Articles | Volume 40, issue 1
https://doi.org/10.5194/angeo-40-151-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-40-151-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An investigation into the spectral parameters of ultra-low-frequency (ULF) waves in the polar caps and magnetotail
Nataliya Sergeevna Nosikova
CORRESPONDING AUTHOR
Department of General Physics, National Research Nuclear University MEPhI, Moscow, Russia
Laboratory of Physics of the Earth's
Environment, Schmidt Institute of Physics of the Earth of the Russian Academy of
Sciences (IPE RAS), Moscow, Russia
Nadezda Viktorovna Yagova
Laboratory of Physics of the Earth's
Environment, Schmidt Institute of Physics of the Earth of the Russian Academy of
Sciences (IPE RAS), Moscow, Russia
Lisa Jane Baddeley
Arctic Geophysics Department, University Centre in Svalbard, Svalbard, Norway
Birkeland Centre for Space Science, University of Bergen, Bergen,
Norway
Dag Arne Lorentzen
Arctic Geophysics Department, University Centre in Svalbard, Svalbard, Norway
Birkeland Centre for Space Science, University of Bergen, Bergen,
Norway
Dmitriy Anatolyevich Sormakov
Geophysics Department, Arctic and Antarctic Research Institute (AARI),
Sankt-Petersburg, Russia
Related authors
No articles found.
Hanne H. Christiansen, Ilkka S. O. Matero, Lisa Baddeley, Kim Holmén, Clara J. M. Hoppe, Maarten J. J. E. Loonen, Rune Storvold, Vito Vitale, Agata Zaborska, and Heikki Lihavainen
Earth Syst. Dynam., 15, 933–946, https://doi.org/10.5194/esd-15-933-2024, https://doi.org/10.5194/esd-15-933-2024, 2024
Short summary
Short summary
We provide an overview of the state and future of Earth system science in Svalbard as a synthesis of the recommendations made by the scientific community active in the archipelago. This work helped identify foci for developments of the observing system and a path forward to reach the full interdisciplinarity needed to operate at Earth system science scale. Better understanding of the processes in Svalbard will benefit both process-level understanding and Earth system models.
Anton Goertz, Noora Partamies, Daniel Whiter, and Lisa Baddeley
Ann. Geophys., 41, 115–128, https://doi.org/10.5194/angeo-41-115-2023, https://doi.org/10.5194/angeo-41-115-2023, 2023
Short summary
Short summary
Poleward moving auroral forms (PMAFs) are specific types of aurora believed to be the signature of the connection of Earth's magnetic field to that of the sun. In this paper, we discuss the evolution of PMAFs with regard to their auroral morphology as observed in all-sky camera images. We interpret different aspects of this evolution in terms of the connection dynamics between the magnetic fields of Earth and the sun. This sheds more light on the magnetic interaction between the sun and Earth.
Nadezda Yagova, Alexander Kozlovsky, Evgeny Fedorov, and Olga Kozyreva
Ann. Geophys., 39, 549–562, https://doi.org/10.5194/angeo-39-549-2021, https://doi.org/10.5194/angeo-39-549-2021, 2021
Short summary
Short summary
We present a study of ultralow-frequency waves in the ionosphere and on the ground. These waves are very slow (their periods are about several minutes). They are registered on the ground as geomagnetic pulsations. No simple dependence exists between geomagnetic and ionospheric pulsations. Here we study not only selected pulsations with very high amplitudes but also usual pulsations and try to answer the question, which pulsation parameters are favorable for modulation of the ionosphere?
Nadezda Yagova, Alexander Kozlovsky, Evgeny Fedorov, and Olga Kozyreva
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-155, https://doi.org/10.5194/angeo-2019-155, 2019
Manuscript not accepted for further review
Short summary
Short summary
We present a study of ultra-low-frequency waves in the ionosphere and on the ground (geomagnetic pulsations). They can influence particle flux in the magnetosphere, which modify the ionosphere. However, there is no simple dependence between geomagnetic and ionospheric pulsations. We study not only selected pulsations with very high amplitudes but also usual pulsations and try to answer the question, which pulsations' parameters are favorable for modulation of the ionosphere.
Nadezda Yagova, Natalia Nosikova, Lisa Baddeley, Olga Kozyreva, Dag A. Lorentzen, Vyacheslav Pilipenko, and Magnar G. Johnsen
Ann. Geophys., 35, 365–376, https://doi.org/10.5194/angeo-35-365-2017, https://doi.org/10.5194/angeo-35-365-2017, 2017
Short summary
Short summary
A substorm is a dramatic phenomenon in the near-Earth space that is visualized as an aurora. Mostly substorms are caused by changes in the solar wind, but some of them can develop without any evident trigger. Such substorms together with undisturbed days were investigated using magnetometer and photometer data from Svalbard. Substorm precursors, i.e., specific features in 1–4 mHz geomagnetic and auroral luminosity pulsations, have been found at high geomagnetic latitudes.
N. Yagova, B. Heilig, and E. Fedorov
Ann. Geophys., 33, 117–128, https://doi.org/10.5194/angeo-33-117-2015, https://doi.org/10.5194/angeo-33-117-2015, 2015
F. Sigernes, S. E. Holmen, D. Biles, H. Bjørklund, X. Chen, M. Dyrland, D. A. Lorentzen, L. Baddeley, T. Trondsen, U. Brändström, E. Trondsen, B. Lybekk, J. Moen, S. Chernouss, and C. S. Deehr
Geosci. Instrum. Method. Data Syst., 3, 241–245, https://doi.org/10.5194/gi-3-241-2014, https://doi.org/10.5194/gi-3-241-2014, 2014
Short summary
Short summary
A two-step procedure to calibrate the spectral sensitivity of auroral all-sky (fish-eye) cameras is outlined. First, center pixel response is obtained by the use of a Lambertian surface and a standard tungsten lamp. Second, all-sky flat-field correction is carried out with an integrating sphere.
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Polar cap phenomena
Comment on “Identification of the IMF sector structure in near-real time by ground magnetic data” by Janzhura and Troshichev (2011)
Peter Stauning
Ann. Geophys., 39, 369–377, https://doi.org/10.5194/angeo-39-369-2021, https://doi.org/10.5194/angeo-39-369-2021, 2021
Short summary
Short summary
The commented publication by Janzhura and Troshichev (2011) constitutes an essential part of the basis for the IAGA endorsement by Resolution 3 (2013) of PC index calculations. However, there is strong disagreement between indications of near real-time methods in the title, abstract, statements in the text, and figure captions, as well as in illustrations of results in the article compared to results from recalculations of the relations by rigorous use of the presented near real-time procedure.
Cited articles
Allan, W. and Wright, A. N.: Magnetotail waveguide: Fast and Alfvén
waves in the plasma sheet boundary layer and lobe, J. Geophys. Res., 105, 317–328,
https://doi.org/10.1029/1999JA900425, 2000.
Alperovich, L. S. and Fedorov, E. N.: Hydromagnetic Waves in the
Magnetosphere and the Ionosphere, Series: Astrophysics and Space Science
Library, Springer, the Netherlands, Vol. 353, 2009, XXIV, 418 pp., Hardcover, ISBN 978-1-4020-6636-8,
2007.
Baker, G., Donovan, E. F., and Jackel, B. J.: A comprehensive survey of auroral
latitude Pc5 pulsation characteristics, J. Geophys. Res.-Space,
108, 1384, https://doi.org/10.1029/2002JA009801, 2003.
Ballatore, P.: Pc5 micropulsation power at conjugate high-latitude
locations, J. Geophys. Res., 108, 1146, https://doi.org/10.1029/2002JA009600, 2003.
Balogh, A., Dunlop, M. W., Cowley, S. W. H., Southwood, D. J., Thomlinson,
J. G., Glassmeier, K. H., Musmann, G., Luhr, H., Buchert, S., Acuna, M. H.,
Fairfield, D. H., Slavin, J. A., Riedler, W., Schwingenschuh, K., and
Kivelson, M. G.: The Cluster Magnetic Field Investigation, Space Sci. Rev.,
79, 65–91, doi.:10.1023/A:1004970907748, 1997
Bland, E. C. and McDonald, A. J.: High spatial resolution radar
observations of ultralow frequency waves in the southern polar cap, J.
Geophys. Res.-Space, 121, 4005–4016, https://doi.org/10.1002/2015JA022235,
2016.
Bolshakova, O. V. and Troitskaya, V. A.: Dayside cusp dynamics from the
observations of long-period geomagnetic pulsations, Geomagn. Aeron., 17, 1076–1082, 1977.
Borovsky, J. E. and Denton, M. H.: Exploring the cross correlations and
autocorrelations of the ULF indices and incorporating the ULF indices into
the systems science of the solar wind-driven magnetosphere, J. Geophys.
Res.-Space, 119, 4307–4334, https://doi.org/10.1002/2014JA019876, 2014.
De Lauretis, M., Regi, M., Francia, P., Marcucci, M. F., Amata, E.,
and Pallocchia, G.: Solar wind-driven Pc5 waves observed at a polar cap
station and in the near cusp ionosphere, J. Geophys. Res.-Space, 121, 11145–11156,
https://doi.org/10.1002/2016JA023477, 2016.
Francia, P., Lanzerotti, L. J., Villante, U., Lepidi, S., and Di Memmo, D.:
A statistical analysis of low-frequency magnetic pulsations at cusp and cap
latitudes in Antarctica, J. Geophys. Res., 110, A02205, https://doi.org/10.1029/2004JA010680, 2005.
Han, D.-S., Yang, H.-G., Chen, Z.-T., Araki, T., Dunlop, M. W., Nosé,
M., Iyemori, T., Li, Q., Gao, Y.-F., and Yumoto, K.: Coupling of
perturbations in the solar wind density to global Pi3 pulsations: A case
study, J. Geophys. Res., 112, A05217, https://doi.org/10.1029/2006JA011675, 2007.
Heacock, R. and Chao, J.: Type Pi Magnetic field pulsations at very high
latitudes and their relation to plasma convection in the magnetosphere, J. Geophys. Res., 85, 1203–1213,
https://doi.org/10.1029/JA085iA03p01203, 1980.
Jenkins, G. M. and Watts, D. G.: Spectral analysis
and its applications, Holden-Day, San-Francisco, Cambridge, London, Amsterdam, 525
pp., 1968.
Kay, S. M.: Modern spectral estimation: Theory and
application, Prentice-Hall, Prentice Hall, New Jersey, USA, 543 pp., 1988.
Keiling, A.: Alfvén Waves and Their Roles in the Dynamics of the Earth's
Magnetotail: A Review, Space Sci. Rev., 142, 73–156,
https://doi.org/10.1007/s11214-008-9463-8, 2009.
Kepko, L., Spence, H. E., and Singer, H. J.: ULF waves in the solar wind as
direct drivers of magnetospheric pulsations, Geophys. Res. Lett., 29, 1197,
https://doi.org/10.1029/2001GL014405, 2002.
Kepko, L., Viall, N. M., and Wolfinger, K.: Inherent length scales of
periodic mesoscale density structures in the solar wind over two solar
cycles, J. Geophys. Res.-Space, 125, e2020JA028037,
https://doi.org/10.1029/2020JA028037, 2020.
Kozyreva, O., Pilipenko, V., Engebretson, M. J., Yumoto, K., Watermann, J.,
and Romanova, N.: In search of a new ULF wave index: Comparison of Pc5
power with dynamics of geostationary relativistic electrons, Planet. Space Sci., 55, 755–769,
2007.
Leonovich, A. S. and Kozlov, D. A.: Kelvin-Helmholtz instability in the
geotail low-latitude boundary layer, J. Geophys. Res.-Space,
123, 6548–6561, https://doi.org/10.1029/2018JA025552, 2018.
Lepidi, S., Villante, U., Vellante, M., Palangio, P., and Meloni, A.: High
resolution geomagnetic field observations at Terra Nova Bay,
Antarctica, Ann. Geophys., 39, 519–528, https://doi.org/10.4401/ag-3987, 1996.
Lyons, L. R., Nagai, T., Blanchard, G. T., Samson, J. C., Yamamoto,
T., Mukai, T., Nishida, A., and Kokubun, S.: Association between Geotail
plasma flows and auroral poleward boundary intensifications observed by
CANOPUS photometers, J. Geophys. Res., 104, 4485–4500, https://doi.org/10.1029/1998JA900140,
1999.
Lyons, L. R., Nishimura, Y., , Kim, H.-J., Donovan, E., Angelopoulos, V.,
Sofko, G., Nicolls, M., Heinselman, C., Ruohoniemi, J. M.,
and Nishitani, N.: Possible connection of polar cap flows to pre- and
post-substorm onset PBIs and streamers, J. Geophys. Res., 116, A12225,
https://doi.org/10.1029/2011JA016850, 2011.
Mann, I. R., Voronkov, I., Dunlop, M., Donovan, E., Yeoman, T. K., Milling, D. K., Wild, J., Kauristie, K., Amm, O., Bale, S. D., Balogh, A., Viljanen, A., and Opgenoorth, H. J.: Coordinated ground-based and Cluster observations of large amplitude global magnetospheric oscillations during a fast solar wind speed interval, Ann. Geophys., 20, 405–426, https://doi.org/10.5194/angeo-20-405-2002, 2002.
Nishimura, Y., Lyons, L. R., Shiokawa, K., Angelopoulos, V. Donovan, E. F.,
and Mende, S. B.: Substorm onset and expansion phase intensification
precursors seen in polar cap patches and arcs, J. Geophys. Res.-Space, 118, 2034–2042, https://doi.org/10.1002/jgra.50279, 2013.
Nishimura, Y., Lyons, L. R., Nicolls, M. J., Hampton, D.
L., Michell, R. G., Samara, M., Bristow, W. A., Donovan, E. F., Spanswick, E.,
Angelopoulos, V., and Mende, S. B.: Coordinated ionospheric observations indicating
coupling between preonset flow bursts and waves that lead to substorm
onset, J. Geophys. Res.-Space, 119, 3333–3344, https://doi.org/10.1002/2014JA019773, 2014.
Pilipenko, V. A., Mazur, N. G., Federov, E. N., Engebretson, M. J., and
Murr, D. L.: Alfven wave reflection in a curvilinear magnetic field and formation
of Alfvenic resonators on open field lines, J. Geophys. Res., 110, A10S05,
https://doi.org/10.1029/2004JA010755, 2005.
Pilipenko, V. A., Kawano, H., and Mann, I. R.: Hodograph method to estimate
the latitudinal profile of the field-line resonance frequency using the data
from two ground magnetometers, Earth Planet Sp., 65, 5,
https://doi.org/10.5047/eps.2013.02.007, 2013.
Posch, J. L., Engebretson, M. J., Pilipenko, V. A., Hughes, W. J., Russell,
C. T., and Lanzerotti, L. J.: Characterizing the long-period ULF response
to magnetic storms, J. Geophys. Res., 108, 1029, https://doi.org/10.1029/2002JA009386, A1, 2003.
Rae, I.J., Donovan, E. F., Mann, I. R., Fenrich, F. R., Watt, C. E. J.,
Milling, D. K., Lester, M., Lavraud, B., Wild, J. A., Singer, H. J.,
Rème, H., and Balogh, A.: Evolution and characteristics of global Pc5 ULF
waves during a high solar wind speed interval, J. Geophys. Res., 110, A1221,
https://doi.org/10.1029/2005JA011007, 2005.
Shi, X., Baker, J. B. H.,Ruohoniemi, J. M., Hartinger, M. D., Murphy, K. R.,
Rodriguez, J. V., Nishimura, Y., McWilliams, K. A.,
and Angelopoulos V.: Long-lasting poloidal ULF waves observed by
multiple satellites and high-latitude SuperDARN radars, J. Geophys. Res.-Space, 123, 8422–8438,
https://doi.org/10.1029/2018JA026003, 2018.
Shi, X., Hartinger, M. D., Baker, J. B. H., Ruohoniemi, J. M., Lin, D., Xu,
Z., Coyle, S., Kunduri, B. S. R., Kilcommons, L. M.,
and Willer, A.: Multipoint conjugate observations of dayside ULF waves during an
extended period of radial IMF, J. Geophys. Res.-Space, 125, e2020JA028364, https://doi.org/10.1029/2020JA028364, 2020.
Tanskanen, E. I.: A comprehensive high-throughput
analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003
examined, J. Geophys. Res., 114, A05204, https://doi.org/10.1029/2008JA013682, 2009.
Troitskaya, V. A. and Guglielmi, A. V.: Geomagnetic pulsations and diagnostics of the
magnetosphere, Sov. Phys . Usp., 12 195–218, https://doi.org/10.1070/PU1969v012n02ABEH003933, 1969.
Wang, G. Q., Zhang, T. L., and Volwerk, M.: Statistical study on
ultralow-frequency waves in the magnetotail lobe observed by Cluster, J. Geophys. Res.-Space, 121, 5319–5332,
https://doi.org/10.1002/2016JA022533, 2016.
Weatherwax, A. T., Rosenberg, T. J., Maclennan, C. G., and Doolittle, J. H.: Substorm
precipitation in the polar cap and associated Pc 5 modulation, Geophys. Res.
Lett, 24, 579–582, 1997.
Wing, S., Sibeck, D. G., Wiltberger, M., and Singer, H.: Geosynchronous
magnetic field temporal response to solar wind and IMF variations, J.
Geophys. Res., 107, 1–10, https://doi.org/10.1029/2001JA009156, 2002.
Yagova, N., Pilipenko, V., Rodger, A., Papitashvili, V., and Watermann, J.:
Long period ULF activity at the polar cap preceding substorm, in: Proc. 5th
International Conference on Substorms, St. Peterburg, Russia, ESA SP-443,
603–606, 2000.
Yagova, N. V., Pilipenko, V. A., Lanzerotti, L. J., Engebretson, M.
J., Rodger, A. S., Lepidi, S., and Papitashvili, V. O.: Two-dimensional
structure of long-period pulsations at polar latitudes in Antarctica, J.
Geophys. Res., 109, A03222, https://doi.org/10.1029/2003JA010166, 2004.
Yagova, N., Pilipenko, V., Watermann, J., and Yumoto, K.: Control of high latitude geomagnetic fluctuations by interplanetary parameters: the role of suprathermal ions, Ann. Geophys., 25, 1037–1047, https://doi.org/10.5194/angeo-25-1037-2007, 2007.
Yagova, N., Nosikova, N., Baddeley, L., Kozyreva, O., Lorentzen, D. A.,
Pilipenko, V., and Johnsen, M. G.: Non-triggered auroral substorms and
long-period (1–4 mHz) geomagnetic and auroral luminosity pulsations in the
polar cap, Ann. Geophys., 35, 365–376, https://doi.org/10.5194/angeo-35-365-2017, 2017.
Yagova, N. V.: Spectral Slope of High-Latitude Geomagnetic Disturbances in
the Frequency Range 1–5 mHz. Control Parameters Inside and Outside the
Magnetosphere, Geomagn. Aeron., 55, 32–40, 2015.
Zhang, S., Tian, A., Shi, Q., Li, H., Degeling, A. W., Rae, I. J., Forsyth,
C., Wang, M., Shen, X., Sun, W., Bai, S., Guo, R., Wang, H., Fazakerley, A.,
Fu, S., and Pu, Z.: Statistical study of ULF waves in the magnetotail by
THEMIS observations, Ann. Geophys., 36, 1335–1346,
https://doi.org/10.5194/angeo-36-1335-2018, 2018.
Short summary
This paper presents a study of millihertz magnetic pulsations seen in the magnetosphere and on the Earth under quiet space weather conditions. We found that these fluctuations appear in the magnetosphere as soon as disturbances with the same frequency vanish in the solar wind. The results of this work show the possibility of a substorm developing under absolutely quiet external conditions and allow us to assume that these pulsations represent a substorm preparatory phase.
This paper presents a study of millihertz magnetic pulsations seen in the magnetosphere and on...