Doornbos, E., Goodwin, L. V., Grandin, M., Heelis, R.,
Ivchenko, N., Moretto-Jørgensen, T., Kervalishvili, G., Knudsen, D., Liu,
H.-L., Lu, G., Malaspina, D. M., Marghitu, O., Maute, A., Miloch, W. J.,
Olsen, N., Pfaff, R., Stolle, C., Talaat, E., Thayer, J., Tourgaidis, S.,
Verronen, P. T., and Yamauchi, M.: Plasma-neutral interactions in the lower
thermosphere-ionosphere: The need for in situ measurements to address focused
questions, Front. Astron. Space Sci., 9, 1063190,
https://doi.org/10.3389/fspas.2022.1063190, 2023. a
Sarris, T. E.: Understanding the ionosphere thermosphere response to solar and
magnetospheric drivers: status, challenges and open issues, Philos.
T. R. Soc. A, 377, 20180101, https://doi.org/10.1098/rsta.2018.0101, 2019. a, b
Sarris, T. E., Talaat, E. R., Palmroth, M., Dandouras, I., Armandillo, E., Kervalishvili, G., Buchert, S., Tourgaidis, S., Malaspina, D. M., Jaynes, A. N., Paschalidis, N., Sample, J., Halekas, J., Doornbos, E., Lappas, V., Moretto Jørgensen, T., Stolle, C., Clilverd, M., Wu, Q., Sandberg, I., Pirnaris, P., and Aikio, A.: Daedalus: a low-flying spacecraft for in situ exploration of the lower thermosphere–ionosphere, Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, 2020. a, b
Sasaki, S. and Kawashima, N.: rocket measurement of ion and neutral
temperatures in the lower ionosphere, J. Geophys. Res., 80, 2824–2828, https://doi.org/10.1029/JA080i019p02824,
1975. a, b
Schunk, R. and Nagy, A.: Ionospheres: Physics, Plasma Physics, and Chemistry,
Cambridge Atmospheric and Space Science Series, Cambridge University Press, 2nd
Edn., https://doi.org/10.1017/CBO9780511635342, 2009. a
Schwabedissen, A., Benck, E. C., and Roberts, J. R.: Langmuir probe
measurements in an inductively coupled plasma source, Phys. Rev. E, 55,
3450–3459, https://doi.org/10.1103/physreve.55.3450, 1997.
a
Scott, D. W.: Multivariate Density Estimation, Wiley,
https://doi.org/10.1002/9780470316849, 1992. a
Spencer, N. W., H, U. N., and Carignan, G. R.: The Neutral-Atmosphere
Temperature Instrument, Radio Sci., 8, 287–296, https://doi.org/10.1029/RS008i004p00287, 1973. a, b, c
Spencer, N. W., Pelz, D. T., Niemann, H. B., Carignan, G. R., and Caldwell,
J. R.: The Neutral Atmosphere Temperature Experiment, J. Geophys., 40, 613–624, 1974. a
Spencer, N. W., Theis, R. F., Wharton, L. E., and Carignan, G. R.: Local
Vertical Motions and Kinetic Temperature from AE-C as Evidence for
Aurora-Induced Gravity Waves, Geophys. Res. Lett., 3, 313–316,
https://doi.org/10.1029/GL003i006p00313, 1976. a
Stanojević, M., Čerček, M., and Gyergyek, T.: Experimental
Study of Planar Langmuir Probe Characteristics in Electron Current-Carrying
Magnetized Plasma, Contrib. Plasma Phys., 39, 197–222,
https://doi.org/10.1002/ctpp.2150390303, 1999. a
Vadas, S. L. and Azeem, I.: Concentric Secondary Gravity Waves in the
Thermosphere and Ionosphere Over the Continental United States on March
25–26, 2015 From Deep Convection, J. Geophys. Res.-Space, 126, e2020JA028275, https://doi.org/10.1029/2020JA028275,
2021. a
Vernov, S. and Chudakov, A.: Terrestrial corpuscular radiation and cosmic rays,
Space Res., 125, 751, 1960. a
Walterscheid, R. L.: Dynamical cooling induced by dissipating internal gravity
waves, Geophys. Res. Lett., 8, 1235–1238,
https://doi.org/10.1029/GL008i012p01235, 1981. a
Whipple, E. C.: Potentials of surfaces in space, Report. Prog.
Phys., 44, 1197, https://doi.org/10.1088/0034-4885/44/11/002, 1981. a
Whipple Jr., E. C.: The ion-trap results in “exploration of the upper
atmosphere with the help of the third soviet sputnik”,
https://www.osti.gov/biblio/4108305 (last access: 16 January 2020), 1961. a
Wulff, A. and Gledhill, J.: Atmospheric ionization by precipitated electrons,
J. Atmos. Terr. Phys., 36, 79–91,
https://doi.org/10.1016/0021-9169(74)90068-3, 1974. a
Yiğit, E. and Medvedev, A. S.: Heating and cooling of the thermosphere by
internal gravity waves, Geophys. Res. Lett., 36, L14807,
https://doi.org/10.1029/2009GL038507, 2009. a, b
Yoshida, S., Ludwig, G. H., and Van Allen, J. A.: Distribution of trapped
radiation in the geomagnetic field, J. Geophys. Res., 65, 807–813, https://doi.org/10.1029/JZ065i003p00807,
1960. a
Editor-in-chief
The research presented in this paper includes a large number of events during which the neutral temperatures were higher than the ion temperatures. This feature is against what we know from textbooks, suggesting that further investigations on this issue should be performed.
The research presented in this paper includes a large number of events during which the neutral...
Short summary
The relation between electron, ion and neutral temperatures in the lower thermosphere–ionosphere (LTI) is key to understanding the energy balance and transfer between species. However, their simultaneous measurement is rare in the LTI. Based on data from the AE-C, AE-D, AE-E and DE-2 satellites of the 1970s and 1980s, a large number of events where neutrals are hotter than ions are identified and statistically analyzed. Potential mechanisms that could trigger these events are proposed.
The relation between electron, ion and neutral temperatures in the lower thermosphere–ionosphere...