Articles | Volume 40, issue 1
https://doi.org/10.5194/angeo-40-121-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-40-121-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Magnetospheric response to solar wind forcing: ultra-low-frequency wave–particle interaction perspective
Institute of Space Physics and Applied Technology, Peking University, Beijing 100871, China
Polar Research Institute of China, Shanghai 200136, China
Invited contribution by Qiugang Zong, recipient of the EGU Hannes Alfvén Medal 2020.
Editorial note: during the submission and review process, the author failed to credit and cite the original paper for Fig. 5. The article has been corrected on 9 August 2024 accordingly.
Related authors
Weijie Sun, James A. Slavin, Rumi Nakamura, Daniel Heyner, Karlheinz J. Trattner, Johannes Z. D. Mieth, Jiutong Zhao, Qiu-Gang Zong, Sae Aizawa, Nicolas Andre, and Yoshifumi Saito
Ann. Geophys., 40, 217–229, https://doi.org/10.5194/angeo-40-217-2022, https://doi.org/10.5194/angeo-40-217-2022, 2022
Short summary
Short summary
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's Earth flyby. FTE-type flux ropes are a well-known feature of magnetic reconnection on the magnetopause, and they can be used to constrain the location of reconnection X-lines. Our study suggests that the magnetopause X-line passed BepiColombo from the north as it traversed the magnetopause. Moreover, our results also strongly support coalescence creating larger flux ropes by combining smaller ones.
This article is included in the Encyclopedia of Geosciences
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
This article is included in the Encyclopedia of Geosciences
Xingran Chen, Qiugang Zong, Hong Zou, Xuzhi Zhou, Li Li, Yixin Hao, and Yongfu Wang
Ann. Geophys., 38, 801–813, https://doi.org/10.5194/angeo-38-801-2020, https://doi.org/10.5194/angeo-38-801-2020, 2020
Short summary
Short summary
We present a new in situ observation of energetic electrons in space obtained by a newly available particle detector. In view of the characteristic signatures in the particle flux, we attribute the observational features to the drift-resonance wave–particle interaction between energetic electrons and multiple localized ultra-low-frequency waves. The scenario is substantiated by a numerical calculation based on the revised drift-resonance theory which reproduced the observed particle signatures.
This article is included in the Encyclopedia of Geosciences
Shuai Zhang, Anmin Tian, Quanqi Shi, Hanlin Li, Alexander W. Degeling, I. Jonathan Rae, Colin Forsyth, Mengmeng Wang, Xiaochen Shen, Weijie Sun, Shichen Bai, Ruilong Guo, Huizi Wang, Andrew Fazakerley, Suiyan Fu, and Zuyin Pu
Ann. Geophys., 36, 1335–1346, https://doi.org/10.5194/angeo-36-1335-2018, https://doi.org/10.5194/angeo-36-1335-2018, 2018
Short summary
Short summary
The features of ULF waves are statistically studied on the magnetotail stretched magnetic field lines (8 RE < R < 32 RE) by using 8 years of THEMIS data. The occurrence rates of ULF waves are higher in the post-midnight region than pre-midnight region. The frequency decreases with increasing radial distance of 8–16 RE and could be explained by much more standing waves in this region than in the region of 16–32 RE. The wave frequency is higher after the substorm onset than before it.
This article is included in the Encyclopedia of Geosciences
Christina Chu, Hui Zhang, David Sibeck, Antonius Otto, QiuGang Zong, Nick Omidi, James P. McFadden, Dennis Fruehauff, and Vassilis Angelopoulos
Ann. Geophys., 35, 443–451, https://doi.org/10.5194/angeo-35-443-2017, https://doi.org/10.5194/angeo-35-443-2017, 2017
Short summary
Short summary
Hot flow anomalies (HFAs) at Earth's bow shock were identified in Time History of Events and Macroscale Interactions During Substorms (THEMIS) satellite data from 2007 to 2009. The events were classified as young or mature and regular or spontaneous hot flow anomalies (SHFAs). HFA–SHFA occurrence decreases with distance upstream from the bow shock. HFAs are more prevalent for radial interplanetary magnetic fields and solar wind speeds from 550 to 600 kms−1.
This article is included in the Encyclopedia of Geosciences
I. I. Vogiatzis, A. Isavnin, Q.-G. Zong, E. T. Sarris, S. W. Lu, and A. M. Tian
Ann. Geophys., 33, 63–74, https://doi.org/10.5194/angeo-33-63-2015, https://doi.org/10.5194/angeo-33-63-2015, 2015
Short summary
Short summary
Magnetospheric substorms are one of the most important phenomena occurring in planetary magnetotails, dynamically reconfiguring the near- planet space environment. They encompass various fundamental processes of plasma acceleration and transport in the magnetosphere/ionosphere. The key features of the paper are a new magnetospheric substorm model, a new explanation about the origin of dipolarization fronts (DFs), and a new explanation for energetic ion acceleration/injection in front of DFs.
This article is included in the Encyclopedia of Geosciences
Weijie Sun, James A. Slavin, Rumi Nakamura, Daniel Heyner, Karlheinz J. Trattner, Johannes Z. D. Mieth, Jiutong Zhao, Qiu-Gang Zong, Sae Aizawa, Nicolas Andre, and Yoshifumi Saito
Ann. Geophys., 40, 217–229, https://doi.org/10.5194/angeo-40-217-2022, https://doi.org/10.5194/angeo-40-217-2022, 2022
Short summary
Short summary
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's Earth flyby. FTE-type flux ropes are a well-known feature of magnetic reconnection on the magnetopause, and they can be used to constrain the location of reconnection X-lines. Our study suggests that the magnetopause X-line passed BepiColombo from the north as it traversed the magnetopause. Moreover, our results also strongly support coalescence creating larger flux ropes by combining smaller ones.
This article is included in the Encyclopedia of Geosciences
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
This article is included in the Encyclopedia of Geosciences
Xingran Chen, Qiugang Zong, Hong Zou, Xuzhi Zhou, Li Li, Yixin Hao, and Yongfu Wang
Ann. Geophys., 38, 801–813, https://doi.org/10.5194/angeo-38-801-2020, https://doi.org/10.5194/angeo-38-801-2020, 2020
Short summary
Short summary
We present a new in situ observation of energetic electrons in space obtained by a newly available particle detector. In view of the characteristic signatures in the particle flux, we attribute the observational features to the drift-resonance wave–particle interaction between energetic electrons and multiple localized ultra-low-frequency waves. The scenario is substantiated by a numerical calculation based on the revised drift-resonance theory which reproduced the observed particle signatures.
This article is included in the Encyclopedia of Geosciences
Shuai Zhang, Anmin Tian, Quanqi Shi, Hanlin Li, Alexander W. Degeling, I. Jonathan Rae, Colin Forsyth, Mengmeng Wang, Xiaochen Shen, Weijie Sun, Shichen Bai, Ruilong Guo, Huizi Wang, Andrew Fazakerley, Suiyan Fu, and Zuyin Pu
Ann. Geophys., 36, 1335–1346, https://doi.org/10.5194/angeo-36-1335-2018, https://doi.org/10.5194/angeo-36-1335-2018, 2018
Short summary
Short summary
The features of ULF waves are statistically studied on the magnetotail stretched magnetic field lines (8 RE < R < 32 RE) by using 8 years of THEMIS data. The occurrence rates of ULF waves are higher in the post-midnight region than pre-midnight region. The frequency decreases with increasing radial distance of 8–16 RE and could be explained by much more standing waves in this region than in the region of 16–32 RE. The wave frequency is higher after the substorm onset than before it.
This article is included in the Encyclopedia of Geosciences
Christina Chu, Hui Zhang, David Sibeck, Antonius Otto, QiuGang Zong, Nick Omidi, James P. McFadden, Dennis Fruehauff, and Vassilis Angelopoulos
Ann. Geophys., 35, 443–451, https://doi.org/10.5194/angeo-35-443-2017, https://doi.org/10.5194/angeo-35-443-2017, 2017
Short summary
Short summary
Hot flow anomalies (HFAs) at Earth's bow shock were identified in Time History of Events and Macroscale Interactions During Substorms (THEMIS) satellite data from 2007 to 2009. The events were classified as young or mature and regular or spontaneous hot flow anomalies (SHFAs). HFA–SHFA occurrence decreases with distance upstream from the bow shock. HFAs are more prevalent for radial interplanetary magnetic fields and solar wind speeds from 550 to 600 kms−1.
This article is included in the Encyclopedia of Geosciences
I. I. Vogiatzis, A. Isavnin, Q.-G. Zong, E. T. Sarris, S. W. Lu, and A. M. Tian
Ann. Geophys., 33, 63–74, https://doi.org/10.5194/angeo-33-63-2015, https://doi.org/10.5194/angeo-33-63-2015, 2015
Short summary
Short summary
Magnetospheric substorms are one of the most important phenomena occurring in planetary magnetotails, dynamically reconfiguring the near- planet space environment. They encompass various fundamental processes of plasma acceleration and transport in the magnetosphere/ionosphere. The key features of the paper are a new magnetospheric substorm model, a new explanation about the origin of dipolarization fronts (DFs), and a new explanation for energetic ion acceleration/injection in front of DFs.
This article is included in the Encyclopedia of Geosciences
Cited articles
Alfvén, H.: Existence of electromagnetic-hydrodynamic waves, Nature, 150, 405–406, 1942.
Alfvén, H. and Arrhenius, G.: Evolution of the solar system (Vol. 10), Scientific and Technical Information Office, National Aeronautics and Space Administration, https://ntrs.nasa.gov/api/citations/19770006016/downloads/19770006016.pdf (last access: 24 February 2022), 1976.
Alfvén, H. and Fälthammar, C. G.: Cosmical Electrodynamics, Clarendon, 1963.
Arnoldy, R. L., Moore, T. E., and Akasofu, S. I.: Plasma injection events at synchronous orbit related to positive Dst, J. Geophys. Res., 87, 77–84, 1982.
Bellan, P. M.: Fundamentals of plasma physics, Cambridge, Cambridge University Press, https://doi.org/10.1017/CBO9780511807183, 2008.
Baker, D. N., Kanekal, S. G., Li, X., Monk, S. P., Goldstein, J., and Burch, J. L.: An extreme distortion of the Van Allen belt arising from the “Halloween” solar storm in 2003, Nature, 432, 878–881, https://doi.org/10.1038/nature03116, 2004.
Blake, J. B., Kolasinski, W. A., Fillius, R. W., and Mullen, E. G.: Injection of electrons and protons with energies of tens of MeV into L less than 3 on 24 March 1991, Geophys. Res. Lett., 1992, 821–824, 1992.
Brown, R. R., Hartz, T. R., Landmark, B., Leinbach, H., and Ortner, J.: Large-Scale Electron Bombardment of the Atmosphere at the Sudden Commencement of a Geomagnetic Storm, J. Geophys. Res., 66, 1035, https://doi.org/10.1029/JZ066i004p01035, 1961.
Chapman, S. and Bartels, J.: Geomagnetism, Oxford University Press, United Kingdom, 1940.
Carrington, R. C.: Description of a singular appearance seen in the Sun on September 1, 1859, Mon. Not. Roy. Astron. Soc., 20, 13–14, 1860
Cole, K.: Effects of crossed magnetic and (spatially dependent) electric fields on charged particle motion, Planet. Space Sci., 24, 515–518, 1976.
Daglis, I. A., Thorne, R. M., Baumjohann, W., and Orsini, S.: The terrestrial ring current: Origin, formation, and decay, Rev. Geophys., 37, 407—438, 1999.
Day, C.: Very low-frequency radio waves drain Earth's inner radiation belt of satellite-killing electrons, Phys. Today, 61, 8–21, 2008.
Degeling, A. W., Rankin, R., Wang, Y., Shi, Q., and Zong, Q.-G.: Alteration of particle drift resonance dynamics near poloidal mode field line resonance structures, J. Geophys. Res.-Space, 124, 7385–7401, https://doi.org/10.1029/2019JA026946, 2019.
Dungey, J. W.: Effects of the electromagnetic perturbations on particles trapped in the radiation belts, Space Sci. Rev., 4, 199–222, 1964.
Elkington, S. R. and Sarris, T. E.: The Role of Pc-5 ULF Waves in the Radiation Belts: Current Understanding and Open Questions, in: Waves, Particles, and Storms in Geospace, Oxford University Press, https://doi.org/10.1093/acprof:oso/9780198705246.003.0005, 2016.
Foster, J., Wygant, J., Hudson, M., Boyd, A., Baker, D., Erickson, P., and Spence, H. E.: Shock-induced prompt relativistic electron acceleration in the inner magnetosphere, J. Geophys. Res.-Space, 120, 1661–1674, 2015.
Friedel, R. H. W., Reeves, G. D., and Obara, T.: Relativistic electron dynamics in the inner magnetosphere – a review, J. Atmos. Sol. Terr. Phys., 64, 265–282, https://doi.org/10.1016/S1364-6826(01)00088-8, 2002.
Fu, S. Y., Wilken, B., Zong, Q. G., and Pu, Z. Y.: Ion composition variations in the inner magnetosphere: Individual and collective storm effects in 1991, J. Geophys. Res.-Space, 106, 29683–29704, 2001.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Proc. Geophys., 11, 561–566, 2004.
Hamlin, D. A., Karplus, R., Vik, R. C., and Watson, K. M.: Mirror and azimuthal drift frequencies for geomagnetically trapped particles, J. Geophys. Res., 66, 1–4, https://doi.org/10.1029/JZ066i001p00001, 1961.
Hao, Y. X., Zong, Q. G., Zhou, X. Z., Rankin, R., Chen, X. R., Liu, Y., Fu, S. Y., Spence, H. E., Blake, J. B., and Reeves, G. D.: Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions, Geophys. Res. Lett., 44, 7618–7627, 2017.
Hao, Y. X., Zong, Q. G., Zhou, X. Z., Rankin, R., Chen, X. R., Liu, Y., Fu, S. Y., Baker, D. N., Spence, H. E., Blake, J. B., and Reeves, G. D.: Global-Scale ULF Waves Associated With SSC Accelerate Magnetospheric Ultrarelativistic Electrons, J. Geophys. Res.-Space, 124, 1525–1538, 2019.
Hudson, M. K., Kotelnikov, A. D., Li, X., Roth, I., Temerin, M., Wygant, J., Blake, J. B., and Gussenhoven, M. S.: Simulation of proton radiation belt formation during the March 24, 1991 SSC, Geophys. Res. Lett., 22, 291–294, 1995.
Kress, B. T., Hudson, M. K., Looper, M. D., Albert, J., Lyon, J. G., and Goodrich, C. C.: lobal MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement, J. Geophys. Res., 112, 9215, https://doi.org/10.1029/2006JA012218, 2007.
Korotova, G., Sibeck, D., Thaller, S., Wygant, J., Spence, H., Kletzing, C., Angelopoulos, V., and Redmon, R.: Multisatellite observations of the magnetosphere response to changes in the solar wind and interplanetary magnetic field, Ann. Geophys., 36, 1319–1333, https://doi.org/10.5194/angeo-36-1319-2018, 2018.
Lanzerotti, L. J. and Southwood, D. J.: Hydromagnetic waves, in Solar system plasma physics, Amsterdam, North-Holland Publishing Co., Vol. 3, A79-53667 24-46, 109–135, 1979.
Li, L., Zhou, X. Z., Zong, Q. G., Rankin, R., Zou, H., Liu, Y., Chen, X. R., and Hao, Y. X.: Charged particle behavior in localized ultralow frequency waves: Theory and observations, Geophys. Res. Lett., 44, 5900–5908, 2017.
Li, L., Zhou, X. Z., Omura, Y., Wang, Z. H., Zong, Q. G., Liu, Y., Hao, Y. X., Fu, S. Y., Kivelson, M. G., Rankin, R., and Claudepierre, S. G.: Nonlinear Drift Resonance Between Charged Particles and Ultralow Frequency Waves: Theory and Observations, Geophys. Res. Lett., 45, 8773–8782, 2018.
Li, X., Roth, I., Temerin, M., Wygant, J. R., Hudson, M. K., and Blake, J. B.: Simulation of the prompt energization and transport of radiation belt particles during the march 24, 1991 ssc, Geophys. Res. Lett., 20, 2423–2426, 1993.
Li, X.-Y., Liu, Z.-Y., Zong, Q.-G., Zhou, X.-Z., Hao, Y.-X., Pollock, C., Russell, C., and Lindqvist, P.-A.: Off-equatorial minima effects on ULF wave-ion interaction in the dayside outer magnetosphere, Geophys. Res. Lett., 48, e2021GL095648, https://doi.org/10.1029/2021GL095648, 2021.
Liu, W., Sarris, T. E., Li, X., Elkington, S. R., Ergun, R., Angelopoulos, V., Bonnell, J., and Glassmeier, K. H.: Electric and magnetic field observations of Pc4 and Pc5 pulsations in the inner magnetosphere: A statistical study, J. Geophys. Res., 114, A12206, https://doi.org/10.1029/2009JA014243, 2009.
Liu, W., Sarris, T. E., Li, X., Ergun, R., Angelopoulos, V., Bonnell, J., and Glassmeier, K. H.: Solar wind influence on Pc4 and Pc5 ULF wave activity in the inner magnetosphere, J. Geophys. Res., 115, A12201, https://doi.org/10.1029/2010JA015299, 2010.
Liu, Y. and Zong, Q.-G.: Energetic electron response to interplanetary shocks at geosynchronous orbit, J. Geophys. Res.-Space, 120, 4669–4683, https://doi.org/10.1002/2014JA020756, 2015.
Liu, Z.-Y., Zong, Q. G., Zhou, X. Z., Hao, Y. X., Yau, A. W., Zhang, H., Chen, X. R., Fu, S. Y., Pollock, C. J., Le, G., and Ergun, R. E.: ULF Waves Modulating and Acting as Mass Spectrometer for Dayside Ionospheric Outflow Ions, Geophys. Res. Lett., 46, 8633–8642, 2019.
Liu, Z.-Y., Zong, Q.-G., Zhou, X.-Z., Zhu, Y.-F., and Gu, S.-J.: Pitch angle structures of ring current ions induced by evolving poloidal ultra-low frequency waves, Geophys. Res. Lett., 47, e2020GL087203, https://doi.org/10.1029/2020GL087203, 2020.
Ma, X.-H., Zong, Q.-G., Yue, C., Hao, Y.-X., and Liu, Y.: Energetic electron enhancement and dropout echoes induced by solar wind dynamic pressure decrease: The effect of phase space density profile, J. Geophys. Res.-Space, 126, e2020JA028863, https://doi.org/10.1029/2020JA028863, 2021.
Mathie, R. A. and Mann, I. R.: On the solar wind control of Pc5 ULF pulsation power at mid-latitudes: Implications for MeV electron acceleration in the outer radiation belt, J. Geophys. Res., 106, 29783, https://doi.org/10.1029/2001JA000002, 2001.
Matsushita, S.: Increase of Ionization Associated with Geomagnetic Sudden Commencements, J. Geophys. Res., 66, 3958, https://doi.org/10.1029/JZ066i011p03958, 1961.
Northrop, T. G.: The adiabatic motion of charged particles, Vol. 21, Interscience Publishers, 1963.
Rankin, R., Wang, C. R., Wang, Y. F., Zong, Q., Zhou, X. Z., Degeling, A. W., Sydorenko, D., and Whittall-Scherfee, G.: Ultra-Low-Frequency Wave–Particle Interactions in Earth's Outer Radiation Belt, Dayside Magnetosphere Interactions, American Geophysical Union, 189–205, https://doi.org/10.1002/9781119509592, 2020.
Ren, J., Zong, Q. G., Wang, Y. F., and Zhou, X. Z.: The interaction between ULF waves and thermal plasma ions at the plasmaspheric boundary layer during substorm activity, J. Geophys. Res.-Space, 120, 1133–1143, 2015.
Ren, J., Zong, Q. G., Zhou, X. Z., Rankin, R., and Wang, Y. F.: Interaction of ULF waves with different ion species: Pitch angle and phase space density implications, J. Geophys. Res.-Space, 121, 9459–9472, 2016.
Ren, J., Zong, Q. G., Zhou, X. Z., Rankin, R., Wang, Y. F., Gu, S. J., and Zhu, Y. F.: Phase relationship between ULF waves and drift-bounce resonant ions: A statistical study, J. Geophys. Res.-Space, 122, 7087–7096, 2017a.
Ren, J., Zong, Q. G., Miyoshi, Y., Zhou, X. Z., Wang, Y. F., Rankin, R., Yue, C., Spence, H. E., Funsten, H. O., Wygant, J. R., and Kletzing, C. A.: Low-energy (<200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation, J. Geophys. Res.-Space, 122, 9969–9982, 2017b.
Ren, J., Zong, Q. G., Miyoshi, Y., Rankin, R., Spence, H.E., Funsten, H.O., Wygant, J. R., and Kletzing, C. A.: A comparative study of ULF waves' role in the dynamics of charged particles in the plasmasphere: Van Allen Probes observation, J. Geophys. Res.-Space, 123, 5334–5343, 2018.
Ren, J., Zong, Q. G., Zhu, Y. F., Zhou, X. Z., and Gu, S. J.: Field-Aligned Structures of the Poloidal-Mode ULF Wave Electric Field: Phase Relationship Implications, J. Geophys. Res.-Space, 124, 3410–3420, 2019a.
Ren, J., Zong, Q. G., Zhou, X. Z., Spence, H. E., Funsten, H. O., Wygant, J. R., and Rankin, R.: Cold plasmaspheric electrons affected by ULF waves in the inner magnetosphere: A Van Allen Probes statistical study, J. Geophys. Res.-Space, 124, 7954–7965, https://doi.org/10.1029/2019JA027009, 2019b.
Rostoker, G., Skone, S., and Baker, D. N.: On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms, Geophys. Res. Lett., 25, 3701–3704, https://doi.org/10.1029/98GL02801, 1998.
Shabansky, V. P.: Some processes in the magnetosphere, Space Sci. Rev., 12, 299–418, 1971.
Shprits, Y. Y., Elkington, S. R., Meredith, N. P., and Subbotin, D. A.: Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport, J. Atmos. Sol. Terr. Phys., 70, 1679, https://doi.org/10.1016/j.jastp.2008.06.008, 2008.
Southwood, D. J. and Hughes, W. J.: Theory of hydromagnetic waves in the magnetosphere, Space Sci. Rev., 35, 301–366, 1983.
Southwood, D. J. and Kivelson, M. G.: Charged particle behavior in low-frequency geomagnetic pulsations: 1. Transverse waves, J. Geophys. Res., 86, 5643–5655, 1981.
Southwood, D. J. and Kivelson, M. G.: Charged particle behavior in low-frequency geomagnetic pulsations: 2. Graphical approach, J. Geophys. Res., 87, 1707–1710, 1982.
Southwood, D. J., Dungey, J. W., and Etherington, R. J.: Bounce resonant interaction between pulsations and trapped particles, Planet. Space Sci., 17, 349–361, 1969.
Su, Z. P., Zong, Q.-G., Yue, C., Wang, Y. F., Zhang, H., Zhou, X.-Y., Song, P., Pedersen, A., and Zheng, H. N.: Proton auroral intensification induced by interplanetary shock on 7 November 2004, J. Geophys. Res.-Space, 116, A08223, https://doi.org/10.1029/2010JA016239, 2011.
Tan, L. C., Fung, S. F., and Shao, X.: Observation of magnetospheric relativistic electrons accelerated by Pc-5 ULF waves, Geophys. Res. Lett., 2004, 31, 14802, https://doi.org/10.1029/2004GL019459, 2004.
Vampola, A. L. and Korth, A.: Eletron drift echos in the inner magnetosphere, Geophys. Res. Lett., 19, 625–628, 1992.
Wang, C. R., Zong, Q. G., and Wang, Y. F.: Propagation of interplanetary shock excited ultra low frequency (ULF) waves in magnetosphere-ionosphere-atmosphere – Multi-spacecraft “Cluster” and ground-based magnetometer observations, Sci. China Technol. Sci., 53, 2528–2534, 2010.
White, R., Chen, L., and Lin, Z.: Resonant plasma heating below the cyclotron frequency, Phys. Plasmas, 9, 1890–1897, 2002.
Yang, B., Zong, Q. G., Wang, Y. F., Fu, S. Y., Song, P., Fu, H. S., Korth, A., Tian, T., and Reme, H.: Cluster observations of simultaneous resonant interactions of ULF waves with energetic electrons and thermal ion species in the inner magnetosphere, J. Geophys. Res., 115, 2214, https://doi.org/10.1029/2009JA014542, 2010.
Yang, B., Zong, Q. G., Fu, S. Y., Li, X., Korth, A., Fu, H. S., Yue, C., and Reme, H.: The role of ULF waves interacting with oxygen ions at the outer ring current during storm times, J. Geophys. Res.-Space, 116, A01203, https://doi.org/10.1029/2010JA015683, 2011.
Yue, C. and Zong, Q.: Solar wind parameters and geomagnetic indices for four different interplanetary shock/ICME structures, J. Geophys. Res.-Space, 116, A12201, https://doi.org/10.1029/2011JA017013, 2011.
Yue, C., Zong, Q.-G., and Wang, Y. F.: Response of the magnetic field and plasmas at the geosynchronous orbit to interplanetary shock, Chinese Sci. Bull., 54, 4241, https://doi.org/10.1007/s11434-009-0649-6, 2009.
Yue, C., Zong, Q.-G., Zhang, H., Wang, Y. F., Yuan, C. J., Pu, Z. Y., Fu, S. Y., Lui, A. T. Y., Yang, B., and Wang, C. R.: Geomagnetic activities triggered by interplanetary shocks, J. Geophys. Res.-Space, 115, A00I05, https://doi.org/10.1029/2010JA015356, 2010.
Yue, C., Zong, Q., Wang, Y., Vogiatzis, I. I., Pu, Z., Fu, S., and Shi, Q.: Inner magnetosphere plasma characteristics in response to interplanetary shock impacts, J. Geophys. Res.-Space, 116, A11206, https://doi.org/10.1029/2011JA016736, 2011.
Yue, C., Nishimura, Y., Lyons, L. R., Angelopoulos, V., Donovan, E. F., Shi, Q., Yao, Z., and Bonnell, J. W.: Coordinated THEMIS spacecraft and all-sky imager observations of interplanetary shock effects on plasma sheet flow bursts, poleward boundary intensi?cations, and streamers, J. Geophys. Res.-Space, 118, 3346–3356, https://doi.org/10.1002/jgra.50372, 2013.
Yue, C., Li, W., Nishimura, Y., Zong, Q., Ma, Q., Bortnik, J., Thorne, R. M., Reeves, G. D., Spence, H. E., Kletzing, C. A., Wygant, J. R., and Nicolls, M. J.: Rapid enhancement of low-energy (<100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms, J. Geophys. Res.-Space, 120, 6430–6443, https://doi.org/10.1002/2016JA022808, 2016.
Yue, C., Bortnik, J., Thorne, R. M., Ma, Q., An, X., Chappell, C. R., Gerrard, A. J., Lanzerotti, L. J., Shi, Q., Reeves, G. D., and Spence, H. E.: The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations, J. Geophys. Res.-Space, 122, 9464–9473, https://doi.org/10.1002/2017JA024421, 2017a.
Yue, C., Bortnik, J., Chen, L., Ma, Q., Thorne, R. M., Reeves, G. D., and Spence, H. E.: Transitional behavior of different energy protons based on Van Allen Probes observations, Geophys. Res. Lett., 44, 625–633, https://doi.org/10.1002/2016GL071324, 2017b.
Yue, C., Bortnik, J., Li, W., Ma, Q., Wang, C. P., Thorne, R. M., Lyons, L., Reeves, G. D., Spence, H. E., Gerrard, A. J., and Gkioulidou, M.: Oxygen Ion Dynamics in the Earth's Ring Current: Van Allen Probes Observations, J. Geophys. Res.-Space, 124, https://doi.org/10.1029/2019JA026801, 2019.
Zhang, S. and Yin, X.: Process of the Swedish Physicist Hannes Alfveìn's visit to China in 1972, Studies in the History of Natural Sciences, Vol. 37, No. 4, 2018.
Zhang, X. Y., Zong, Q. G., Wang, Y. F., Zhang, H., Xie, L., Fu, S. Y., Yuan, C. J., Yue, C., Yang, B., and Pu, Z. Y.: ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit, J. Geophys. Res.-Space, 115, https://doi.org/10.1029/2009JA015016, 2010.
Zhao, X. X., Hao, Y. X., Zong, Q. G., Zhou, X. Z., Yue, C., Chen, X. R., Liu, Y., Blake, J. B., Claudepierre, S. G., and Reeves, G. D.: Origin of electron boomerang stripes: Localized ULF wave-particle interactions, Geophys. Res. Lett., 47, e2020GL087960, https://doi.org/10.1029/2020GL087960, 2020.
Zhao, X. X., Zong, Q. -G., Yue, C., Zhou, X. -Z., Hao, Y. X., Chen, X. R., Liu, Y., Liu, Z.-Y., Blake, J. B., Claudepierre, S. G., and Reeves, G. D.: Normal‐and Reversed‐Boomerang Stripes on Electron Pitch Angle Distributions: Solar Wind Dynamic Pressure Effect, Geophys. Res. Lett., e2021GL096526, https://doi.org/10.1029/2021GL096526, 2021.
Zhou, X. Z., Wang, Z. H., Zong, Q. G., Rankin, R., Kivelson, M. G., Chen, X. R., Blake, J. B., Wygant, J. R., and Kletzing, C. A.: Charged particle behavior in the growth and damping stages of ultralow frequency waves: Theory and Van Allen Probes observations, J. Geophys. Res.-Space Phys., 121, 3254–3263, 2016.
Zhu, Y. F., Gu, S. J., Zhou, X. Z., Zong, Q. G., Ren, J., Sun, X. R., Liu, Y., Zhang, S., Shi, Q., and Rankin, R.: Drift-bounce resonance between charged particles and ultralow frequency waves: Theory and observations, J. Geophys. Res.-Space, 125, e2019JA027067, https://doi.org/10.1029/2019JA027067, 2020.
Zong, Q., Wang, Y., Yuan, C., Yang, B., Wang, C., and Zhang, X.: Fast acceleration of “killer” electrons and energetic ions by interplanetary shock stimulated ULF waves in the inner magnetosphere, Chinese Sci. Bull., 56, 1188–1201, 2011.
Zong, Q., Rankin, R., and Zhou, X.: The interaction of ultra-low-frequency Pc3–5 waves with charged particles in Earth's magnetosphere, Rev. Modern Plasma Phys., 1, https://doi.org/10.1007/s41614-017-0011-4, 2017.
Zong, Q. G., Wilken, B., Fu, S. Y., Fritz, T. A., Korth, A., Hasebe, N., Williams, D. J., and Pu, Z. Y.: Ring current oxygen ions escaping into the magnetosheath, J. Geophys. Res.-Space, 106, 25541–25556, 2001.
Zong, Q. G., Zhou, X. Z., Li, X., Song, P., Fu, S. Y., Baker, D. N., Pu, Z. Y., Fritz, T. A., Daly, P., Balogh, A., and Reme, H.: Ultralow frequency modulation of energetic particles in the dayside magnetosphere, Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL029915, 2007.
Zong, Q. G., Zhou, X. Z., Wang, Y. F., Li, X., Song, P., Baker, D. N., Fritz, T. A., Daly, P. W., Dunlop, M., and Pedersen, A.: Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt, J. Geophys. Res.-Space, 114, https://doi.org/10.1029/2009JA014393, 2009.
Zong, Q. G., Wang, Y. F., Zhang, H., Fu, S. Y., Zhang, H., Wang, C. R., Yuan, C. J., and Vogiatzis, I.: Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves, J. Geophys. Res.-Space, 117, https://doi.org/10.1029/2012JA018024, 2012.
Zong, Q. G., Wang, Y., Ren, J., Zhou, X., Fu, S., Rankin, R., and Zhang, H.: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth Planet. Phys., 1, 2–12, 2017.
Download
Please read the editorial note first before accessing the article.
- Article
(14210 KB) - Full-text XML
Short summary
Magnetospheric physics is in an extremely vibrant phase, with a number of ongoing and highly successful missions, e.g., Cluster, THEMIS, Van Allen Probes, and the MMS spacecraft, providing the most amazing observations and data sets. Since there are many fundamental and unsolved problems, in this paper I have addressed selected topics of ULF wave–charged particle interactions which encompass many special fields of radiation belt, ring current and plasmaspheric physics.
Magnetospheric physics is in an extremely vibrant phase, with a number of ongoing and highly...