Articles | Volume 39, issue 5
https://doi.org/10.5194/angeo-39-899-2021
https://doi.org/10.5194/angeo-39-899-2021
Regular paper
 | 
14 Oct 2021
Regular paper |  | 14 Oct 2021

Validation of SSUSI-derived auroral electron densities: comparisons to EISCAT data

Stefan Bender, Patrick J. Espy, and Larry J. Paxton

Related authors

Subauroral Crosstalk in POES/Metop TED Channels
Jan Maik Wissing, Olesya Yakovchuk, Stefan Bender, and Christina Arras
EGUsphere, https://doi.org/10.5194/egusphere-2025-1256,https://doi.org/10.5194/egusphere-2025-1256, 2025
Short summary
Implementation of solar UV and energetic particle precipitation within the LINOZ scheme in ICON-ART
Maryam Ramezani Ziarani, Miriam Sinnhuber, Thomas Reddmann, Bernd Funke, Stefan Bender, and Michael Prather
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-227,https://doi.org/10.5194/gmd-2024-227, 2025
Revised manuscript accepted for GMD
Short summary
Thermospheric nitric oxide NO during solar minimum modulated by O/O2 ratio and thermospheric transport and mixing
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256,https://doi.org/10.5194/egusphere-2024-2256, 2024
Short summary

Cited articles

Ajello, J. M., Evans, J. S., Veibell, V., Malone, C. P., Holsclaw, G. M., Hoskins, A. C., Lee, R. A., McClintock, W. E., Aryal, S., Eastes, R. W., and Schneider, N.: The UV Spectrum of the Lyman–Birge–Hopfield Band System of N2 Induced by Cascading from Electron Impact, J. Geophys. Res.-Space, 125, e2019JA027546, https://doi.org/10.1029/2019ja027546, 2020. a
Aksnes, A., Stadsnes, J., Østgaard, N., Germany, G. A., Oksavik, K., Vondrak, R. R., Brekke, A., and Løvhaug, U. P.: Height profiles of the ionospheric electron density derived using space-based remote sensing of UV and X ray emissions and EISCAT radar data: A ground-truth experiment, J. Geophys. Res.-Space, 111, A02 301, https://doi.org/10.1029/2005ja011331, 2006. a, b, c, d, e, f, g
Banks, P. M., Chappell, C. R., and Nagy, A. F.: A new model for the interaction of auroral electrons with the atmosphere: Spectral degradation, backscatter, optical emission, and ionization, J. Geophys. Res., 79, 1459–1470, https://doi.org/10.1029/ja079i010p01459, 1974. a, b, c
Basu, B., Jasperse, J. R., Strickland, D. J., and Daniell, R. E.: Transport-Theoretic Model for the Electron-Proton-Hydrogen Atom Aurora, 1. Theory, J. Geophys. Res.-Space, 98, 21517–21532, https://doi.org/10.1029/93ja01646, 1993. a, b, c, d, e
Bender, S.: st-bender/pyeppaurora: Version 0.0.5, Zenodo [code], https://doi.org/10.5281/zenodo.4298137, 2020. a
Download
Short summary
The coupling of the atmosphere to the space environment has become recognized as an important driver of atmospheric chemistry and dynamics. We have validated the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) products for average electron energy and electron energy flux by comparison to EISCAT electron density profiles. The good agreement shows that SSUSI far-UV observations can be used to provide ionization rate profiles throughout the auroral region.
Share