Articles | Volume 39, issue 5
https://doi.org/10.5194/angeo-39-883-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-883-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulated seasonal impact on middle atmospheric ozone from high-energy electron precipitation related to pulsating aurorae
Sodankylä Geophysical Observatory, University of Oulu, Sodankylä, Finland
Space and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Antti Kero
Sodankylä Geophysical Observatory, University of Oulu, Sodankylä, Finland
Noora Partamies
Department of Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
Birkeland Centre of Space Science, University of Bergen, Bergen, Norway
Monika E. Szeląg
Space and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Shin-Ichiro Oyama
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Yoshizumi Miyoshi
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Esa Turunen
Sodankylä Geophysical Observatory, University of Oulu, Sodankylä, Finland
Related authors
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-7, https://doi.org/10.5194/angeo-2024-7, 2024
Preprint under review for ANGEO
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation, by the novel combination of both magnetospheric and atmospheric modelling. We first simulate fluxes of auroral electrons, and then use these fluxes to model their atmospheric impact. We find an increase of up to 200 % in thermospheric odd nitrogen, and a corresponding decrease in stratospheric ozone of around 0.7 %. The produced auroral electron precipitation is realistic, and shows the potential for future studies.
Carsten Baumann, Antti Kero, Shikha Raizada, Markus Rapp, Michael P. Sulzer, Pekka T. Verronen, and Juha Vierinen
Ann. Geophys., 40, 519–530, https://doi.org/10.5194/angeo-40-519-2022, https://doi.org/10.5194/angeo-40-519-2022, 2022
Short summary
Short summary
The Arecibo radar was used to probe free electrons of the ionized atmosphere between 70 and 100 km altitude. This is also the altitude region were meteors evaporate and form secondary particulate matter, the so-called meteor smoke particles (MSPs). Free electrons attach to these MSPs when the sun is below the horizon and cause a drop in the number of free electrons, which are the subject of these measurements. We also identified a different number of free electrons during sunset and sunrise.
David A. Newnham, Mark A. Clilverd, William D. J. Clark, Michael Kosch, Pekka T. Verronen, and Alan E. E. Rogers
Atmos. Meas. Tech., 15, 2361–2376, https://doi.org/10.5194/amt-15-2361-2022, https://doi.org/10.5194/amt-15-2361-2022, 2022
Short summary
Short summary
Ozone (O3) is an important trace gas in the mesosphere and lower thermosphere (MLT), affecting heating rates and chemistry. O3 profiles measured by the Ny-Ålesund Ozone in the Mesosphere Instrument agree with Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) for winter night-time, but autumn twilight SABER abundances are up to 50 % higher. O3 abundances in the MLT from two different SABER channels also show significant differences for both autumn twilight and summer daytime.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Tuomas Häkkilä, Pekka T. Verronen, Luis Millán, Monika E. Szeląg, Niilo Kalakoski, and Antti Kero
Ann. Geophys., 38, 1299–1312, https://doi.org/10.5194/angeo-38-1299-2020, https://doi.org/10.5194/angeo-38-1299-2020, 2020
Short summary
Short summary
The atmospheric impacts of energetic particle precipitation (EPP) can be useful in understanding the uncertainties of measuring the precipitation. Hence, information on how strong of an EPP flux has observable atmospheric impacts is needed. In this study, we find such threshold flux values using odd hydrogen concentrations from both satellite observations and model simulations. We consider the effects of solar proton events and radiation belt electron precipitation in the middle atmosphere.
Jia Jia, Antti Kero, Niilo Kalakoski, Monika E. Szeląg, and Pekka T. Verronen
Atmos. Chem. Phys., 20, 14969–14982, https://doi.org/10.5194/acp-20-14969-2020, https://doi.org/10.5194/acp-20-14969-2020, 2020
Short summary
Short summary
Recent studies have reported up to a 10 % average decrease of lower stratospheric ozone at 20 km altitude following solar proton events (SPEs). Our study uses 49 events that occurred after the launch of Aura MLS (July 2004–now) and 177 events that occurred in the WACCM-D simulation period (Jan 1989–Dec 2012) to evaluate ozone changes following SPEs. The statistical and case-by-case studies show no solid evidence of SPE's direct impact on the lower stratospheric ozone.
Niilo Kalakoski, Pekka T. Verronen, Annika Seppälä, Monika E. Szeląg, Antti Kero, and Daniel R. Marsh
Atmos. Chem. Phys., 20, 8923–8938, https://doi.org/10.5194/acp-20-8923-2020, https://doi.org/10.5194/acp-20-8923-2020, 2020
Short summary
Short summary
Effects of solar proton events (SPEs) on middle atmosphere chemistry were studied using the WACCM-D chemistry–climate model, including an improved representation of lower ionosphere ion chemistry. This study includes 66 events in the years 1989–2012 and uses a statistical approach to determine the impact of the improved chemistry scheme. The differences shown highlight the importance of ion chemistry in models used to study energetic particle precipitation.
Pekka T. Verronen, Daniel R. Marsh, Monika E. Szeląg, and Niilo Kalakoski
Ann. Geophys., 38, 833–844, https://doi.org/10.5194/angeo-38-833-2020, https://doi.org/10.5194/angeo-38-833-2020, 2020
Short summary
Short summary
This paper is the first to study how the representation of the magnetic-local-time (MLT) dependency of electron precipitation impacts middle-atmospheric-ozone response on monthly timescales. We use a state-of-the-art chemistry–climate model with detailed lower-ionospheric chemistry for an advanced representation of atmospheric impacts of electron forcing. We find that the use of daily zonal-mean electron forcing will provide an accurate ozone response in long-term climate simulations.
David A. Newnham, Mark A. Clilverd, Michael Kosch, Annika Seppälä, and Pekka T. Verronen
Atmos. Meas. Tech., 12, 1375–1392, https://doi.org/10.5194/amt-12-1375-2019, https://doi.org/10.5194/amt-12-1375-2019, 2019
Short summary
Short summary
A simulation study has been carried out to investigate the potential for observing ozone and hydroxyl radical abundances in the mesosphere and lower thermosphere using ground-based passive microwave radiometry. In the polar middle atmosphere these chemical species respond strongly to geomagnetic activity associated with space weather. The results show that measuring diurnal variations in ozone and hydroxyl from high-latitude Northern Hemisphere and Antarctic locations would be possible.
Erkki Kyrölä, Monika E. Andersson, Pekka T. Verronen, Marko Laine, Simo Tukiainen, and Daniel R. Marsh
Atmos. Chem. Phys., 18, 5001–5019, https://doi.org/10.5194/acp-18-5001-2018, https://doi.org/10.5194/acp-18-5001-2018, 2018
Short summary
Short summary
In this work we compare three key constituents of the middle atmosphere (ozone, NO2, and NO3) from the GOMOS satellite instrument with the WACCM model. We find that in the stratosphere (below 50 km) ozone differences are very small, but in the mesosphere large deviations are found. GOMOS and WACCM NO2 agree reasonably well except in the polar areas. These differences can be connected to the solar particle storms. For NO3, WACCM results agree with GOMOS with a very high correlation.
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Tamás Kovács, John M. C. Plane, Wuhu Feng, Tibor Nagy, Martyn P. Chipperfield, Pekka T. Verronen, Monika E. Andersson, David A. Newnham, Mark A. Clilverd, and Daniel R. Marsh
Geosci. Model Dev., 9, 3123–3136, https://doi.org/10.5194/gmd-9-3123-2016, https://doi.org/10.5194/gmd-9-3123-2016, 2016
Short summary
Short summary
This study was completed on D-region atmospheric model development. The sophisticated 3-D Whole Atmosphere Community Climate Model (WACCM) and the 1-D Sodynkalä Ion and Neutral Chemistry Model (SIC) were combined in order to provide a detailed, accurate model (WACCM-SIC) that considers the processes taking place in solar proton events. The original SIC model was reduced by mechanism reduction, which provided an accurate sub-mechanism (rSIC, WACCM-rSIC) of the original model.
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
M. E. Andersson, P. T. Verronen, C. J. Rodger, M. A. Clilverd, and S. Wang
Atmos. Chem. Phys., 14, 1095–1105, https://doi.org/10.5194/acp-14-1095-2014, https://doi.org/10.5194/acp-14-1095-2014, 2014
P. T. Verronen and R. Lehmann
Ann. Geophys., 31, 909–956, https://doi.org/10.5194/angeo-31-909-2013, https://doi.org/10.5194/angeo-31-909-2013, 2013
Viktoria F. Sofieva, Alexei Rozanov, Monika Szelag, John P. Burrows, Christian Retscher, Robert Damadeo, Doug Degenstein, Landon A. Rieger, and Adam Bourassa
Earth Syst. Sci. Data, 16, 5227–5241, https://doi.org/10.5194/essd-16-5227-2024, https://doi.org/10.5194/essd-16-5227-2024, 2024
Short summary
Short summary
Climate-related studies need information about the distribution of stratospheric aerosols, which influence the energy balance of the Earth’s atmosphere. In this work, we present a merged dataset of vertically resolved stratospheric aerosol extinction coefficients, which is derived from data of six limb and occultation satellite instruments. The created aerosol climate record covers the period from October 1984 to December 2023. It can be used in various climate-related studies.
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024, https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Short summary
Auroral displays typically take place at high latitudes, but the exact latitude where the auroral breakup occurs can vary. In this study, we compare the characteristics of the fluxes of precipitating electrons from space during auroral breakups occurring above Tromsø (central part of the auroral zone) and above Svalbard (poleward boundary of the auroral zone). We find that electrons responsible for the aurora above Tromsø carry more energy than those precipitating above Svalbard.
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
EGUsphere, https://doi.org/10.5194/egusphere-2024-2174, https://doi.org/10.5194/egusphere-2024-2174, 2024
Short summary
Short summary
We carried out a citizen science study of aurora sightings and experienced technological disruptions during the extreme geomagnetic storm of 10 May 2024. We collected reports from 696 observers from over 30 countries via an online survey, supplemented with observations logged in the Skywarden database. We found that the aurora was seen from exceptionally low latitudes and had very bright red and pink hues, suggesting that high fluxes of low-energy electrons from space entered the atmosphere.
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256, https://doi.org/10.5194/egusphere-2024-2256, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Formation of nitric oxide NO in the upper atmosphere varies with solar activity. Observations show that it starts a chain of processes in the entire atmosphere affecting the ozone layer and climate system. This is often underestimated in models. We compare five models which show large differences in simulated NO. Analysis of results point out problems related to the oxygen balance, and to the impact of atmospheric waves on dynamics. Both must be modeled well to reproduce the downward coupling.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-7, https://doi.org/10.5194/angeo-2024-7, 2024
Preprint under review for ANGEO
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation, by the novel combination of both magnetospheric and atmospheric modelling. We first simulate fluxes of auroral electrons, and then use these fluxes to model their atmospheric impact. We find an increase of up to 200 % in thermospheric odd nitrogen, and a corresponding decrease in stratospheric ozone of around 0.7 %. The produced auroral electron precipitation is realistic, and shows the potential for future studies.
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Didier Fussen, Christine Bingen, Filip Vanhellemont, Nina Mateshvili, Alexei Rozanov, and Christine Pohl
Atmos. Meas. Tech., 17, 3085–3101, https://doi.org/10.5194/amt-17-3085-2024, https://doi.org/10.5194/amt-17-3085-2024, 2024
Short summary
Short summary
We have developed the new multi-wavelength dataset of aerosol extinction profiles, which are retrieved from the averaged transmittance spectra by the Global Ozone Monitoring by Occultation of Stars instrument aboard Envisat. The retrieved aerosol extinction profiles are provided in the altitude range 10–40 km at 400, 440, 452, 470, 500, 525, 550, 672 and 750 nm for the period 2002–2012. FMI-GOMOSaero aerosol profiles have improved quality; they are in good agreement with other datasets.
Noora Partamies, Bas Dol, Vincent Teissier, Liisa Juusola, Mikko Syrjäsuo, and Hjalmar Mulders
Ann. Geophys., 42, 103–115, https://doi.org/10.5194/angeo-42-103-2024, https://doi.org/10.5194/angeo-42-103-2024, 2024
Short summary
Short summary
Auroral imaging produces large amounts of image data that can no longer be analyzed by visual inspection. Thus, every step towards automatic analysis tools is crucial. Previously supervised learning methods have been used in auroral physics, with a human expert providing ground truth. However, this ground truth is debatable. We present an unsupervised learning method, which shows promising results in detecting auroral breakups in the all-sky image data.
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Carlo Arosio, Alexei Rozanov, Mark Weber, Doug Degenstein, Adam Bourassa, Daniel Zawada, Michael Kiefer, Alexandra Laeng, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Christian Retscher, Robert Damadeo, and Jerry D. Lumpe
Atmos. Meas. Tech., 16, 1881–1899, https://doi.org/10.5194/amt-16-1881-2023, https://doi.org/10.5194/amt-16-1881-2023, 2023
Short summary
Short summary
The paper presents the updated SAGE-CCI-OMPS+ climate data record of monthly zonal mean ozone profiles. This dataset covers the stratosphere and combines measurements by nine limb and occultation satellite instruments (SAGE II, OSIRIS, MIPAS, SCIAMACHY, GOMOS, ACE-FTS, OMPS-LP, POAM III, and SAGE III/ISS). The update includes new versions of MIPAS, ACE-FTS, and OSIRIS datasets and introduces data from additional sensors (POAM III and SAGE III/ISS) and retrieval processors (OMPS-LP).
Noora Partamies, Daniel Whiter, Kirsti Kauristie, and Stefano Massetti
Ann. Geophys., 40, 605–618, https://doi.org/10.5194/angeo-40-605-2022, https://doi.org/10.5194/angeo-40-605-2022, 2022
Short summary
Short summary
We investigate the local time behaviour of auroral structures and emission height. Data are collected from the Fennoscandian Lapland and Svalbard latitutes from 7 identical auroral all-sky cameras over about 1 solar cycle. The typical peak emission height of the green aurora varies from 110 km on the nightside to about 118 km in the morning over Lapland but stays systematically higher over Svalbard. During fast solar wind, nightside emission heights are 5 km lower than during slow solar wind.
Carsten Baumann, Antti Kero, Shikha Raizada, Markus Rapp, Michael P. Sulzer, Pekka T. Verronen, and Juha Vierinen
Ann. Geophys., 40, 519–530, https://doi.org/10.5194/angeo-40-519-2022, https://doi.org/10.5194/angeo-40-519-2022, 2022
Short summary
Short summary
The Arecibo radar was used to probe free electrons of the ionized atmosphere between 70 and 100 km altitude. This is also the altitude region were meteors evaporate and form secondary particulate matter, the so-called meteor smoke particles (MSPs). Free electrons attach to these MSPs when the sun is below the horizon and cause a drop in the number of free electrons, which are the subject of these measurements. We also identified a different number of free electrons during sunset and sunrise.
Viktoria F. Sofieva, Risto Hänninen, Mikhail Sofiev, Monika Szeląg, Hei Shing Lee, Johanna Tamminen, and Christian Retscher
Atmos. Meas. Tech., 15, 3193–3212, https://doi.org/10.5194/amt-15-3193-2022, https://doi.org/10.5194/amt-15-3193-2022, 2022
Short summary
Short summary
We present tropospheric ozone column datasets that have been created using combinations of total ozone column from OMI and TROPOMI with stratospheric ozone column datasets from several available limb-viewing instruments (MLS, OSIRIS, MIPAS, SCIAMACHY, OMPS-LP, GOMOS). The main results are (i) several methodological developments, (ii) new tropospheric ozone column datasets from OMI and TROPOMI, and (iii) a new high-resolution dataset of ozone profiles from limb satellite instruments.
David A. Newnham, Mark A. Clilverd, William D. J. Clark, Michael Kosch, Pekka T. Verronen, and Alan E. E. Rogers
Atmos. Meas. Tech., 15, 2361–2376, https://doi.org/10.5194/amt-15-2361-2022, https://doi.org/10.5194/amt-15-2361-2022, 2022
Short summary
Short summary
Ozone (O3) is an important trace gas in the mesosphere and lower thermosphere (MLT), affecting heating rates and chemistry. O3 profiles measured by the Ny-Ålesund Ozone in the Mesosphere Instrument agree with Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) for winter night-time, but autumn twilight SABER abundances are up to 50 % higher. O3 abundances in the MLT from two different SABER channels also show significant differences for both autumn twilight and summer daytime.
Derek McKay, Juha Vierinen, Antti Kero, and Noora Partamies
Geosci. Instrum. Method. Data Syst., 11, 25–35, https://doi.org/10.5194/gi-11-25-2022, https://doi.org/10.5194/gi-11-25-2022, 2022
Short summary
Short summary
When radio waves from our galaxy enter the Earth's atmosphere, they are absorbed by electrons in the upper atmosphere. It was thought that by measuring the amount of absorption, it would allow the height of these electrons in the atmosphere to be determined. If so, this would have significance for future instrument design. However, this paper demonstrates that it is not possible to do this, but it does explain how multiple-frequency measurements can nevertheless be useful.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Viktoria F. Sofieva, Monika Szeląg, Johanna Tamminen, Erkki Kyrölä, Doug Degenstein, Chris Roth, Daniel Zawada, Alexei Rozanov, Carlo Arosio, John P. Burrows, Mark Weber, Alexandra Laeng, Gabriele P. Stiller, Thomas von Clarmann, Lucien Froidevaux, Nathaniel Livesey, Michel van Roozendael, and Christian Retscher
Atmos. Chem. Phys., 21, 6707–6720, https://doi.org/10.5194/acp-21-6707-2021, https://doi.org/10.5194/acp-21-6707-2021, 2021
Short summary
Short summary
The MErged GRIdded Dataset of Ozone Profiles is a long-term (2001–2018) stratospheric ozone profile climate data record with resolved longitudinal structure that combines the data from six limb satellite instruments. The dataset can be used for various analyses, some of which are discussed in the paper. In particular, regionally and vertically resolved ozone trends are evaluated, including trends in the polar regions.
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary
Short summary
Small-scale auroral features are still being discovered and are not well understood. Where aurorae are caused by particle precipitation, the newly reported fragmented aurora-like emissions (FAEs) seem to be locally generated in the ionosphere (hence,
aurora-like). We analyse data from multiple instruments located near Longyearbyen to derive their main characteristics. They seem to occur as two types in a narrow altitude region (individually or in regularly spaced groups).
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Viswanathan Lakshmi Narayanan, Satonori Nozawa, Shin-Ichiro Oyama, Ingrid Mann, Kazuo Shiokawa, Yuichi Otsuka, Norihito Saito, Satoshi Wada, Takuya D. Kawahara, and Toru Takahashi
Atmos. Chem. Phys., 21, 2343–2361, https://doi.org/10.5194/acp-21-2343-2021, https://doi.org/10.5194/acp-21-2343-2021, 2021
Short summary
Short summary
In the past, additional sodium peaks occurring above the main sodium layer of the upper mesosphere were discussed. Here, formation of an additional sodium peak below the main sodium layer peak is discussed in detail. The event coincided with passage of multiple mesospheric bores, which are step-like disturbances occurring in the upper mesosphere. Hence, this work highlights the importance of such mesospheric bores in causing significant changes to the minor species concentration in a short time.
Emma Bland, Fasil Tesema, and Noora Partamies
Ann. Geophys., 39, 135–149, https://doi.org/10.5194/angeo-39-135-2021, https://doi.org/10.5194/angeo-39-135-2021, 2021
Short summary
Short summary
A total of 10 Super Dual Auroral Radar Network radars were used to estimate the horizontal area over which energetic electrons impact the atmosphere at 70–100 km altitude during pulsating aurorae (PsAs). The impact area varies significantly from event to event. Approximately one-third extend over 12° of magnetic latitude, while others are highly localised. Our results could be used to improve the forcing used in atmospheric/climate models to properly capture the energy contribution from PsAs.
Noora Partamies, Fasil Tesema, Emma Bland, Erkka Heino, Hilde Nesse Tyssøy, and Erlend Kallelid
Ann. Geophys., 39, 69–83, https://doi.org/10.5194/angeo-39-69-2021, https://doi.org/10.5194/angeo-39-69-2021, 2021
Short summary
Short summary
About 200 nights of substorm activity have been analysed for their magnetic disturbance magnitude and the level of cosmic radio noise absorption. We show that substorms with a single expansion phase have limited lifetimes and spatial extents. Starting from magnetically quiet conditions, the strongest absorption occurs after 1 to 2 nights of substorm activity. This prolonged activity is thus required to accelerate particles to energies, which may affect the atmospheric chemistry.
Tuomas Häkkilä, Pekka T. Verronen, Luis Millán, Monika E. Szeląg, Niilo Kalakoski, and Antti Kero
Ann. Geophys., 38, 1299–1312, https://doi.org/10.5194/angeo-38-1299-2020, https://doi.org/10.5194/angeo-38-1299-2020, 2020
Short summary
Short summary
The atmospheric impacts of energetic particle precipitation (EPP) can be useful in understanding the uncertainties of measuring the precipitation. Hence, information on how strong of an EPP flux has observable atmospheric impacts is needed. In this study, we find such threshold flux values using odd hydrogen concentrations from both satellite observations and model simulations. We consider the effects of solar proton events and radiation belt electron precipitation in the middle atmosphere.
Jia Jia, Antti Kero, Niilo Kalakoski, Monika E. Szeląg, and Pekka T. Verronen
Atmos. Chem. Phys., 20, 14969–14982, https://doi.org/10.5194/acp-20-14969-2020, https://doi.org/10.5194/acp-20-14969-2020, 2020
Short summary
Short summary
Recent studies have reported up to a 10 % average decrease of lower stratospheric ozone at 20 km altitude following solar proton events (SPEs). Our study uses 49 events that occurred after the launch of Aura MLS (July 2004–now) and 177 events that occurred in the WACCM-D simulation period (Jan 1989–Dec 2012) to evaluate ozone changes following SPEs. The statistical and case-by-case studies show no solid evidence of SPE's direct impact on the lower stratospheric ozone.
Fasil Tesema, Noora Partamies, Hilde Nesse Tyssøy, and Derek McKay
Ann. Geophys., 38, 1191–1202, https://doi.org/10.5194/angeo-38-1191-2020, https://doi.org/10.5194/angeo-38-1191-2020, 2020
Short summary
Short summary
In this study, we present the ionization level from EISCAT radar experiments and cosmic noise absorption level
from KAIRA riometer observations during pulsating auroras. We found thick layers of ionization that reach down
to 70 km (harder precipitation) and higher cosmic noise absorption during patchy pulsating aurora than
during amorphous pulsating and patchy auroras.
Niilo Kalakoski, Pekka T. Verronen, Annika Seppälä, Monika E. Szeląg, Antti Kero, and Daniel R. Marsh
Atmos. Chem. Phys., 20, 8923–8938, https://doi.org/10.5194/acp-20-8923-2020, https://doi.org/10.5194/acp-20-8923-2020, 2020
Short summary
Short summary
Effects of solar proton events (SPEs) on middle atmosphere chemistry were studied using the WACCM-D chemistry–climate model, including an improved representation of lower ionosphere ion chemistry. This study includes 66 events in the years 1989–2012 and uses a statistical approach to determine the impact of the improved chemistry scheme. The differences shown highlight the importance of ion chemistry in models used to study energetic particle precipitation.
Pekka T. Verronen, Daniel R. Marsh, Monika E. Szeląg, and Niilo Kalakoski
Ann. Geophys., 38, 833–844, https://doi.org/10.5194/angeo-38-833-2020, https://doi.org/10.5194/angeo-38-833-2020, 2020
Short summary
Short summary
This paper is the first to study how the representation of the magnetic-local-time (MLT) dependency of electron precipitation impacts middle-atmospheric-ozone response on monthly timescales. We use a state-of-the-art chemistry–climate model with detailed lower-ionospheric chemistry for an advanced representation of atmospheric impacts of electron forcing. We find that the use of daily zonal-mean electron forcing will provide an accurate ozone response in long-term climate simulations.
Monika E. Szeląg, Viktoria F. Sofieva, Doug Degenstein, Chris Roth, Sean Davis, and Lucien Froidevaux
Atmos. Chem. Phys., 20, 7035–7047, https://doi.org/10.5194/acp-20-7035-2020, https://doi.org/10.5194/acp-20-7035-2020, 2020
Short summary
Short summary
We analyze seasonal dependence of stratospheric ozone trends over 2000–2018. We demonstrate that the mid-latitude upper stratospheric ozone recovery maximizes during local winters and equinoxes. In the tropics, a very strong seasonal dependence of ozone trends is observed at all altitudes. We found hemispheric asymmetry of summertime ozone trend patterns below 35 km. The seasonal dependence of ozone trends and stratospheric temperature trends shows a clear inter-relation of the trend patterns.
Philippe Baron, Satoshi Ochiai, Eric Dupuy, Richard Larsson, Huixin Liu, Naohiro Manago, Donal Murtagh, Shin-ichiro Oyama, Hideo Sagawa, Akinori Saito, Takatoshi Sakazaki, Masato Shiotani, and Makoto Suzuki
Atmos. Meas. Tech., 13, 219–237, https://doi.org/10.5194/amt-13-219-2020, https://doi.org/10.5194/amt-13-219-2020, 2020
Short summary
Short summary
Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2) is a satellite mission proposed in Japan to probe the middle and upper atmosphere (20–160 km). The key products are wind, temperature and density. If selected, this mission could provide new insights into vertical coupling in the atmosphere and could help improve weather and climate models. We conducted simulation studies to assess the measurement performances in the altitude range 60–110 km, with a special focus on the geomagnetic effects.
David A. Newnham, Mark A. Clilverd, Michael Kosch, Annika Seppälä, and Pekka T. Verronen
Atmos. Meas. Tech., 12, 1375–1392, https://doi.org/10.5194/amt-12-1375-2019, https://doi.org/10.5194/amt-12-1375-2019, 2019
Short summary
Short summary
A simulation study has been carried out to investigate the potential for observing ozone and hydroxyl radical abundances in the mesosphere and lower thermosphere using ground-based passive microwave radiometry. In the polar middle atmosphere these chemical species respond strongly to geomagnetic activity associated with space weather. The results show that measuring diurnal variations in ozone and hydroxyl from high-latitude Northern Hemisphere and Antarctic locations would be possible.
Erkki Kyrölä, Monika E. Andersson, Pekka T. Verronen, Marko Laine, Simo Tukiainen, and Daniel R. Marsh
Atmos. Chem. Phys., 18, 5001–5019, https://doi.org/10.5194/acp-18-5001-2018, https://doi.org/10.5194/acp-18-5001-2018, 2018
Short summary
Short summary
In this work we compare three key constituents of the middle atmosphere (ozone, NO2, and NO3) from the GOMOS satellite instrument with the WACCM model. We find that in the stratosphere (below 50 km) ozone differences are very small, but in the mesosphere large deviations are found. GOMOS and WACCM NO2 agree reasonably well except in the polar areas. These differences can be connected to the solar particle storms. For NO3, WACCM results agree with GOMOS with a very high correlation.
Noora Partamies, James M. Weygand, and Liisa Juusola
Ann. Geophys., 35, 1069–1083, https://doi.org/10.5194/angeo-35-1069-2017, https://doi.org/10.5194/angeo-35-1069-2017, 2017
Short summary
Short summary
Large-scale undulations of the diffuse aurora boundary, auroral omega bands, have been studied based on 438 omega-like structures identified over Fennoscandian Lapland from 1996 to 2007. The omegas mainly occurred in the post-magnetic midnight sector, in the region between oppositely directed ionospheric field-aligned currents, and during substorm recovery phases. The omega bands were observed during substorms, which were more intense than the average substorm in the same region.
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Fred Sigernes, Pål Gunnar Ellingsen, Noora Partamies, Mikko Syrjäsuo, Pål Brekke, Silje Eriksen Holmen, Arne Danielsen, Bernt Olsen, Xiangcai Chen, Margit Dyrland, Lisa Baddeley, Dag Arne Lorentzen, Marcus Aleksander Krogtoft, Torstein Dragland, Hans Mortensson, Lisbeth Smistad, Craig J. Heinselman, and Shadia Habbal
Geosci. Instrum. Method. Data Syst., 6, 9–14, https://doi.org/10.5194/gi-6-9-2017, https://doi.org/10.5194/gi-6-9-2017, 2017
Short summary
Short summary
The total solar eclipse event on Svalbard on 20 March 2015 gave us a unique opportunity to image the upper parts of the Sun's atmosphere. A novel image accumulation filter technique is presented that is capable of distinguishing features such as loops, spicules, plumes, and prominences from intense and blurry video recordings of the chromosphere.
Tamás Kovács, John M. C. Plane, Wuhu Feng, Tibor Nagy, Martyn P. Chipperfield, Pekka T. Verronen, Monika E. Andersson, David A. Newnham, Mark A. Clilverd, and Daniel R. Marsh
Geosci. Model Dev., 9, 3123–3136, https://doi.org/10.5194/gmd-9-3123-2016, https://doi.org/10.5194/gmd-9-3123-2016, 2016
Short summary
Short summary
This study was completed on D-region atmospheric model development. The sophisticated 3-D Whole Atmosphere Community Climate Model (WACCM) and the 1-D Sodynkalä Ion and Neutral Chemistry Model (SIC) were combined in order to provide a detailed, accurate model (WACCM-SIC) that considers the processes taking place in solar proton events. The original SIC model was reduced by mechanism reduction, which provided an accurate sub-mechanism (rSIC, WACCM-rSIC) of the original model.
Tuomas Savolainen, Daniel Keith Whiter, and Noora Partamies
Geosci. Instrum. Method. Data Syst., 5, 305–314, https://doi.org/10.5194/gi-5-305-2016, https://doi.org/10.5194/gi-5-305-2016, 2016
Short summary
Short summary
In this paper we describe a new method for recognition of digits in seven-segment displays. The method is used for adding date and time information to a dataset consisting of about 7 million auroral all-sky images taken during the time period of 1973–1997 at camera stations centred around Sodankylä observatory in Northern Finland. In each image there is a clock display for the date and time together with the reflection of the whole night sky through a spherical mirror.
Kirsti Kauristie, Minna Myllys, Noora Partamies, Ari Viljanen, Pyry Peitso, Liisa Juusola, Shabana Ahmadzai, Vikramjit Singh, Ralf Keil, Unai Martinez, Alexej Luginin, Alexi Glover, Vicente Navarro, and Tero Raita
Geosci. Instrum. Method. Data Syst., 5, 253–262, https://doi.org/10.5194/gi-5-253-2016, https://doi.org/10.5194/gi-5-253-2016, 2016
Short summary
Short summary
We use the connection between auroras and geomagnetic field variations in a concept for a Regional Auroral Forecast (RAF) service. RAF is based on statistical relationships between alerts by the NOAA Space Weather Prediction Center and magnetic time derivatives measured by five MIRACLE magnetometer stations located in the surroundings of the Sodankylä research station. As an improvement to previous similar services RAF yields knowledge on typical auroral storm durations at different latitudes.
R. Kataoka, Y. Fukuda, H. A. Uchida, H. Yamada, Y. Miyoshi, Y. Ebihara, H. Dahlgren, and D. Hampton
Ann. Geophys., 34, 41–44, https://doi.org/10.5194/angeo-34-41-2016, https://doi.org/10.5194/angeo-34-41-2016, 2016
Short summary
Short summary
Stereoscopy of aurora was performed at the record fast sampling rate of 100 fps to measure the emission altitude of rapidly varying fine-scale structures. The new method unveiled that very different types of aurora appear in the same direction at different altitudes.
T. Takahashi, S. Nozawa, T. T. Tsuda, Y. Ogawa, N. Saito, T. Hidemori, T. D. Kawahara, C. Hall, H. Fujiwara, N. Matuura, A. Brekke, M. Tsutsumi, S. Wada, T. Kawabata, S. Oyama, and R. Fujii
Ann. Geophys., 33, 941–953, https://doi.org/10.5194/angeo-33-941-2015, https://doi.org/10.5194/angeo-33-941-2015, 2015
M. Myllys, N. Partamies, and L. Juusola
Ann. Geophys., 33, 573–581, https://doi.org/10.5194/angeo-33-573-2015, https://doi.org/10.5194/angeo-33-573-2015, 2015
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
T. Takahashi, S. Nozawa, M. Tsutsumi, C. Hall, S. Suzuki, T. T. Tsuda, T. D. Kawahara, N. Saito, S. Oyama, S. Wada, T. Kawabata, H. Fujiwara, A. Brekke, A. Manson, C. Meek, and R. Fujii
Ann. Geophys., 32, 1195–1205, https://doi.org/10.5194/angeo-32-1195-2014, https://doi.org/10.5194/angeo-32-1195-2014, 2014
B. J. Jackel, C. Unick, M. T. Syrjäsuo, N. Partamies, J. A. Wild, E. E. Woodfield, I. McWhirter, E. Kendall, and E. Spanswick
Geosci. Instrum. Method. Data Syst., 3, 71–94, https://doi.org/10.5194/gi-3-71-2014, https://doi.org/10.5194/gi-3-71-2014, 2014
M. E. Andersson, P. T. Verronen, C. J. Rodger, M. A. Clilverd, and S. Wang
Atmos. Chem. Phys., 14, 1095–1105, https://doi.org/10.5194/acp-14-1095-2014, https://doi.org/10.5194/acp-14-1095-2014, 2014
R. Kataoka, Y. Miyoshi, K. Shigematsu, D. Hampton, Y. Mori, T. Kubo, A. Yamashita, M. Tanaka, T. Takahei, T. Nakai, H. Miyahara, and K. Shiokawa
Ann. Geophys., 31, 1543–1548, https://doi.org/10.5194/angeo-31-1543-2013, https://doi.org/10.5194/angeo-31-1543-2013, 2013
P. T. Verronen and R. Lehmann
Ann. Geophys., 31, 909–956, https://doi.org/10.5194/angeo-31-909-2013, https://doi.org/10.5194/angeo-31-909-2013, 2013
D. K. Whiter, B. Gustavsson, N. Partamies, and L. Sangalli
Geosci. Instrum. Method. Data Syst., 2, 131–144, https://doi.org/10.5194/gi-2-131-2013, https://doi.org/10.5194/gi-2-131-2013, 2013
N. Partamies, L. Juusola, E. Tanskanen, and K. Kauristie
Ann. Geophys., 31, 349–358, https://doi.org/10.5194/angeo-31-349-2013, https://doi.org/10.5194/angeo-31-349-2013, 2013
Cited articles
Andersson, M. E., Verronen, P. T., Marsh, D. R., Päivärinta, S.-M., and
Plane, J. M. C.: WACCM-D – Improved modeling of nitric acid and active
chlorine during energetic particle precipitation, J. Geophys. Res.-Atmos.,
121, 10328–10341, https://doi.org/10.1002/2015JD024173, 2016. a, b, c
Andersson, M. E., Verronen, P. T., Marsh, D. R., Seppälä, A.,
Päivärinta, S.-M., Rodger, C. J., Clilverd, M. A., Kalakoski, N., and
van de Kamp, M.: Polar Ozone Response to Energetic Particle Precipitation
Over Decadal Time Scales: The Role of Medium-Energy Electrons, J. Geophys.
Res.-Atmos., 123, 607–622, https://doi.org/10.1002/2017JD027605, 2018. a, b, c, d, e, f, g, h
Arsenovic, P., Rozanov, E., Stenke, A., Funke, B., Wissing, J. M., Mursula, K.,
Tummon, F., and Peter, T.: The influence of Middle Range Energy Electrons on
atmospheric chemistry and regional climate, J. Atmos. Sol.-Terr. Phys., 149, 180–190, https://doi.org/10.1016/j.jastp.2016.04.008, 2016. a
Asikainen, T. and Ruopsa, M.: Solar wind drivers of energetic electron
precipitation, J. Geophys. Res.-Space, 121, 2209–2225, https://doi.org/10.1002/2015JA022215, 2016. a, b
Baumgaertner, A. J. G., Seppälä, A., Jöckel, P., and
Clilverd, M. A.: Geomagnetic activity related NOx enhancements and polar
surface air temperature variability in a chemistry climate model: modulation
of the NAM index, Atmos. Chem. Phys., 11, 4521–4531,
https://doi.org/10.5194/acp-11-4521-2011, 2011. a, b
Bland, E., Tesema, F., and Partamies, N.: D-region impact area of energetic
particle precipitation during pulsating aurora, Ann. Geophys., 39, 135–149,
https://doi.org/10.5194/angeo-39-135-2021, 2021. a, b
Daae, M., Straub, C., Espy, P., and Newnham, D.: Atmospheric ozone above Troll
station, Antarctica observed by a ground based microwave radiometer, Earth
Syst. Sci. Data, 6, 105–115, https://doi.org/10.5194/essd-6-105-2014, 2014. a
Damiani, A., Funke, B., Santee, M. L., Cordero, R. R., and Watanabe, S.:
Energetic particle precipitation: A major driver of the ozone budget in the
Antarctic upper stratosphere, Geophys. Res. Lett., 43, 3554–3562,
https://doi.org/10.1002/2016GL068279, 2016. a, b
Funke, B., López-Puertas, M., Stiller, G. P., and von Clarmann, T.:
Mesospheric and stratospheric NOy produced by energetic particle
precipitation during 2002–2012, J. Geophys. Res., 119, 4429–4446,
https://doi.org/10.1002/2013JD021404, 2014. a
Funke, B., Ball, W., Bender, S., Gardini, A., Harvey, V. L., Lambert, A.,
López-Puertas, M., Marsh, D. R., Meraner, K., Nieder, H.,
Päivärinta, S.-M., Pérot, K., Randall, C. E., Reddmann, T.,
Rozanov, E., Schmidt, H., Seppälä, A., Sinnhuber, M., Sukhodolov, T.,
Stiller, G. P., Tsvetkova, N. D., Verronen, P. T., Versick, S., von Clarmann,
T., Walker, K. A., and Yushkov, V.: HEPPA-II model-measurement
intercomparison project: EPP indirect effects during the dynamically
perturbed NH winter 2008–2009, Atmos. Chem. Phys., 17, 3573–3604,
https://doi.org/10.5194/acp-17-3573-2017, 2017. a
Fytterer, T., Mlynczak, M. G., Nieder, H., Pérot, K., Sinnhuber, M., Stiller,
G., and Urban, J.: Energetic particle induced intra-seasonal variability of
ozone inside the Antarctic polar vortex observed in satellite data, Atmos.
Chem. Phys., 15, 3327–3338, https://doi.org/10.5194/acp-15-3327-2015, 2015. a
Grandin, M., Kero, A., Partamies, N., McKay, D., Whiter, D., Kozlovsky, A., and
Miyoshi, Y.: Observation of pulsating aurora signatures in cosmic noise
absorption data, Geophys. Res. Lett., 44, 5292–5300,
https://doi.org/10.1002/2017GL073901, 2017. a
Grono, E. and Donovan, E.: Differentiating diffuse auroras based on
phenomenology, Ann. Geophys., 36, 891–898, https://doi.org/10.5194/angeo-36-891-2018,
2018. a
Grono, E. and Donovan, E.: Surveying pulsating auroras, Ann. Geophys., 38, 1–8, https://doi.org/10.5194/angeo-38-1-2020, 2020. a
Haario, H., Laine, M., Mira, A., and Saksman, E.: DRAM: Efficient adaptive
MCMC, Stat. Comput., 16, 339–354, https://doi.org/10.1007/s11222-006-9438-0, 2006. a
Heino, E., Verronen, P. T., Kero, A., Kalakoski, N., and Partamies, N.: Cosmic
noise absorption during solar proton events in WACCM-D and riometer
observations, J. Geophys. Res.-Space, 124, 1361–1376,
https://doi.org/10.1029/2018JA026192, 2019. a
Hendrickx, K., Megner, L., Marsh, D. R., and Smith-JohnsenSm, C.:
Production and transport mechanisms of NO in the polar upper mesosphere and
lower thermosphere in observations and models, Atmos. Chem. Phys., 18,
9075–9089, https://doi.org/10.5194/acp-18-9075-2018, 2018. a
Jackman, C. H., Marsh, D. R., Vitt, F. M., Garcia, R. R., Fleming,
E. L., Labow, G. J., Randall, C. E., López-Puertas, M., Funke,
B., von Clarmann, T., and Stiller, G. P.: Short- and medium-term
atmospheric constituent effects of very large solar proton events, Atmos.
Chem. Phys., 8, 765–785, https://doi.org/10.5194/acp-8-765-2008, 2008. a
Jackman, C. H., Marsh, D. R., Kinnison, D. E., Mertens, C. J., and Fleming,
E. L.: Atmospheric changes caused by galactic cosmic rays over the period
1960–2010, Atmos. Chem. Phys., 16, 5853–5866,
https://doi.org/10.5194/acp-16-5853-2016, 2016. a
Jones, S. L., Lessard, M. R., Rychert, K., Spanswick, E., and Donovan, E.:
Large-scale aspects and temporal evolution of pulsating aurora, J. Geophys.
Res.-Space, 116, A03214, https://doi.org/10.1029/2010JA015840, 2011. a, b
Jones, S. L., Lessard, M. R., Rychert, K., Spanswick, E., Donovan, E., and
Jaynes, A. N.: Persistent, widespread pulsating aurora: A case study, J.
Geophys. Res.-Space, 118, 2998–3006, https://doi.org/10.1002/jgra.50301,
2013a. a
Jones, S. L., Lessard, M. R., Rychert, K., Spanswick, E., Donovan, E., and
Jaynes, A. N.: Persistent, widespread pulsating aurora: A case study, J.
Geophys. Res.-Space, 118, 2998–3006, https://doi.org/10.1002/jgra.50301,
2013b. a
Kalakoski, N., Verronen, P. T., Seppälä, A., Szeląg, M. E., Kero,
A., and Marsh, D. R.: Statistical response of middle atmosphere composition
to solar proton events in WACCM-D simulations: importance of lower
ionospheric chemistry, Atmos. Chem. Phys., 20, 8923–8938,
https://doi.org/10.5194/acp-20-8923-2020, 2020. a, b
Lessard, M. R.: A Review of Pulsating Aurora, American Geophysical
Union (AGU), 55–68, https://doi.org/10.1029/2011GM001187, 2013. a
Maliniemi, V., Asikainen, T., Mursula, K., and Seppälä, A.:
QBO-dependent relation between electron precipitation and wintertime
surface temperature, J. Geophys. Res.-Atmos., 118, 6302–6310,
https://doi.org/10.1002/jgrd.50518, 2013. a
Marsh, D. R., Garcia, R. R., Kinnison, D. E., Boville, B. A., Sassi,
F., Solomon, S. C., and Matthes, K.: Modeling the whole atmosphere
response to solar cycle changes in radiative and geomagnetic forcing, J.
Geophys. Res.-Atmos., 112, D23306, https://doi.org/10.1029/2006JD008306, 2007. a, b
Marsh, D. R., Mills, M., Kinnison, D., Lamarque, J.-F., Calvo, N.,
and Polvani, L.: Climate change from 1850 to 2005 simulated in
CESM1(WACCM), J. Clim., 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1,
2013. a
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau,
P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman,
C. H., Kretschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R.,
Maycock, A., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A.,
Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M.,
Verronen, P. T., and Versick, S.: Solar Forcing for CMIP6, Geosci. Model
Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017. a, b, c
McCrea, I., Aikio, A., Alfonsi, L., Belova, E., Buchert, S., Clilverd, M., Engler, N.,
Gustavsson, B., Heinselman, C., Kero, J.,
Kosch, M., Lamy, H, Leyser, T, Ogawa, Y., Oksavik, K., Pellinen-Wannberg, A., Pitout, F., Rapp, M., Stanislawska, I., and Vierinen, J.: The science case for the
EISCAT_3D radar, Prog. Earth Planet. Sc., 21,
https://doi.org/10.1186/s40645-015-0051-8, 2015. a
Miyoshi, Y., Katoh, Y., Nishiyama, T., Sakanoi, T., Asamura, K., and Hirahara,
M.: Time of flight analysis of pulsating aurora electrons, considering
wave-particle interactions with propagating whistler mode waves, J. Geophys.
Res.-Space, 115, A10312, https://doi.org/10.1029/2009JA015127, 2010. a
Miyoshi, Y., Oyama, S., Saito, S., Kurita, S., Fujiwara, H., Kataoka, R.,
Ebihara, Y., Kletzing, C., Reeves, G., Santolik, O., Clilverd, M., Rodger,
C. J., Turunen, E., and Tsuchiya, F.: Energetic electron precipitation
associated with pulsating aurora: EISCAT and Van Allen Probe observations, J.
Geophys. Res.-Space, 120, 2754–2766, https://doi.org/10.1002/2014JA020690,
2015a. a, b
Miyoshi, Y., Saito, S., Seki, K., Nishiyama, T., Kataoka, R.,
Asamura, K., Katoh, Y., Ebihara, Y., Sakanoi, T., Hirahara, M.,
Oyama, S., Kurita, S., and Santolik, O.: Relation between fine
structure of energy spectra for pulsating aurora electrons and frequency
spectra of whistler mode chorus waves, J. Geophys. Res.-Space, 120,
7728–7736, https://doi.org/10.1002/2015JA021562, 2015b. a
Miyoshi, Y., Saito, S., Kurita, S., Asamura, K., Hosokawa, K.,
Sakanoi, T., Mitani, T., Ogawa, Y., Oyama, S., Tsuchiya, F.,
Jones, S. L., Jaynes, A. N., and Blake, J. B.: Relativistic Electron
Microbursts as High-Energy Tail of Pulsating Aurora Electrons, Geophys. Res.
Lett., 47, e90360, https://doi.org/10.1029/2020GL090360, 2020. a
Miyoshi, Y., Hosokawa, K., Kurita, S., Oyama, S.-I., Ogawa, Y., Saito, S.,
Shinohara, I., Kero, A., Turunen, E., Verronen, P. T., Kasahara, S., Yokota,
S., Mitani, T., Takashima, T., Higashio, N., Kasahara, Y., Matsuda, S.,
Tsuchiya, F., Kumamoto, A., Matsuoka, A., Hori, T., Keika, K., Shoji, M.,
Teramoto, M., Imajo, S., Jun, C., and Nakamura, S.: Penetration of MeV
electrons into the mesosphere accompanying pulsating aurorae, Sci. Rep., 11,
13724, https://doi.org/10.1038/s41598-021-92611-3, 2021. a
Miyoshi, Y. S., Jordanova, V. K., Morioka, A., and Evans, D. S.: Solar cycle
variations of the electron radiation belts: Observations and radial diffusion
simulation, Space Weather, 2, S10S02, https://doi.org/10.1029/2004SW000070, 2004. a
Nesse Tyssøy, H., Haderlein, A., Sandanger, M. I., and Stadsnes, J.:
Intercomparison of the POES/MEPED loss cone electron fluxes with the
CMIP6 parametrization, J. Geophys. Res.-Space, 124, 628–642,
https://doi.org/10.1029/2018JA025745, 2019. a, b, c
Newnham, D. A., Clilverd, M. A., Rodger, C. J., Hendrickx, K., Megner, L.,
Kavanagh, A. J., Seppälä, A., Verronen, P. T., Andersson, M. E.,
Marsh, D. R., Kovacs, T., Feng, W., and Plane, J. M. C.: Observations and
modelling of increased nitric oxide in the Antarctic polar middle
atmosphere associated with geomagnetic storm driven energetic electron
precipitation, J. Geophys. Res.-Space, 123, 6009–6025,
https://doi.org/10.1029/2018JA025507, 2018. a, b
Orsolini, Y. J., Smith-Johnsen, C., Marsh, D. R., Stordal, F., Rodger, C. J.,
Verronen, P. T., and Clilverd, M. A.: Mesospheric nitric acid enhancements
during energetic electron precipitation events simulated by WACCM-D, J.
Geophys. Res.-Atmos., 123, 6984–6998, https://doi.org/10.1029/2017JD028211, 2018. a, b
Päivärinta, S.-M., Seppälä, A., Andersson, M. E.,
Verronen, P. T., Thölix, L., and Kyrölä, E.:
Observed effects of solar proton events and sudden stratospheric warmings on
odd nitrogen and ozone in the polar middle atmosphere, J. Geophys. Res.-Atmos., 118, 6837–6848, https://doi.org/10.1002/jgrd.50486, 2013. a
Partamies, N., Whiter, D., Kadokura, A., Kauristie, K., Nesse Tyssøy, H.,
Massetti, S., Stauning, P., and Raita, T.: Occurrence and average behavior of
pulsating aurora, J. Geophys. Res.-Space, 122, 5606–5618,
https://doi.org/10.1002/2017JA024039, 2017. a, b, c, d
Partamies, N., Bolmgren, K., Heino, E., Ivchenko, N., Borovsky, J. E., and
Sundberg, H.: Patch Size Evolution During Pulsating Aurora, J. Geophys. Res.-Space, 124, 4725–4738, https://doi.org/10.1029/2018JA026423, 2019. a
Pettit, J., Randall, C. E., Peck, E. D., Marsh, D. R., van de Kamp, M., and
Fang, X. C.: Atmospheric effects of >30-keV energetic electron
precipitation in the southern hemisphere winter during 2003, J. Geophys.
Res.-Space, 124, 5747–5763, https://doi.org/10.1029/2019JA026868, 2019. a, b
Randall, C. E., Rusch, D. W., Bevilacqua, R. M., Hoppel, K. W., and Lumpe,
J. D.: Polar Ozone and Aerosol Measurement (POAM) II stratospheric
NO2, 1993–1996, J. Geophys. Res.-Atmos., 103, 28361–28371,
https://doi.org/10.1029/98JD02092,
1998. a
Randall, C. E., Harvey, V. L., Manney, G. L., Orsolini, Y., Codrescu,
M., Sioris, C., Brohede, S., Haley, C. S., Gordley, L. L., Zawodny,
J. M., and Russell, J. M.: Stratospheric effects of energetic particle
precipitation in 2003–2004, Geophys. Res. Lett., 32, L05802,
https://doi.org/10.1029/2004GL022003, 2005. a
Randall, C. E., Harvey, V. L., Holt, L. A., Marsh, D. R., Kinnison, D., Funke,
B., and Bernath, P. F.: Simulation of energetic particle precipitation
effects during the 2003–2004 Arctic winter, J. Geophys. Res.-Space, 120, 5035–5048, https://doi.org/10.1002/2015JA021196, 2015. a, b
Rienecker, M. M., Suarez, M. J., Todling, R., Bacmeister, J., Takacs, L., Liu, H.-C., Gu, W., Sienkiewicz, M., Koster, R. D., Gelaro, R., Stajner, I., and Nielsen, J. E.:: The GEOS-5 Data Assimilation System: A Documentation
of GEOS-5.0, Tech. Rep., 104606 V27, NASA, https://doi.org/10.1186/s40645-015-0051-8, 2008. a
Rodger, C. J., Clilverd, M. A., Green, J. C., and Lam, M. M.: Use of
POES SEM-2 observations to examine radiation belt dynamics and energetic
electron precipitation into the atmosphere, J. Geophys. Res.-Space,
115, A04202, https://doi.org/10.1029/2008JA014023, 2010a. a
Rozanov, E., Callis, L., Schlesinger, M., Yang, F., Andronova, N., and Zubov,
V.: Atmospheric response to NOy source due to energetic electron
precipitation, Geophys. Res. Lett., 32, L14811,
https://doi.org/10.1029/2005GL023041, 2005. a
Rozanov, E., Calisto, M., Egorova, T., Peter, T., and Schmutz, W.: The
influence of precipitating energetic particles on atmospheric chemistry and
climate, Surv. Geophys., 33, 483–501, https://doi.org/10.1007/s10712-012-9192-0,
2012. a
Sandhu, J. K., Rae, I. J., Freeman, M. P., Gkioulidou, M., Forsyth, C., Reeves,
G. D., Murphy, K. R., and Walach, M.-T.: Substorm-Ring Current Coupling: A
Comparison of Isolated and Compound Substorms, J. Geophys. Res.-Space, 124, 6776–6791, https://doi.org/10.1029/2019JA026766, 2019. a
Seppälä, A., Randall, C. E., Clilverd, M. A., Rozanov, E., and
Rodger, C. J.: Geomagnetic activity and polar surface air temperature
variability, J. Geophys. Res., 114, A10312, https://doi.org/10.1029/2008JA014029,
2009. a, b
Seppälä, A., Clilverd, M. A., Beharrell, M. J., Rodger, C. J.,
Verronen, P. T., Andersson, M. E., and Newnham, D. A.: Substorm-induced
energetic electron precipitation: Impact on atmospheric chemistry, Geophys.
Res. Lett., 42, 8172–8176, https://doi.org/10.1002/2015GL065523, 2015. a, b
Seppälä, A., Douma, E., Rodger, C. J., Verronen, P. T., Clilverd,
M. A., and Bortnik, J.: Relativistic Electron Microburst Events: Modeling the
Atmospheric Impact, Geophys. Res. Lett., 45, 1141–1147,
https://doi.org/10.1002/2017GL075949, 2018. a
Sinnhuber, M., Kazeminejad, S., and Wissing, J. M.: Interannual variation of
NOx from the lower thermosphere to the upper stratosphere in the
years 1991–2005, J. Geophys. Res., 116, A02312,
https://doi.org/10.1029/2010JA015825, 2011. a
Sinnhuber, M., Nieder, H., and Wieters, N.: Energetic particle precipitation
and the chemistry of the mesosphere/lower thermosphere, Surv. Geophys., 33,
1281–1334, https://doi.org/10.1007/s10712-012-9201-3, 2012. a
Sinnhuber, M., Friederich, F., Bender, S., and Burrows, J. P.: The response of
mesospheric NO to geomagnetic forcing in 2002–2012 as seen by SCIAMACHY,
J. Geophys. Res.-Space, 121, 3603–3620, https://doi.org/10.1002/2015JA022284,
2016. a
Smith-Johnsen, C., Marsh, D., Orsolini, Y., Nesse Tyssøy, H., Hendrickx, K.,
Sandanger, M., Glesnes Ødegaard, L.-K., and Stordal, F.: Nitric oxide
response to the April 2010 electron precipitation event: Using WACCM and
WACCM-D with and without medium-energy electrons, J. Geophys. Res.-Space, 123, 5232–5245, https://doi.org/10.1029/2018JA025418, 2018. a
Tesema, F., Partamies, N., Nesse Tyssøy, H., and McKay, D.: Observations of
precipitation energies during different types of pulsating aurora, Ann.
Geophys., 38, 1191–1202, https://doi.org/10.5194/angeo-38-1191-2020, 2020b. a
Turunen, E., Verronen, P. T., Seppälä, A., Rodger, C. J., Clilverd,
M. A., Tamminen, J., Enell, C.-F., and Ulich, T.: Impact of different
precipitation energies on NOx generation during geomagnetic
storms, J. Atmos. Sol.-Terr. Phys., 71, 1176–1189,
https://doi.org/10.1016/j.jastp.2008.07.005, 2009. a
van de Kamp, M., Seppälä, A., Clilverd, M. A., Rodger, C. J., Verronen,
P. T., and Whittaker, I. C.: A model providing long-term datasets of
energetic electron precipitation during geomagnetic storms, J. Geophys. Res.-Atmos., 121, 12520–12540, https://doi.org/10.1002/2015JD024212, 2016. a, b
van de Kamp, M., Rodger, C. J., Seppälä, A., Clilverd, M. A., and
Verronen, P. T.: An updated model providing long-term datasets of energetic
electron precipitation, including zonal dependence, J. Geophys. Res.-Atmos., 123, 9891–9915, https://doi.org/10.1029/2017JD028253, 2018. a
Verronen, P. T.: Simulated atmospheric data from Verronen et al. (2021), “Simulated seasonal impact on middle atmospheric ozone from high-energy electron precipitation related to pulsating aurorae” submitted to Annales Geophysicae, FMI B2SHARE [D3BFECA00C1744328DA71CC7A8DCAD76], available at: https://fmi.b2share.csc.fi/records/d3bfeca00c1744328da71cc7a8dcad76, 2021. a
Verronen, P. T. and Lehmann, R.: Analysis and parameterisation of ionic
reactions affecting middle atmospheric HOx and NOy
during solar proton events, Ann. Geophys., 31, 909–956,
https://doi.org/10.5194/angeo-31-909-2013, 2013. a
Verronen, P. T. and Lehmann, R.: Enhancement of odd nitrogen modifies
mesospheric ozone chemistry during polar winter, Geophys. Res. Lett., 42,
10445–10452, https://doi.org/10.1002/2015GL066703, 2015. a
Verronen, P. T., Andersson, M. E., Rodger, C. J., Clilverd, M. A., Wang, S.,
and Turunen, E.: Comparison of modeled and observed effects of radiation belt
electron precipitation on mesospheric hydroxyl and ozone, J. Geophys. Res.,
118, 11419–11428, https://doi.org/10.1002/jgrd.50845, 2013. a
Verronen, P. T., Andersson, M. E., Marsh, D. R., Kovács, T., and Plane,
J. M. C.: WACCM-D – Whole Atmosphere Community Climate Model with
D-region ion chemistry, J. Adv. Model. Earth Syst., 8, 954–975,
https://doi.org/10.1002/2015MS000592, 2016. a, b
Verronen, P. T., Marsh, D. R., Szeląg, M. E., and Kalakoski, N.: Magnetic
local time dependency of radiation belt electron precipitation: impact on
ozone in the polar middle atmosphere, Ann. Geophys., 38, 833–844,
https://doi.org/10.5194/angeo-38-833-2020, 2020. a
Short summary
This paper is the first to simulate and analyse the pulsating aurorae impact on middle atmosphere on monthly/seasonal timescales. We find that pulsating aurorae have the potential to make a considerable contribution to the total energetic particle forcing and increase the impact on upper stratospheric odd nitrogen and ozone in the polar regions. Thus, it should be considered in atmospheric and climate simulations.
This paper is the first to simulate and analyse the pulsating aurorae impact on middle...