Articles | Volume 41, issue 1
https://doi.org/10.5194/angeo-41-225-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-41-225-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Statistical distribution of mirror-mode-like structures in the magnetosheaths of unmagnetised planets – Part 1: Mars as observed by the MAVEN spacecraft
Cyril Simon Wedlund
CORRESPONDING AUTHOR
Austrian Academy of Sciences, Space Research Institute, Graz, Austria
Martin Volwerk
Austrian Academy of Sciences, Space Research Institute, Graz, Austria
Christian Mazelle
Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France
Sebastián Rojas Mata
Swedish Institute of Space Physics, Kiruna, Sweden
Gabriella Stenberg Wieser
Swedish Institute of Space Physics, Kiruna, Sweden
Yoshifumi Futaana
Swedish Institute of Space Physics, Kiruna, Sweden
Jasper Halekas
Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
Diana Rojas-Castillo
Instituto de Geofísica, Universidad Nacional Autónoma de México, Coyoacán, Mexico
César Bertucci
Instituto de Astronomía y Física del Espacio, Universidad de Buenos Aires-CONICET, Autonomous City of Buenos Aires, Argentina
Jared Espley
NASA Goddard Space Flight Center, Laboratory for Planetary Magnetospheres, Greenbelt, MD, USA
Related authors
Ariel Tello Fallau, Charlotte Goetz, Cyril Simon Wedlund, Martin Volwerk, and Anja Moeslinger
Ann. Geophys., 41, 569–587, https://doi.org/10.5194/angeo-41-569-2023, https://doi.org/10.5194/angeo-41-569-2023, 2023
Short summary
Short summary
The plasma environment of comet 67P provides a unique laboratory to study plasma phenomena in the solar system. Previous studies have reported the existence of mirror modes at 67P but no further systematic investigation has so far been done. This study aims to learn more about these waves. We investigate the magnetic field measured by Rosetta and find 565 mirror mode signatures. The detected mirror modes are likely generated upstream of the observation and have been modified by the plasma.
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, and Magda Delva
Ann. Geophys., 41, 389–408, https://doi.org/10.5194/angeo-41-389-2023, https://doi.org/10.5194/angeo-41-389-2023, 2023
Short summary
Short summary
Freshly created ions in solar wind start gyrating around the interplanetary magnetic field. When they cross the bow shock, they get an extra kick, and this increases the plasma pressure against the magnetic pressure. This leads to the creation of so-called mirror modes, regions where the magnetic field decreases in strength and the plasma density increases. These structures help in exploring how energy is transferred from the ions to the magnetic field and where around Venus this is happening.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Sebastián Rojas Mata, Gabriella Stenberg Wieser, Tielong Zhang, and Yoshifumi Futaana
Ann. Geophys., 42, 419–429, https://doi.org/10.5194/angeo-42-419-2024, https://doi.org/10.5194/angeo-42-419-2024, 2024
Short summary
Short summary
The Sun ejects a stream of charged particles into space that have to flow around planets like Venus. We quantify how this flow varies with spatial location using spacecraft measurements of the particles and magnetic field taken over several years. We find that this flow is connected to interactions with the heavier charged particles that originate from Venus’ upper atmosphere. These interactions are not unique to Venus, so we compare our results to similar studies at Mars.
Ariel Tello Fallau, Charlotte Goetz, Cyril Simon Wedlund, Martin Volwerk, and Anja Moeslinger
Ann. Geophys., 41, 569–587, https://doi.org/10.5194/angeo-41-569-2023, https://doi.org/10.5194/angeo-41-569-2023, 2023
Short summary
Short summary
The plasma environment of comet 67P provides a unique laboratory to study plasma phenomena in the solar system. Previous studies have reported the existence of mirror modes at 67P but no further systematic investigation has so far been done. This study aims to learn more about these waves. We investigate the magnetic field measured by Rosetta and find 565 mirror mode signatures. The detected mirror modes are likely generated upstream of the observation and have been modified by the plasma.
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, and Magda Delva
Ann. Geophys., 41, 389–408, https://doi.org/10.5194/angeo-41-389-2023, https://doi.org/10.5194/angeo-41-389-2023, 2023
Short summary
Short summary
Freshly created ions in solar wind start gyrating around the interplanetary magnetic field. When they cross the bow shock, they get an extra kick, and this increases the plasma pressure against the magnetic pressure. This leads to the creation of so-called mirror modes, regions where the magnetic field decreases in strength and the plasma density increases. These structures help in exploring how energy is transferred from the ions to the magnetic field and where around Venus this is happening.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Christian Mazelle and Bertrand Lembège
Ann. Geophys., 39, 571–598, https://doi.org/10.5194/angeo-39-571-2021, https://doi.org/10.5194/angeo-39-571-2021, 2021
Short summary
Short summary
Nonstationarity of the quasi-perpendicular terrestrial bow shock is analyzed from magnetic field measurements, comparison with 2D particle-in-cell (PIC) simulations, and a careful and accurate methodology in the data processing. The results show evidence of a strong variability of the microstructures of the shock front (foot and ramp), confirming the importance of dissipative effects. These results indicate that these features can be signatures of the shock front self-reformation.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Herbert Gunell, Charlotte Goetz, Elias Odelstad, Arnaud Beth, Maria Hamrin, Pierre Henri, Fredrik L. Johansson, Hans Nilsson, and Gabriella Stenberg Wieser
Ann. Geophys., 39, 53–68, https://doi.org/10.5194/angeo-39-53-2021, https://doi.org/10.5194/angeo-39-53-2021, 2021
Short summary
Short summary
When the magnetised solar wind meets the plasma surrounding a comet, the magnetic field is enhanced in front of the comet, and the field lines are draped around it. This happens because electric currents are induced in the plasma. When these currents flow through the plasma, they can generate waves. In this article we present observations of ion acoustic waves, which is a kind of sound wave in the plasma, detected by instruments on the Rosetta spacecraft near comet 67P/Churyumov–Gerasimenko.
Cited articles
Ala-Lahti, M. M., Kilpua, E. K. J., Dimmock, A. P., Osmane, A., Pulkkinen, T.,
and Souček, J.: Statistical analysis of mirror mode waves in sheath
regions driven by interplanetary coronal mass ejection, Ann. Geophys., 36,
793–808, https://doi.org/10.5194/angeo-36-793-2018, 2018. a
Allison, M. and McEwen, M.: A post-Pathfinder evaluation of areocentric solar
coordinates with improved timing recipes for Mars seasonal/diurnal climate
studies, Planet. Space Sci., 48, 215–235, https://doi.org/10.1016/S0032-0633(99)00092-6, 2000. a, b
Bertucci, C., Mazelle, C., Crider, D. H., Mitchell, D. L., Sauer, K.,
Acuña, M. H., Connerney, J. E. P., Lin, R. P., Ness, N. F., and
Winterhalter, D.: MGS MAG/ER observations at the magnetic pileup
boundary of Mars: draping enhancement and low frequency waves, Adv.
Space Res., 33, 1938–1944, https://doi.org/10.1016/j.asr.2003.04.054, 2004. a, b, c, d
Brinca, A. L. and Romeiras, F. J.: On the stability of stationary
nongyrotropic distribution functions: Coupling and purely growing waves, J.
Geophys. Res., 103, 9275–9284, https://doi.org/10.1029/97JA01995, 1998. a
Chamberlin, P. C., Woods, T. N., and Eparvier, F. G.:
Flare Irradiance Spectral Model (FISM): Flare component algorithms and results, Space Weather, 6, 1–16,
https://doi.org/10.1029/2007SW000372, 2008 . a
Coates, A.: Pickup Ion Observations at Solar System Bodies, in: Advances in
Geosciences, Planet. Sci., 25, 11–28,
https://doi.org/10.1142/9789814355377_0002, 2011. a, b
Coates, A. J., Johnstone, A. D., and Neubauer, F. M.: Cometary ion
pressure anisotropies at comets Halley and Grigg-Skjellerup, J. Geophys.
Res., 101, 27573–27584, https://doi.org/10.1029/96JA02524, 1996. a
Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen,
R., and Sheppard, D.: The MAVEN Magnetic Field Investigation, Space
Sci. Rev., 195, 257–291, https://doi.org/10.1007/s11214-015-0169-4, 2015. a, b, c, d
Delva, M., Mazelle, C., and Bertucci, C.: Upstream Ion Cyclotron Waves
at Venus and Mars, Space Sci. Rev., 162, 5–24,
https://doi.org/10.1007/s11214-011-9828-2, 2011. a
Dimmock, A. P., Osmane, A., Pulkkinen, T. I., and Nykyri, K.: A statistical
study of the dawn-dusk asymmetry of ion temperature anisotropy and mirror
mode occurrence in the terrestrial dayside magnetosheath using THEMIS data,
J. Geophys. Res.-Space, 120, 5489–5503,
https://doi.org/10.1002/2015JA021192, 2015. a
Dong, C., Bougher, S. W., Ma, Y., Toth, G., Lee, Y., Nagy, A. F.,
Tenishev, V., Pawlowski, D. J., Combi, M. R., and Najib, D.: Solar
wind interaction with the Martian upper atmosphere: Crustal field
orientation, solar cycle, and seasonal variations, J. Geophys.
Res.-Space, 120, 7857–7872, https://doi.org/10.1002/2015JA020990, 2015. a
Dubinin, E. and Fraenz, M.: Ultra-Low-Frequency Waves at Venus and Mars,
Washington DC American Geophysical Union Geophysical Monograph Series, American Geophysical Union (AGU), ISBN: 9781119055006, 216,
343–364, https://doi.org/10.1002/9781119055006.ch20, 2016. a
Edberg, N. J. T., Lester, M., Cowley, S. W. H., and Eriksson, A. I.:
Statistical analysis of the location of the Martian magnetic pileup
boundary and bow shock and the influence of crustal magnetic fields:
J. Geophys. Res., 113,
A08206, https://doi.org/10.1029/2008JA013096, 2008. a, b, c, d, e, f, g, h
Edberg, N. J. T., Brain, D. A., Lester, M., Cowley, S. W. H., Modolo, R., Fränz, M., and Barabash, S.: Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express, Ann. Geophys., 27, 3537–3550, https://doi.org/10.5194/angeo-27-3537-2009, 2009. a, b
Erdős, G. and Balogh, A.: Statistical properties of mirror mode structures
observed by Ulysses in the magnetosheath of Jupiter, J.
Geophys. Res.-Space, 101, 1–12, https://doi.org/10.1029/95JA02207,
1996. a, b, c
Erkaev, N. V., Schaffenberger, W., Biernat, H. K., Farrugia, C. J., and
Vogl, D. F.: Analysis of mirror modes convected from the bow shock to the
magnetopause, Planet. Space Sci., 49, 1359–1364,
https://doi.org/10.1016/S0032-0633(01)00057-5, 2001. a, b
Espley, J. R., Cloutier, P. A., Brain, D. A., Crider, D. H., and Acuña,
M. H.: Observations of low-frequency magnetic oscillations in the Martian
magnetosheath, magnetic pileup region, and tail, J. Geophys.
Res.-Space, 109, A07213, https://doi.org/10.1029/2003JA010193, 2004. a
Forbes, J. M., Lemoine, F. G., Bruinsma, S. L., Smith, M. D., and Zhang, X.:
Solar flux variability of Mars' exosphere densities and temperatures,
Geophys. Res. Lett., 35, L01201, https://doi.org/10.1029/2007GL031904, 2008. a
Fowler, C. M., Hanley, K. G., McFadden, J. P., Chaston, C. C., Bonnell, J. W.,
Halekas, J. S., Espley, J. R., DiBraccio, G. A., Schwartz, S. J., Mazelle,
C., Mitchell, D. L., Xu, S., and Lillis, R. J.: MAVEN Observations of Low
Frequency Steepened Magnetosonic Waves and Associated Heating of the Martian
Nightside Ionosphere, J. Geophys. Res.-Space, 126,
e2021JA029615, https://doi.org/10.1029/2021JA029615, 2021. a
Fränz, M., Echer, E., Marques de Souza, A., Dubinin, E., and Zhang, T. L.:
Ultra low frequency waves at Venus: Observations by the Venus Express
spacecraft, Planet. Space Sci., 146, 55–65,
https://doi.org/10.1016/j.pss.2017.08.011, 2017. a, b, c
Garnier, P., Jacquey, C., Gendre, X., Génot, V., Mazelle, C.,
Fang, X., Gruesbeck, J. R., Sánchez-Cano, B., and Halekas, J. S.:
The Drivers of the Martian Bow Shock Location: A Statistical Analysis of
Mars Atmosphere and Volatile EvolutioN and Mars Express Observations,
J. Geophys. Res.-Space, 127, e30147,
https://doi.org/10.1029/2021JA030147, 2022. a
Gary, S. P.: The mirror and ion cyclotron anisotropy instabilities, J. Geophys.
Res., 97, 8519, https://doi.org/10.1029/92JA00299, 1992. a
Gary, S. P.: Theory of Space Plasma Microinstabilities, Cambridge
University Press, google-Books-ID: hMiulET5wpwC, Cambridge, Cambridge University Press, https://doi.org/10.1017/CBO9780511551512, 1993. a, b
Gary, S. P. and Winske, D.: Correlation function ratios and the identification
of space plasma instabilities, J. Geophys. Res.-Space, 97, 3103–3111, https://doi.org/10.1029/91JA02752, 1992. a, b
Génot, V., Schwartz, S. J., Mazelle, C., Balikhin, M., Dunlop, M., and
Bauer, T. M.: Kinetic study of the mirror mode, J. Geophys. Res., 106,
21611–21622, https://doi.org/10.1029/2000JA000457, 2001. a, b, c, d
Génot, V., Budnik, E., Jacquey, C., Dandouras, I., and Lucek, E.: Mirror
modes observed with Cluster in the Earth's magnetosheath:
statistical study and IMF/solar wind dependence, in: Advances in
Geosciences, Vol. 14, 263–283, World Scientific Publishing Company,
https://doi.org/10.1142/9789812836205_0019, 2009. a, b, c
Glassmeier, K. H., Motschmann, U., Mazelle, C., Neubauer, F. M., Sauer, K.,
Fuselier, S. A., and Acuña, M. H.: Mirror modes and fast magnetoacoustic
waves near the magnetic pileup boundary of comet P/Halley, J.
Geophys. Res.-Space, 98, 20955–20964,
https://doi.org/10.1029/93JA02582, 1993. a, b
Gruesbeck, J. R., Espley, J. R., Connerney, J. E. P., DiBraccio, G. A.,
Soobiah, Y. I., Brain, D., Mazelle, C., Dann, J., Halekas, J., and Mitchell,
D. L.: The Three-Dimensional Bow Shock of Mars as Observed by
MAVEN, J. Geophys. Res.-Space, 123, 4542–4555,
https://doi.org/10.1029/2018JA025366, 2018. a, b, c, d, e
Halekas, J. S.: Seasonal variability of the hydrogen exosphere of Mars,
J. Geophys. Res.-Planet., 122, 901–911,
https://doi.org/10.1002/2017JE005306, 2017. a
Halekas, J. S. and McFadden, J. P.: Using Solar Wind Helium to Probe the
Structure and Seasonal Variability of the Martian Hydrogen Corona, J. Geophys. Res.-Planet., 126, e07049, https://doi.org/10.1029/2021JE007049,
2021. a, b
Halekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W.,
McFadden, J. P., Mitchell, D. L., Lin, R. P., and Jakosky, B. M.: The Solar
Wind Ion Analyzer for MAVEN, Space Sci. Rev., 195, 125–151,
https://doi.org/10.1007/s11214-013-0029-z, 2015. a, b
Halekas, J. S., Brain, D. A., Luhmann, J. G., DiBraccio, G. A., Ruhunusiri, S.,
Harada, Y., Fowler, C. M., Mitchell, D. L., Connerney, J. E. P., Espley,
J. R., Mazelle, C., and Jakosky, B. M.: Flows, Fields, and Forces in the
Mars-Solar Wind Interaction, J. Geophys. Res.-Space, 122, 11320–11341, https://doi.org/10.1002/2017JA024772,
2017a. a, b
Halekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L.,
Mazelle, C., McFadden, J. P., Connerney, J. E. P., Espley, J. R., Eparvier,
F., Luhmann, J. G., and Jakosky, B. M.: Structure, dynamics, and seasonal
variability of the Mars-solar wind interaction: MAVEN Solar Wind
Ion Analyzer in-flight performance and science results, J.
Geophys. Res.-Space, 122, 547–578,
https://doi.org/10.1002/2016JA023167, 2017b. a, b, c, d, e
Halekas, J. S., Ruhunusiri, S., Vaisberg, O. L., Harada, Y., Espley, J.,
Mitchell, D. L., Mazelle, C., Romanelli, N., DiBraccio, G. A., and Brain,
D. A.: Properties of Plasma Waves Observed Upstream from Mars, World Library Catalog, Earth and Space Science Open Archive Section, Sol.
Syst. Phys., 125, e2020JA028221,
https://doi.org/10.1029/2020JA028221, 2020. a
Hall, B. E. S., Lester, M., Sánchez-Cano, B., Nichols, J. D., Andrews,
D. J., Edberg, N. J. T., Opgenoorth, H. J., Fränz, M., Holmström, M.,
Ramstad, R., Witasse, O., Cartacci, M., Cicchetti, A., Noschese, R., and
Orosei, R.: Annual variations in the Martian bow shock location as observed
by the Mars Express mission, J. Geophys. Res.-Space, 121, 11474–11494, https://doi.org/10.1002/2016JA023316, 2016. a, b
Hasegawa, A.: Drift Mirror Instability in the Magnetosphere, Phys.
Fluids, 12, 2642, https://doi.org/10.1063/1.1692407, 1969. a, b
Hoilijoki, S., Palmroth, M., Walsh, B. M., Pfau-Kempf, Y., von Alfthan, S.,
Ganse, U., Hannuksela, O., and Vainio, R.: Mirror modes in the Earth's
magnetosheath: Results from a global hybrid-Vlasov simulation, J.
Geophys. Res.-Space, 121, 4191–4204,
https://doi.org/10.1002/2015JA022026, 2016. a
Jarvinen, R., Kallio, E., and Pulkkinen, T. I.: Ultra-low Frequency
Foreshock Waves and Ion Dynamics at Mars, J. Geophys. Res.-Space, 127, e30078, https://doi.org/10.1029/2021JA030078, 2022. a
Jin, T., Lei, L., Yiteng, Z., Lianghai, X., and Fuhao, Q.: Statistical Analysis
of the Distribution and Evolution of Mirror Structures in the Martian
Magnetosheath, Astrophys. J., 929, 1–14,
https://doi.org/10.3847/1538-4357/ac5f00, 2022. a, b, c, d
Joy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K. K., Russell, C. T., and
Paterson, W. R.: Mirror mode structures in the Jovian magnetosheath, J.
Geophys. Res., 111, A12212, https://doi.org/10.1029/2006JA011985, 2006. a, b
Karlsson, T., Heyner, D., Volwerk, M., Morooka, M., Plaschke, F.,
Goetz, C., and Hadid, L.: Magnetic Holes in the Solar Wind and
Magnetosheath Near Mercury, J. Geophys. Res.-Space,
126, e28961, https://doi.org/10.1029/2020JA028961, 2021. a
Lucek, E. A., Dunlop, M. W., Balogh, A., Cargill, P., Baumjohann, W.,
Georgescu, E., Haerendel, G., and Fornacon, K.-H.: Identification of
magnetosheath mirror modes in Equator-S magnetic field data, Ann.
Geophys., 17, 1560–1573, https://doi.org/10.1007/s00585-999-1560-9, 1999. a, b, c
Madanian, H., Halekas, J. S., Mazelle, C. X., Omidi, N., Espley, J. R.,
Mitchell, D. L., and McFadden, J. P.: Magnetic Holes Upstream of the
Martian Bow Shock: MAVEN Observations, J. Geophys. Res.-Space, 125, e2019JA027198, https://doi.org/10.1029/2019JA027198, 2020. a, b
Mazelle, C., Rème, H., Sauvaud, J. A., d'Uston, C., Carlson,
C. W., Anderson, K. A., Curtis, D. W., Lin, R. P., Korth, A.,
Mendis, D. A., Neubauer, F. M., Glassmeier, K. H., and Raeder, J.:
Analysis of suprathermal electron properties at the magnetic pile-up
boundary of comet P/Halley, Geophys. Res. Lett., 16, 1035–1038,
https://doi.org/10.1029/GL016i009p01035, 1989. a
Mazelle, C., Belmont, G., Glassmeier, K. H., Le Quéau, D., and
Rème, H.: Ultra low frequency waves at the magnetic pile-up boundary
of comet P/Halley, Adv. Space Res., 11, 73–77,
https://doi.org/10.1016/0273-1177(91)90014-B, 1991. a, b
Mazelle, C., Winterhalter, D., Sauer, K., Trotignon, J., Acuña, M.,
Baumgärtel, K., Bertucci, C., Brain, D., Brecht, S., Delva, M., Dubinin,
E., Øieroset, M., and Slavin, J.: Bow Shock and Upstream Phenomena
at Mars, Space Sci. Revi., 111, 115–181,
https://doi.org/10.1023/B:SPAC.0000032717.98679.d0, 2004. a, b, c, d
Mitchell, D. L., Mazelle, C., Sauvaud, J.-A., Thocaven, J.-J., Rouzaud, J.,
Fedorov, A., Rouger, P., Toublanc, D., Taylor, E., Gordon, D., Robinson, M.,
Heavner, S., Turin, P., Diaz-Aguado, M., Curtis, D. W., Lin, R. P., and
Jakosky, B. M.: The MAVEN Solar Wind Electron Analyzer, Space Sci.
Rev., 200, 495–528, https://doi.org/10.1007/s11214-015-0232-1, 2016. a
Motschmann, U., Kafemann, H., and Scholer, M.: Nongyrotropy in
magnetoplasmas: simulation of wave excitation and phase-space diffusion,
Ann. Geophys., 15, 603–613, https://doi.org/10.1007/s00585-997-0603-3, 1997. a
Lawton, P. and Connerney, J.: MAVEN MAG Calibrated Data Bundle, NASA [data set], https://doi.org/10.17189/1414178, 2023. a
Price, C. P.: Mirror waves driven by newborn ion distributions, J. Geophys.
Res., 94, 15001–15009, https://doi.org/10.1029/JA094iA11p15001, 1989. a, b
Price, C. P., Swift, D. W., and Lee, L.-C.: Numerical simulation of
nonoscillatory mirror waves at the Earth's magnetosheath, J.
Geophys. Res.-Space, 91, 101–112,
https://doi.org/10.1029/JA091iA01p00101, 1986. a
Rojas Mata, S., Stenberg Wieser, G., Futaana, Y., Bader, A., Persson,
M., Fedorov, A., and Zhang, T.: Proton Temperature Anisotropies in the
Venus Plasma Environment During Solar Minimum and Maximum, J.
Geophys. Res.-Space, 127, e29611,
https://doi.org/10.1029/2021JA029611, 2022. a, b, c, d, e, f, g
Romanelli, N., Bertucci, C., Gómez, D., Mazelle, C., and Delva,
M.: Proton cyclotron waves upstream from Mars: Observations from Mars Global
Surveyor, Planet. Space Sci., 76, 1–9, https://doi.org/10.1016/j.pss.2012.10.011,
2013. a
Romanelli, N., Mazelle, C., Chaufray, J. Y., Meziane, K., Shan, L.,
Ruhunusiri, S., Connerney, J. E. P., Espley, J. R., Eparvier, F.,
Thiemann, E., Halekas, J. S., Mitchell, D. L., McFadden, J. P.,
Brain, D., and Jakosky, B. M.: Proton cyclotron waves occurrence rate
upstream from Mars observed by MAVEN: Associated variability of the Martian
upper atmosphere, J. Geophys. Res.-Space, 121,
11113–11128, https://doi.org/10.1002/2016JA023270, 2016. a, b, c, d, e
Romeo, O. M., Romanelli, N., Espley, J. R., Mazelle, C., DiBraccio,
G. A., Gruesbeck, J. R., and Halekas, J. S.: Variability of Upstream
Proton Cyclotron Wave Properties and Occurrence at Mars Observed by MAVEN,
J. Geophys. Res.-Space, 126, e28616,
https://doi.org/10.1029/2020JA028616, 2021. a, b
Ruhunusiri, S., Halekas, J. S., Connerney, J. E. P., Espley, J. R., McFadden,
J. P., Larson, D. E., Mitchell, D. L., Mazelle, C., and Jakosky, B. M.:
Low-frequency waves in the Martian magnetosphere and their response to
upstream solar wind driving conditions, Geophys. Res. Lett., 42,
8917–8924, https://doi.org/10.1002/2015GL064968, 2015. a, b, c, d, e, f
Ruhunusiri, S., Halekas, J. S., Espley, J. R., Eparvier, F., Brain,
D., Mazelle, C., Harada, Y., DiBraccio, G. A., Thiemann, E. M. B.,
Larson, D. E., Mitchell, D. L., Jakosky, B. M., and Sulaiman, A. H.:
One-Hertz Waves at Mars: MAVEN Observations, J. Geophys.
Res.-Space, 123, 3460–3476, https://doi.org/10.1029/2017JA024618, 2018. a
Schwartz, S. J., Burgess, D., and Moses, J. J.: Low-frequency waves in the
Earth's magnetosheath: present status, Ann. Geophys.,
14, 1134–1150, https://doi.org/10.1007/s00585-996-1134-z, 1997. a
Shan, L., Tsurutani, B. T., Ohsawa, Y., Mazelle, C., Huang, C., Du,
A., Ge, Y. S., and Lu, Q.: Observational Evidence for Fast Mode Periodic
Small-scale Shocks: A New Type of Plasma Phenomenon, Astrophys. J. Lett.,
905, 1–6, https://doi.org/10.3847/2041-8213/abcb02, 2020. a, b
Simon Wedlund, C., Volwerk, M., Beth, A., Mazelle, C., Möstl, C., Halekas, J.,
Gruesbeck, J., and Rojas-Castillo, D.: Predicted times, spatial coordinates of bow shock crossings and shock geometry at Mars from the NASA/MAVEN mission, using spacecraft ephemerides and magnetic field data, with a predictor-corrector algorithm (Version 3), Zenodo [data set]
https://doi.org/10.5281/zenodo.6320518, 2021. a, b
Simon Wedlund, C., Volwerk, M., Beth, A., Mazelle, C., Möstl, C., Halekas, J.,
Gruesbeck, J. R., and Rojas-Castillo, D.: A Fast Bow Shock Location
Predictor-Estimator From 2D and 3D Analytical Models: Application to Mars and
the MAVEN Mission, J. Geophys. Res.-Space, 127,
e2021JA029942, https://doi.org/10.1029/2021JA029942, 2022a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Simon Wedlund, C., Volwerk, M., Mazelle, C., Halekas, J., Rojas-Castillo, D.,
Espley, J., and Möstl, C.: Making Waves: Mirror Mode Structures Around Mars
Observed by the MAVEN Spacecraft, J. Geophys. Res.-Space, 127, e2021JA029811, https://doi.org/10.1029/2021JA029811, 2022b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w
Song, P., Russell, C. T., and Gary, S. P.: Identification of low-frequency
fluctuations in the terrestrial magnetosheath, J. Geophys. Res., 99, 6011,
https://doi.org/10.1029/93JA03300, 1994. a, b, c
Sonnerup, B. U. Ö. and Scheible, M.: Minimum and Maximum Variance
Analysis, in: Analysis Methods for Multi-Spacecraft Data, no.
SR-001 in ISSI Scientific Report, ISSI/ESA, ESA Publications Division, the Netherlands, 185–220, ISBN: 1608-280X, 1998. a
Soucek, J., Lucek, E., and Dandouras, I.: Properties of magnetosheath mirror
modes observed by Cluster and their response to changes in plasma
parameters, J. Geophys. Res.-Space, 113, A04203,
https://doi.org/10.1029/2007JA012649, 2008. a, b, c
Szegö, K., Glassmeier, K.-H., Bingham, R., Bogdanov, A., Fischer,
C., Haerendel, G., Brinca, A., Cravens, T., Dubinin, E., Sauer, K.,
Fisk, L., Gombosi, T., Schwadron, N., Isenberg, P., Lee, M.,
Mazelle, C., Möbius, E., Motschmann, U., Shapiro, V. D.,
Tsurutani, B., and Zank, G.: Physics of Mass Loaded Plasmas, Space Sci.
Rev., 94, 429–671, https://doi.org/10.1023/A:1026568530975, 2000. a
Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods,
T. N., Bougher, S. W., and Jakosky, B. M.: The MAVEN EUVM model of solar
spectral irradiance variability at Mars: Algorithms and results, J. Geophys. Res.-Space, 122, 2748–2767,
https://doi.org/10.1002/2016JA023512, 2017. a, b, c
Trainer, M. G., Wong, M. H., McConnochie, T. H., Franz, H. B., Atreya, S. K.,
Conrad, P. G., Lefèvre, F., Mahaffy, P. R., Malespin, C. A., Manning, H.
L. K., Martín-Torres, J., Martínez, G. M., McKay, C. P.,
Navarro-González, R., Vicente-Retortillo, Á., Webster, C. R., and
Zorzano, M.-P.: Seasonal Variations in Atmospheric Composition as
Measured in Gale Crater, Mars, J. Geophys. Res.-Planet., 124, 3000–3024, https://doi.org/10.1029/2019JE006175, 2019. a
Treumann, R. A., Jaroschek, C. H., Constantinescu, O. D., Nakamura, R., Pokhotelov, O. A., and Georgescu, E.: The strange physics of low frequency mirror mode turbulence in the high temperature plasma of the magnetosheath, Nonlin. Processes Geophys., 11, 647–657, https://doi.org/10.5194/npg-11-647-2004, 2004. a, b
Trotignon, J., Mazelle, C., Bertucci, C., and Acuña, M.: Martian shock and
magnetic pile-up boundary positions and shapes determined from the Phobos 2
and Mars Global Surveyor data sets, Planet. Space Sci., 54,
357–369, https://doi.org/10.1016/j.pss.2006.01.003, 2006. a, b
Tsurutani, B. T.: Comets: a Laboratory for Plasma Waves and
Instabilities, in: Cometary Plasma Processes, 189–209, American
Geophysical Union (AGU), https://doi.org/10.1029/GM061p0189, 1991. a
Tsurutani, B. T., Thorne, R. M., Smith, E. J., Gosling, J. T., and Matsumoto,
H.: Steepened magnetosonic waves at comet Giacobini-Zinner, J. Geophys. Res.-Space, 92, 11074–11082,
https://doi.org/10.1029/JA092iA10p11074, 1987. a, b
Tsurutani, B. T., Lakhina, G. S., Smith, E. J., Buti, B., Moses, S. L., Coroniti, F. V., Brinca, A. L., Slavin, J. A., and Zwickl, R. D.: Mirror mode structures and ELF plasma waves in the Giacobini-Zinner magnetosheath, Nonlin. Processes Geophys., 6, 229–234, https://doi.org/10.5194/npg-6-229-1999, 1999. a
Tsurutani, B. T., Lakhina, G. S., Verkhoglyadova, O. P., Echer, E., Guarnieri,
F. L., Narita, Y., and Constantinescu, D. O.: Magnetosheath and heliosheath
mirror mode structures, interplanetary magnetic decreases, and linear
magnetic decreases: Differences and distinguishing features,: J.
Geophys. Res., 116, A2, https://doi.org/10.1029/2010JA015913, 2011. a, b
Turner, J. M., Burlaga, L. F., Ness, N. F., and Lemaire, J. F.:
Magnetic holes in the solar wind, J. Geophys. Res., 82, 1921,
https://doi.org/10.1029/JA082i013p01921, 1977. a
Volwerk, M., Zhang, T. L., Delva, M., Vörös, Z., Baumjohann, W., and
Glassmeier, K.-H.: Mirror-mode-like structures in Venus' induced
magnetosphere, J. Geophys. Res., 113, E00B16, https://doi.org/10.1029/2008JE003154,
2008. a, b, c, d
Volwerk, M., Schmid, D., Tsurutani, B. T., Delva, M., Plaschke, F., Narita, Y.,
Zhang, T., and Glassmeier, K.-H.: Mirror mode waves in Venus's
magnetosheath: solar minimum vs. solar maximum, Ann. Geophys., 34,
1099–1108, https://doi.org/10.5194/angeo-34-1099-2016, 2016. a, b, c, d, e, f, g, h, i, j, k
Volwerk, M., Mautner, D., Wedlund, C. S., Goetz, C., Plaschke, F., Karlsson,
T., Schmid, D., Rojas-Castillo, D., Roberts, O. W., and Varsani, A.:
Statistical study of linear magnetic hole structures near Earth, Ann.
Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, 2021.
a
Volwerk, M., Simon Wedlund, C., Mautner, D., Rojas Mata, S., Stenberg Wieser, G., Futaana, Y., Mazelle, C., Rojas-Castillo, D., Bertucci, C., and Delva, M.: Statistical distribution of mirror mode-like structures in the magnetosheaths of unmagnetised planets: 2. Venus as observed by the Venus Express spacecraft, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-645, 2022. a, b, c
Wilson III, L. B., Stevens, M. L., Kasper, J. C., Klein, K. G., Maruca, B. A.,
Bale, S. D., Bowen, T. A., Pulupa, M. P., and Salem, C. S.: The Statistical
Properties of Solar Wind Temperature Parameters Near 1 au, Astrophys. J. Suppl. Ser.,
236, 1–15, https://doi.org/10.3847/1538-4365/aab71c, 2018. a
Yamauchi, M., Hara, T., Lundin, R., Dubinin, E., Fedorov, A., Sauvaud, J. A.,
Frahm, R. A., Ramstad, R., Futaana, Y., Holmstrom, M., and Barabash, S.:
Seasonal variation of Martian pick-up ions: Evidence of breathing
exosphere, Planet. Space Sci., 119, 54–61,
https://doi.org/10.1016/j.pss.2015.09.013, 2015. a, b
Short summary
Mirror modes are magnetic bottles found in the space plasma environment of planets contributing to the energy exchange with the solar wind. We use magnetic field measurements from the NASA Mars Atmosphere and Volatile EvolutioN mission to detect them around Mars and show how they evolve in time and space. The structures concentrate in two regions: one behind the bow shock and the other closer to the planet. They compete with other wave modes depending on the solar flux and heliocentric distance.
Mirror modes are magnetic bottles found in the space plasma environment of planets contributing...