Articles | Volume 41, issue 1
https://doi.org/10.5194/angeo-41-147-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-41-147-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ionosonde and GPS total electron content observations during the 26 December 2019 annular solar eclipse over Indonesia
Jiyo Harjosuwito
Research Center for Space, Research Organization for Aeronautics and Space (LAPAN), National Research and Innovation Agency (BRIN), Bandung, Indonesia
Asnawi Husin
Research Center for Space, Research Organization for Aeronautics and Space (LAPAN), National Research and Innovation Agency (BRIN), Bandung, Indonesia
Varuliantor Dear
Research Center for Space, Research Organization for Aeronautics and Space (LAPAN), National Research and Innovation Agency (BRIN), Bandung, Indonesia
Johan Muhamad
Research Center for Space, Research Organization for Aeronautics and Space (LAPAN), National Research and Innovation Agency (BRIN), Bandung, Indonesia
Agri Faturahman
Research Center for Space, Research Organization for Aeronautics and Space (LAPAN), National Research and Innovation Agency (BRIN), Bandung, Indonesia
Afrizal Bahar
Agam Atmospheric and Space Observation Office, Research Organization for Aeronautics and Space (LAPAN), National Research and Innovation Agency (BRIN), Agam Regency, Indonesia
Erlansyah
Pontianak Atmospheric and Space Observation Office, Research Organization for Aeronautics and Space (LAPAN), National Research and Innovation Agency (BRIN), Pontianak, Indonesia
Agung Syetiawan
Research Center for Geospatial, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
Institute for Scientific Research, Boston College, Chestnut Hill, MA, United States
Related authors
No articles found.
Rezy Pradipta and Pei-Chen Lai
Ann. Geophys., 42, 301–312, https://doi.org/10.5194/angeo-42-301-2024, https://doi.org/10.5194/angeo-42-301-2024, 2024
Short summary
Short summary
A large explosion released a significant amount of energy into the Earth's upper atmosphere in Beirut on 4 Aug 2020, generating traveling ionospheric disturbances (TIDs). These TIDs were observed in previous work using GPS total electron content measurements around Beirut. Here, we used measurements from the Defense Meteorological Satellite Program and ionosondes in the Mediterranean to show that the TIDs from the Beirut explosion were able to reach greater distances than previously reported.
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Equatorial ionosphere
Signature of gravity wave propagations from the troposphere to ionosphere
Latitudinal variation of Pc3–Pc5 geomagnetic pulsation amplitude across the dip equator in central South America
Diurnal, seasonal and solar cycle variation in total electron content and comparison with IRI-2016 model at Birnin Kebbi
On the variability of the semidiurnal solar and lunar tides of the equatorial electrojet during sudden stratospheric warmings
Morphology of GPS and DPS TEC over an equatorial station: validation of IRI and NeQuick 2 models
Hisao Takahashi, Cosme A. O. B. Figueiredo, Patrick Essien, Cristiano M. Wrasse, Diego Barros, Prosper K. Nyassor, Igo Paulino, Fabio Egito, Geangelo M. Rosa, and Antonio H. R. Sampaio
Ann. Geophys., 40, 665–672, https://doi.org/10.5194/angeo-40-665-2022, https://doi.org/10.5194/angeo-40-665-2022, 2022
Short summary
Short summary
We observed two different wave propagations in the earth’s upper atmosphere: a gravity wave in the mesosphere and the ionospheric disturbances. We investigated the wave propagations by using airglow imaging techniques. It is found that there was a gravity wave generation from the tropospheric convection spot, and it propagated upward in the ionosphere. This reports observational evidence of gravity wave propagation from the troposphere to ionosphere.
Graziela B. D. Silva, Antonio L. Padilha, and Livia R. Alves
Ann. Geophys., 38, 35–49, https://doi.org/10.5194/angeo-38-35-2020, https://doi.org/10.5194/angeo-38-35-2020, 2020
Short summary
Short summary
The paper shows a statistical analysis of Pc3 and Pc5 pulsations recorded during 60 d (September to November 1994) by a meridional magnetometer profile crossing the dip equator in central South America. This is the first time that a detailed mapping of latitudinal dependence of pulsation amplification at very low latitudes has been performed. One of the most prominent findings is that our equatorial Pc5s might be related to both horizontally and vertically incident MHD waves in the ionosphere.
Aghogho Ogwala, Emmanuel Olufemi Somoye, Olugbenga Ogunmodimu, Rasaq Adewemimo Adeniji-Adele, Eugene Oghenakpobor Onori, and Oluwole Oyedokun
Ann. Geophys., 37, 775–789, https://doi.org/10.5194/angeo-37-775-2019, https://doi.org/10.5194/angeo-37-775-2019, 2019
Short summary
Short summary
Higher total electron content (TEC) day-to-day variations during the daytime than at night were observed for all years. The diurnal variation shows observed
TEC (OBS-TEC) rising rapidly from a minimum just before sunrise at 03:00–05:00 LT (∼2 TECU) in 2011, 04:00–05:00 LT (∼3 TECU) in 2012, 03:00–05:00 LT in 2013 (∼3 TECU) and 03:00–05:00 LT in 2014 (∼3 TECU). OBS-TEC is found to increase to a broad daytime maximum at 00:12–00:16 LT for all years before falling to a minimum after sunset.
Tarique A. Siddiqui, Astrid Maute, Nick Pedatella, Yosuke Yamazaki, Hermann Lühr, and Claudia Stolle
Ann. Geophys., 36, 1545–1562, https://doi.org/10.5194/angeo-36-1545-2018, https://doi.org/10.5194/angeo-36-1545-2018, 2018
Short summary
Short summary
Extreme meteorological events such as SSWs induce variabilities in the ionosphere by modulating the atmospheric tides, and these variabilities can be comparable to a moderate geomagnetic storm. The equatorial electrojet (EEJ) is a narrow ribbon of current flowing over the dip equator in the ionosphere and is particularly sensitive to tidal changes. In this study, we use ground-magnetic measurements to investigate the semidiurnal solar and lunar tidal variabilities of the EEJ during SSWs.
Olumide Olayinka Odeyemi, Jacob Adeniyi, Olushola Oladipo, Olayinka Olawepo, Isaac Adimula, and Elijah Oyeyemi
Ann. Geophys., 36, 1457–1469, https://doi.org/10.5194/angeo-36-1457-2018, https://doi.org/10.5194/angeo-36-1457-2018, 2018
Short summary
Short summary
This paper investigates the combined relationship between the GPS TEC and DPS TEC, and validations of IRI TEC and NeQ TEC models. Our findings reveal the suitability of DPS TEC, IRI TEC, and NeQ TEC in place of GPS TEC. The DPS TEC predicts GPS TEC very well during the daytime when PEC contribution is often negligible; however, the dusk period requires a substantial correction. Thus, the changed TEC obtained could be used to improve models for the equatorial station in Africa.
Cited articles
Aa, E., Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Jonah, O. F., Lei, J., Huang, F., Dang, T., and Liu, L.: Coordinated ground-based and space-borne observations of ionospheric response to the annular solar eclipse on 26 December 2019, J. Geophys. Res.-Space, 125, e2020JA028296, https://doi.org/10.1029/2020JA028296, 2020.
Adekoya, B. and Chukwuma, V.: A Study of the Response of the Mid-Latitude Ionospheric f2 to the Total Solar Eclipses of Solar Cycle 23, Indian J. Radio Space, 41, 594–605, http://nopr.niscpr.res.in/handle/123456789/15634 (last access: 4 April 2023), 2012.
Adekoya, B. J., Chukwuma, V. U., and Reinisch, B. W.: Ionospheric vertical plasma drift and electron density response during total solar eclipses at equatorial/low latitude, J. Geophys. Res.-Space, 120, 8066–8084, https://doi.org/10.1002/2015JA021557, 2015.
Adekoya, B. J., Adebesin, B. O., David, T. W., Ikubanni, S. O., Adebiyi, S. J., Bolaji, O. S., and Chukwuma, V. U.: Solar-eclipse-induced perturbations at mid-latitude during the 21 August 2017 event, Ann. Geophys., 37, 171–182, https://doi.org/10.5194/angeo-37-171-2019, 2019.
Adeniyi, J. O., Radicella, S. M., Adimula, I. A., Willoughby, A. A., Oladipo, O. A., and Olawepo, O.: Signature of the 29 March 2006 eclipse on the ionosphere over an equatorial station, J. Geophys. Res., 112, A06314, https://doi.org/10.1029/2006JA012197, 2007.
Adeniyi, J. O., Oladipo, O. A., Radicella, S. M., Adimula, I. A., and Olawepo, A. O.: Analysis on 29 March 2006 eclipse effect on the ionosphere over Ilorin, Nigeria, J. Geophys. Res.-Space, 114, A11303, https://doi.org/10.1029/2009JA014416, 2009.
Afraimovich, E. L., Kosogorov, E. A., and Lesyuta, O. S.: Effects of the August 11, 1999 total solar eclipse as deduced from total electron content measurements at the GPS network, J. Atmos. Sol.-Terr. Phy., 64, 1933–1941, https://doi.org/10.1016/S1364-6826(02)00221-3, 2002.
Anastassiades, M. (Ed.): The annular solar eclipse on May 20, 1966 and the ionosphere, in: Solar Eclipses and the Ionosphere, Springer, Boston, MA, 253–271, https://doi.org/10.1007/978-1-4684-1839-2_16, 1970.
Anastassiades, M. and Moraitis, G.: On the behavior of foF2 during the 20 May 1966 solar eclipse, J. Atmos. Terr. Phys., 30, 1471–1478, https://doi.org/10.1016/S0021-9169(68)90191-8, 1968.
Anggarani, S., Harjosuwito, J., Husin, A., Dear, V., and Ekawati, S.: Changes of NmF2 and hmF2 over Biak (1∘ S, 136∘ E) during total solar eclipse on March 9, 2016, J. Phys. Conf. Ser., 771, 012037, https://doi.org/10.1088/1742-6596/771/1/012037, 2016.
Aplin, K. L., Scott, C. J., and Gray, S. L.: Atmospheric changes from solar eclipses, Philos.
T. R. Soc. A, 374, 20150217, https://doi.org/10.1098/rsta.2015.0217, 2016.
Aryal, S., Evans, J. S., Correira, J., Burns, A. G., Wang, W., Solomon, S. C., Laskar, F. I., McClintock, W. E., Eastes, R. W., Dang, T., Lei, J.,
Liu, H., and Jee, G.: First global-scale synoptic imaging of solar eclipse effects in the thermosphere, J. Geophys. Res.-Space, 125, e2020JA027789, https://doi.org/10.1029/2020JA027789, 2020.
Atulkar, R., Khan, P. A., Jeevakhan, H., and Purohit, P. K.: Ionospheric response to annular and partial solar eclipse of 29 April 2014 in Antarctica and Australian Regions, Russian Journal of Earth Sciences, 15, ES2002, https://doi.org/10.2205/2015ES000549, 2015.
Bamford, R. A.: The effect of the 1999 total solar eclipse on the ionosphere, Phys. Chem. Earth Pt. C, 26, 373–377, https://doi.org/10.1016/S1464-1917(01)00016-2, 2001.
Barad, R. K., Sripathi, S., and England, S. L.: Multi-instrument observations of the ionospheric response to the 26 December 2019 solar eclipse over Indian and Southeast Asian longitudes, J. Geophys. Res.-Space, 127, e2022JA030330, https://doi.org/10.1029/2022JA030330, 2022.
Beynon, W. J. G.: Solar eclipses and the ionosphere, Nature, 176, 947–948, https://doi.org/10.1038/176947a0, 1955.
Birt, W. R.: Meteorological observations made during the solar eclipse of May 15, 1836,
at Greenwich, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 9, 393–394, https://doi.org/10.1080/14786443608649024, 1836.
Bravo, M., Martinez-Ledesma, M., Foppiano, A., Urra, B., Ovalle, E., Villalobos, C., Souza, J.,
Carrasco, E., Muñoz, P. R., Tamblay, L., Vega-Jorquera, P., Marín, J., Pacheco, R., Rojo, E., Leiva, R., and
Stepanova, M.: First report of an eclipse from Chilean ionosonde observations: Comparison with total electron content estimations and the modeled maximum electron concentration and its height, J. Geophys. Res.-Space, 125, e2020JA027923, https://doi.org/10.1029/2020JA027923, 2020.
Burton, E. T. and Boardman, E. M.: Effects of solar eclipse on audio frequency atmospherics, Nature, 131, 81–82, https://doi.org/10.1038/131081a0, 1933.
Chen, G., Zhao, Z., Ning, B., Deng, Z., Yang, G., Zhou, C., Yao, M.,
Li, S., and Li, N.: Latitudinal dependence of the ionospheric response to solar eclipse of 15 January 2010, J. Geophys. Res., 116, A06301, https://doi.org/10.1029/2010JA016305, 2011.
Chen, G., Qi, H., Ning, B., Zhao, Z., Yao, M., Deng, Z., Li, T.,
Huang, S., Feng, W., Wu, J., and Wu, C.:
Nighttime ionospheric enhancements induced by the occurrence of an evening solar eclipse, J. Geophys. Res.-Space, 118, 6588–6596, 2013.
Cheng, K., Huang, Y.-N., and Chen, S.-W.: Ionospheric effects of the solar eclipse of September 23, 1987, around the equatorial anomaly crest region, J. Geophys. Res., 97, 103–111, https://doi.org/10.1029/91JA02409, 1992.
Cherniak, I. and Zakharenkova, I.: Ionospheric total electron content response to the great American solar eclipse of 21 August 2017, Geophys. Res. Lett., 45, 1199–1208, https://doi.org/10.1002/2017GL075989, 2018.
Choudhary, R. K., St.-Maurice, J.-P., Ambili, K. M., Sunda, S., and Pathan, B. M.: The impact of the January 15, 2010, annular solar eclipse on the equatorial and low latitude ionospheric densities, J. Geophys. Res., 116, A09309, https://doi.org/10.1029/2011JA016504, 2011.
Chukwuma, V. U. and Adekoya, B. J.: The effects of March 20 2015 solar eclipse on the F2 layer in the mid-latitude, Adv. Space Res., 58, 1720–1731, https://doi.org/10.1016/j.asr.2016.06.038, 2016.
Chuo, Y. J.: Ionospheric effects on the F region during the sunrise for the annular solar eclipse over Taiwan on 21 May 2012, Ann. Geophys., 31, 1891–1898, https://doi.org/10.5194/angeo-31-1891-2013, 2013.
Coster, A. J., Gaposchkin, E. M., and Thornton, L. E.: Real-time ionospheric monitoring system using GPS, Navigation, 39, 191–204, https://doi.org/10.1002/j.2161-4296.1992.tb01874.x, 1992.
Coster, A. J., Goncharenko, L., Zhang, S. R., Erickson, P. J., Rideout, W., and Vierinen, J.: GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse, Geophys. Res. Lett., 44, 12041–12048, 2017.
Dear, V. and Yulianto, R.: Skywave propagation analysis during solar eclipse on 9 March 2016, Jurnal Sains Dirgantara, 14, 43–56, 2016.
Dear, V., Husin, A., Anggarani, S., Harjosuwito, J., and Pradipta, R.: Ionospheric effects during the total solar eclipse over Southeast Asia-Pacific on 9 March 2016: Part 1. Vertical movement of plasma layer and reduction in electron plasma density, J. Geophys. Res.-Space, 125, e2019JA026708, https://doi.org/10.1029/2019JA026708, 2020.
Eastes, R. W., McClintock, W. E., Codrescu, M. V., Aksnes, A., Anderson, D., Andersson L., Baker, N., Burns, A. G., Budzien, S. A., Daniell, R. E., Dymond, K. F., Eparvier, F. G., Harvey, J. E.,
Immel, T. J., Krywonos, A., Lankton, M. R., Lumpe, J. D., Prölss, G. W., Richmond, A. D.,
Rusch, D. W., Siegmund, O. H., Solomon, S. C., Strickland, D. J. and Woods, T. N.: Global-scale Observations of the Limb and Disk (GOLD): new observing capabilities for the ionosphere-thermosphere, Midlatitude Ionospheric Dynamics and Disturbances, Geophys. Monogr. Ser., 181, 319–326, 2008.
Eather, R. H., Mende, S. B., and Judge, R. J. R.: Plasma injection at synchronous orbit and spatial and temporal auroral morphology, J. Geophys. Res., 81, 2805–2824, 1976.
Espenak, F.: Annular Solar Eclipse of 2019 December 26, Eclipse Predictions by Fred Espenak, NASA Goddard Space Flight Center, https://eclipse.gsfc.nasa.gov/ (last access: 4 April 2023), 2019.
Evans, J. V.: An F-region eclipse, J. Geophys. Res., 70, 131–142, https://doi.org/10.1029/JZ070i001p00131, 1965.
Farges, T., Jodogne, J. C., Bamford, R., Le Roux, Y., Gauthier, F., Vila, P. M., Altadill, D., Sole, J. G., and
Miro, G.: Disturbances of the western European ionosphere during the total solar eclipse of 11 August 1999 measured by a wide ionosonde and radar network, J. Atmos. Sol.-Terr. Phy., 63, 915–924, https://doi.org/10.1016/S1364-6826(00)00195-4, 2001.
Faturahman, A., Dear, V., Harjosuwito, J., Bahar, A., Husin, A., and Pradipta, R.: Ionospheric Observation Using Equatorial Atmosphere Radar (EAR) Kototabang for the 26 December 2019 Annular Solar Eclipse Research, in: Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment and Humanosphere Science, edited by: Yulihastin, E., Abadi, P., Sitompul, P., and Harjupa, W., Springer Proceedings in Physics, vol. 275, Springer, Singapore, https://doi.org/10.1007/978-981-19-0308-3_23, 2022a.
Faturahman, A., Harjosuwito, J., Afero, F., and Purwono, A.: Perubahan Lapisan F Ionosfer di Atas Pontianak pada Saat Gerhana Matahari Cincin 26 Desember 2019, Jurnal Sains Dirgantara, 19, 41–52, 2022b (in Indonesian).
Frissell, N. A., Katz, J. D., Gunning, S. W., Vega, J. S., Gerrard, A. J., Earle, G. D., Moses, M. L., West, M.
L., Huba, J. D., Erickson, P. J., Miller, E. S., Gerzoff, R. B., Liles, W., and Silver, H. W.: Modeling amateur radio soundings of the ionospheric response to the 2017 great American eclipse, Geophys. Res. Lett., 45, 4665–4674, https://doi.org/10.1029/2018GL077324, 2018.
Fukao, S., Hashiguchi, H., Yamamoto, M., Tsuda, T., Nakamura, T., Yamamoto, M. K., Sato, T., Hagio, M., and Yabugaki, Y.:
Equatorial Atmosphere Radar (EAR): System description and first results, Radio Sci., 38, 1053, https://doi.org/10.1029/2002RS002767, 2003.
Gage, K. S., Ecklund, W. L., Balsley, B. B., Soegijo, J., Pardede, M., and Notosuyidno, S. M.: A proposed ST radar for Biak, Indonesia (1∘ S, 136∘ E), in: Middle Atmosphere Program: Handbook for MAP, vol. 28, Extended Abstracts Fourth Workshop on Technical and Scientific Aspects of MST Radar Kyoto, 28 November–2 December 1988, Kyoto, edited by: Liu, C. H. and Edwards, B., p. 516, 1989.
Gledhill, J. A.: The effects of a solar eclipse on a stratified ionosphere, J. Atmos. Sol.-Terr. Phy., 16, 360–366, 1959.
Goncharenko, L. P., Erickson, P. J., Zhang, S.-R., Galkin, I., Coster, A. J., and Jonah, O. F.: Ionospheric response to the solar eclipse of 21 August 2017 in Millstone Hill (42N) observations, Geophys. Res. Lett., 45, 4601–4609, https://doi.org/10.1029/2018GL077334, 2018.
Gonzalez, R. C. and Woods, R. E.: Digital Image Processing, 4th edn., Pearson, New York, ISBN 10: 1-292-22304-9, 2018.
Gordon, W. E.: Arecibo ionospheric observatory: Studies of the upper atmosphere and planets are made with the aid of a huge reflector in Puerto Rico, Science, 146, 26–30, https://doi.org/10.1126/science.146.3640.26, 1964.
Haggard, R.: Ionospheric Station Information Bulletin no. 46, Ionospheric Network Advisory Group (INAG), August 1985, https://www.sws.bom.gov.au/IPSHosted/INAG/ (last access: 4 April 2023), 1985.
Haggard, R.: Ionospheric Station Information Bulletin no. 51, Ionospheric Network Advisory Group (INAG), February 1988, https://www.sws.bom.gov.au/IPSHosted/INAG/ (last access: 4 April 2023), 1988.
Hairston, M. R., Mrak, S., Coley, W. R., Burrell, A., Holt, B., Perdue, M., Depew, M., and Power, R.: Topside ionospheric electron temperature observations of the 21 August 2017 eclipse by DMSP spacecraft, Geophys. Res. Lett., 45, 7242–7247, https://doi.org/10.1029/2018GL077381, 2018.
Hanuise, C., Broche, P., and Ogubazghi, G.: HF Doppler observations of gravity waves during the 16 February 1980 solar eclipse, J. Atmos. Sol.-Terr. Phy., 44, 963–966, 1982.
Harding, B. J., Drob, D. P., Buriti, R. A., and Makela, J. J.: Nightside detection of a large-scale thermospheric wave generated by a solar eclipse, Geophys. Res. Lett., 45, 3366–3373, https://doi.org/10.1002/2018GL077015, 2018.
Hargreaves, J. K.: The Solar-Terrestrial Environment: An Introduction to Geospace – the Science of the Terrestrial Upper Atmosphere, Ionosphere, and Magnetosphere, Cambridge Atmospheric and Space Science Series, Cambridge University Press, New York, https://doi.org/10.1017/CBO9780511628924, 1992.
Harjosuwito, J.: Masked Solar Images and 2-D Regional GPS TEC Maps, Harvard Dataverse [data set, video], https://doi.org/10.7910/DVN/ZUXCCK, 2022.
Huba, J. D. and Drob, D.: SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system, Geophys. Res. Lett., 44, 5928–5935, https://doi.org/10.1002/2017GL073549, 2017.
Jakowski, N., Stankov, S. M., Wilken, V., Borries, C., Altadill, D., Chum, J., Buresova, D., Boska, J., Sauli, P., Hruska, F., and Cander, Lj. R.: Ionospheric behavior over Europe during the solar eclipse of 3 October 2005, J. Atmos. Sol.-Terr. Phy., 70, 836–853, https://doi.org/10.1016/j.jastp.2007.02.016, 2008.
Jonah, O. F., Goncharenko, L., Erickson, P. J., Zhang, S., Coster, A., Chau, J. L., de Paula, E. R., and
Rideout, W.: Anomalous behavior of the equatorial ionization anomaly during the 2 July 2019 solar eclipse, J. Geophys. Res.-Space, 125, e2020JA027909, https://doi.org/10.1029/2020JA027909, 2020.
Jose, L., Vineeth, C., Pant, T. K., and Kumar, K. K.: Response of the equatorial ionosphere to the annular solar eclipse of 15 January 2010, J. Geophys. Res.-Space, 125, e2019JA027348, https://doi.org/10.1029/2019JA027348, 2020.
Klobuchar, J. A.: Ionospheric Effects on GPS, in Global Positioning System: Theory
and Applications, Vol. 1, edited by: Parkinson, B. W. and Spilker, J. J., American Institute of
Aeronautics and Astronautics, Washington, 485–515,
https://doi.org/10.2514/5.9781600866388.0485.0515, 1996.
Kumar, S., Singh, A. K., and Singh, R. P.: Ionospheric response to total solar eclipse of 22 July 2009 in different Indian regions, Ann. Geophys., 31, 1549–1558, https://doi.org/10.5194/angeo-31-1549-2013, 2013.
Kurkin, V. I., Nosov, V. E., Potekhin, V. F., Smirnov, V. F., and Zherebtsov, G. A.: The March 9, 1997 solar eclipse ionospheric effects over the Russian region, Adv. Space Res., 27, 1437–1440, https://doi.org/10.1016/S0273-1177(01)00030-8, 2001.
Le, H., Liu, L., Yue, X., Wan, W., and Ning, B.: Latitudinal dependence of the ionospheric response to solar eclipses, J. Geophys. Res., 114, A07308, https://doi.org/10.1029/2009JA014072, 2009.
Lerfald, G. M., Hargreaves, J. K., and Watts, J. M.: D-region absorption at 10 and 15 mc s−1 during the total solar eclipse of July 20, 1963, Radio Sci., 69D, 939–946, 1965.
Liu, J. Y., Yang, S. S., Rajesh, P. K., Sun, Y. Y., Chum, J., Pan, C. J., Chu, Y. H., Chao, C. K., and
Chang, L. C.: Ionospheric response to the 21 May 2012 annular solar eclipse over Taiwan, J. Geophys. Res.-Space, 124, 3623–3636, https://doi.org/10.1029/2018JA025928, 2019.
Lynn, K. J. W., Harris, T. J., and Sjarifudin, M.: Stratification of the F2 layer observed in Southeast Asia, J. Geophys. Res.-Space, 105, 27147–27156, 2000.
Lynn, K. J. W., Sjarifudin, M., Harris, T. J., and Le Huy, M.: Combined TOPEX/Poseidon TEC and ionosonde observations of negative low-latitude ionospheric storms, Ann. Geophys., 22, 2837–2847, https://doi.org/10.5194/angeo-22-2837-2004, 2004.
Mansoori, A. A., Parvaiz, A., Khan, P. A., Bhawre, P., Purohit, P. K., and Gwal, A. K.: Solar eclipses and ionospheric effects: Some historical perspectives, International Journal of Geomatics and Geosciences, 1, 662–668, 2011.
Mannucci, A. J., Wilson, B. D., and Edwards, C. D.: A new method for monitoring the earth's ionospheric total electron content using the GPS global network, Proc. of ION GPS-93, Inst. of Navigation, 22–24 September 1993, Salt Lake
City, UT, 1323–1332, 1993.
Masykur, M.: Analysis of accuracy the InaCORS BIG online post-processing service, Appl. Geomat., 13, 227–233, https://doi.org/10.1007/s12518-020-00343-2, 2021.
Minnis, C. M.: Ionospheric changes at Singapore during the solar eclipse of 20 June 1955, J. Atmos. Terr. Phys., 10, 229–236, 1957.
Mitra, S. K., Rakshit, H., Syam, P., and Ghose, B. N.: Effect of the solar eclipse on the ionosphere, Nature, 132, 442–443, https://doi.org/10.1038/132442a0, 1933.
Mrak, S., Semeter, J. L., Drob, D., and Huba, J. D.: Direct EUV/X-ray modulation of the ionosphere during the August 2017 total solar eclipse, Geophys. Res. Lett., 45, 3820–3828, https://doi.org/10.1029/2017GL076771, 2018.
Muslim, B., Sunardi, B., Merdijanto, U., Heryanto, D. T., Efendi, J., and Andrian, Y.: Ionospheric response to march 9th 2016 solar eclipse from palu gps data, Jurnal Meteorologi dan Geofisika, 17, 191–198, 2016.
Nixon, M. S. and Aguado, A. S.: Feature Extraction and Image Processing, 1st edn., Newnes, Oxford, ISBN 0-7506-5078-8, 2002.
Osborne, B. W.: Ionospheric behaviour in the F2 region at Singapore, J. Atmos. Terr. Phys., 2, 66–78, 1951.
Paulino, I., Figueiredo, C. A. O. B., Rodrigues, F. S., Buriti, R. A., Wrasse, C. M., Paulino, A. R.,
Barros, D., Takahashi, H., Batista, I. S., Medeiros, A. F., Batista, P. P., Abdu, M. A., de Paula, E. R., Denardini, C.
M., Lima, L. M., Cueva, R. Y. C., and Makela, J. J.: Atmospheric gravity waves observed in the nightglow following the 21 August 2017 total solar eclipse, Geophys. Res. Lett., 47, e2020GL088924, https://doi.org/10.1029/2020GL088924, 2020.
Perkins, F. W., Salpeter, E. E., and Yngvesson, K. O.: Incoherent scatter from plasma oscillations in the ionosphere, Phys. Rev. Lett., 14, 579, 1965.
Perwitasari, S. and Muslim, B.: Respon ionosfer terhadap gerhana matahari 26 Januari 2009 dari pengamatan ionosonda, in: Prosiding Seminar Nasional Penelitian, Pendidikan, dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 16 May 2009, https://eprints.uny.ac.id/12313/ (last access: 4 April 2023), 2009 (in Indonesian).
Piggott, W. R. and Rawer, K.: URSI Handbook of Ionogram Interpretation and Reduction, 2nd Edn., Rep. UAG-23A, Nat. Oceanic and Atmos. Admin., U.S. Dep. of Comm., Washington, D.C., https://repository.library.noaa.gov/view/noaa/10404 (last access: 4 April 2023), 1972.
Pradipta, R., Valladares, C. E., and Doherty, P. H.: GPS observation of continent-size traveling TEC pulsations at the start of geomagnetic storms, J. Geophys. Res.-Space, 119, 6913–6924, https://doi.org/10.1002/2014JA020177, 2014.
Price, W. L.: Anomalous ionospheric reflection during solar eclipses, J. Atmos. Sol.-Terr. Phy., 16, 93–98, 1959.
Rama Rao, P. V. S., Gopi Krishna, S., Niranjan, K., and Prasad, D. S. V. V. D.: Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005, Ann. Geophys., 24, 3279–3292, https://doi.org/10.5194/angeo-24-3279-2006, 2006.
Ratcliffe, J. A.: A survey of solar eclipses and the ionosphere, in: Solar eclipses and the ionosphere, edited by: Beynon, W. J. G. and Brown, M. G., Pergamon Press, Oxford, 1–13, ISBN 9780080090467, 1956.
Resende, L. C. A., Zhu, Y., Denardini, C. M., Chen, S. S., Chagas, R. A. J., Da Silva, L. A., Carmo, C. S., Moro, J., Barros, D., Nogueira, P. A. B., Marchezi, J. P., Picanço, G. A. S., Jauer, P., Silva, R. P., Silva, D., Carrasco, J. A., Wang, C., and Liu, Z.: A multi-instrumental and modeling analysis of the ionospheric responses to the solar eclipse on 14 December 2020 over the Brazilian region, Ann. Geophys., 40, 191–203, https://doi.org/10.5194/angeo-40-191-2022, 2022.
Rideout, W. and Coster, A.: Automated GPS processing for global total electron content data, GPS Solut., 10, 219–228, https://doi.org/10.1007/s10291-006-0029-5, 2006.
Rishbeth, H.: Further analogue studies of the ionospheric F layer, Proc. Phys. Soc., 81, 65–77, 1963.
Rishbeth, H.: Solar eclipses and ionospheric theory, Space Sci. Rev., 8, 543–554, https://doi.org/10.1007/BF00175006, 1968.
Rishbeth, H. and Garriott, O. K.: Introduction to the Ionosphere and Geomagnetism, Stanford Electronics Laboratories, Stanford University, https://ntrs.nasa.gov/api/citations/19650007912/downloads/19650007912.pdf (last access: 4 April 2023), 1964.
Rishbeth, H. and Garriott, O. K.: Introduction to Ionospheric Physics, International Geophysics Series, vol. 14, Academic Press, New York, https://doi.org/10.1016/S0074-6142(09)60018-8, 1969.
Seemala, G. K. and Valladares, C. E.: Statistics of total electron content depletions observed over the South American continent for the year 2008, Radio Sci., 46, RS5019, https://doi.org/10.1029/2011RS004722, 2011.
Sen, H. Y.: Stratification of the F2-layer of the ionosphere over Singapore, J. Geophys. Res., 54, 363–366, 1949.
Setty, C. S. G. K.: Eclipse effects on the F-layer at sunrise, J. Atmos. Sol.-Terr. Phy., 19, 73–81, 1960.
Skone, S.: Wide area ionosphere grid modeling in the auroral region, PhD thesis, University of Calgary, Canada, 198 pp., https://prism.ucalgary.ca/items/b3c87036-bbbc-40e7-8a30-a5f4a0a1767f (last access: 4 April 2023), 1998.
Sridharan, R., Devasia, C. V., Jyoti, N., Tiwari, D., Viswanathan, K. S., and Subbarao, K. S. V.: Effects of solar eclipse on the electrodynamical processes of the equatorial ionosphere: a case study during 11 August 1999 dusk time total solar eclipse over India, Ann. Geophys., 20, 1977–1985, https://doi.org/10.5194/angeo-20-1977-2002, 2002.
St.-Maurice, J. P., Ambili, K. M., and Choudhary, R. K.: Local electrodynamics of a solar eclipse at the magnetic equator in the early afternoon hours, Geophys. Res. Lett., 38, L04102, https://doi.org/10.1029/2010GL046085,
2011.
Vita, A. N., Sunardi, B., Sulastri, and Sakya, A. E.: Pengaruh Gerhana Matahari 09 Maret 2016 Terhadap Kandungan Total Elektron Ionosfer, Prosiding Seminar Nasional Fisika, vol. VI, 51–56, https://doi.org/10.21009/03.SNF2017, 2017 (in Indonesian).
Wang, X.: Laplacian Operator-Based Edge Detectors, IEEE T. Pattern Anal., 29, 886–890, https://doi.org/10.1109/TPAMI.2007.1027, 2007.
Wang, X., Berthelier, J. J., and Lebreton, J. P.: Ionosphere variations at 700 km altitude observed by the DEMETER satellite during the 29 March 2006 solar eclipse, J. Geophys. Res., 115, A11312, https://doi.org/10.1029/2010JA015497, 2010.
Wang, Y., Zhang, Q. H., Ma, Y. Z., Jayachandran, P. T., Xing, Z. Y., Balan, N., and Zhang, S. R.: Polar ionospheric large-scale structures and dynamics revealed by TEC keogram extracted from TEC maps, J. Geophys. Res.-Space, 125, e2019JA027020, https://doi.org/10.1029/2019JA027020, 2020.
Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W., and Vierinen, J.: Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse, Geophys. Res. Lett., 44, 12067–12073, https://doi.org/10.1002/2017GL076054, 2017.
Short summary
An annular solar eclipse passed over Southeast Asia on 26 December 2019. The passage of an eclipse can cause observable effects on the Earth's ionosphere. Studying these effects may help us build a better understanding of the Earth's upper atmosphere and the geospace environment. Taking advantage of the growing network of GPS receivers and existing ionosondes in the region, we examined changes in the low-latitude ionosphere over Southeast Asia during this solar eclipse.
An annular solar eclipse passed over Southeast Asia on 26 December 2019. The passage of an...