Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., McWilliams, K. A., Ruohoniemi, J. M., Yeoman, T. K., Dyson, P. L., Greenwald, R. A., Kikuchi, T., Pinnock, M., Rash, J. P. S., Sato, N., Sofko, G. J., Villain, J. P., and Walker, A. D. M.: A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions, Surv. Geophys., 28, 33–109,
https://doi.org/10.1007/s10712-007-9017-8, 2007.
a
Cohen, I. J., Lessard, M. R., Varney, R. H., Oksavik, K., Zettergren, M., and Lynch, K. A.: Ion upflow dependence on ionospheric density and solar photoionization, J. Geophys. Res., 120, 10039–10052,
https://doi.org/10.1002/2015JA021523, 2015.
a,
b
Deehr, C., Sivjee, G., Egeland, A., Henriksen, K., Sandholt, P., Smith, R., Sweeney, P., Duncan, C., and Gilmer, J.: Ground-based observations of F region aurora associated with the magnetospheric cusp, J. Geophys. Res., 85, 2185,
https://doi.org/10.1029/JA085iA05p02185, 1980.
a
Deng, Y., Fuller-Rowell, T. J., Ridley, A. J., Knipp, D., and Lopez, R. E.: Theoretical study: Influence of different energy sources on the cusp neutral density enhancement, J. Geophys. Res., 118, 2340–2349,
https://doi.org/10.1002/jgra.50197, 2013.
a
Didkovsky, L., Judge, D., Wieman, S., Woods, T., and Jones, A.: EUV SpectroPhotometer (ESP) in Extreme Ultraviolet Variability Experiment (EVE): Algorithms and Calibrations, Solar Physics, 275, 179–205,
https://doi.org/10.1007/s11207-009-9485-8, 2012.
a
Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., Thomas, E. C., Villain, J. P., Cerisier, J. C., Senior, C., Hanuise, C., Hunsucker, R. D., Sofko, G., Koehler, J., Nielsen, E., Pellinen, R., Walker, A. D., Sato, N., and Yamagishi, H.: DARN/SuperDARN – A global view of the dynamics of high-latitude convection, Space Sci. Rev., 71, 761–796,
https://doi.org/10.1007/BF00751350, 1995.
a
Hecht, J. H.: RENU2 photometer and model data, [data set], available at:
http://mirl.sr.unh.edu/projects_renu2/FlightData/Hecht/, last access: 31 August 2021. a
Hecht, J. H., Clemmons, J. H., Lessard, M. R., Kenward, D. L., Sadler, F. B., Fritz, B. A., Evans, J. S., and Lynch, K. A.: A New Technique for Estimating The Lifetime of Bursts of Electron Precipitation From Sounding Rocket Measurements, Geophys. Res. Lett., 47, e2019GL082894,
https://doi.org/10.1029/2019gl082894, 2019.
a,
b,
c,
d,
e,
f,
g
Herlingshaw, K., Baddeley, L. J., Oksavik, K., Lorentzen, D. A., and Bland, E. C.: A Study of Automatically Detected Flow Channels in the Polar Cap Ionosphere, J. Geophys. Res., 124, 9430–9447,
https://doi.org/10.1029/2019JA026916, 2019.
a
Hock, R. A., Chamberlin, P. C., Woods, T. N., Crotser, D., Eparvier, F. G., Woodraska, D. L., and Woods, E. C.: Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results, Sol. Phys., 275, 145–178,
https://doi.org/10.1007/s11207-010-9520-9, 2012.
a
Itikawa, Y., Hayashi, M., Ichimura, A., Onda, K., Sakimoto, K., Takayanagi, K., Nakamura, M., Nishimura, H., and Takayanagi, T.: Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules, J. Phys. Chem. Ref. Data, 15, 985–1010,
https://doi.org/10.1063/1.555762, 1986.
a,
b,
c,
d,
e
Johnsen, M. G., Lorentzen, D. A., Holmes, J. M., and Løvhaug, U. P.: A model based method for obtaining the open/closed field line boundary from the cusp auroral 6300 Å[OI] red line, J. Geophys. Res., 117, A03319,
https://doi.org/10.1029/2011JA016980, 2012.
a
Jokiaho, O., Lanchester, B. S., and Ivchenko, N.: Resonance scattering by auroral
: steady state theory and observations from Svalbard, Ann. Geophys., 27, 3465–3478,
https://doi.org/10.5194/angeo-27-3465-2009, 2009.
a
Jokiaho, O.-P.: Spectral modelling of molecular nitrogen in aurora, Doctoral thesis, University of Southampton, available at:
http://eprints.soton.ac.uk/161195/ (last access: 31 August 2021), 2009. a
Kenward, D. R.: The Impact of Fine Scale Drivers on Upwelling Processes, PhD thesis, University of New Hampshire, Ann Arbor, United States, available at:
https://www.proquest.com/dissertations-theses/impact-fine-scale-drivers-on-upwelling-processes/docview/2423440975/se-2?accountid=17260 (last access: 20 September 2021), 130 pp., 2020.
a,
b,
c
The Laboratory for Atmospheric and Space Physics:
Solar Dynamics Observatory (SDO) Extreme
Ultraviolet Variability Experiment (EVE) level 2 data, version 6, the Laboratory for Atmospheric and Space Physics [data set], Boulder, Colorado, available at:
https://lasp.colorado.edu/eve/data_access/index.html, (last access: 31 August 2021), 2017. a
Lessard, M. R., Fritz, B., Sadler, B., Cohen, I., Kenward, D., Godbole, N., Clemmons, J. H., Hecht, J. H., Lynch, K. A., Harrington, M., Roberts, T. M., Hysell, D., Crowely, G., Sigernes, F., Syrjäsuo, M., Ellingsen, P., Partamies, N., Moen, J., Clausen, L., Oksavik, K., Yeoman, T.: Overview of the R
ocket Experiment for Neutral Upwelling Sounding Rocket 2 (RENU2), Geophys. Res. Lett., 47, e2018GL081885,
https://doi.org/10.1029/2018GL081885, 2020.
a,
b,
c,
d
Lorentzen, D. A., Kintner, P. M., Moen, J., Sigernes, F., Oksavik, K., Ogawa, Y., and Holmes, J.: Pulsating dayside aurora in relation to ion upflow events during a northward interplanetary magnetic field (IMF) dominated by a strongly negative IMF By, J. Geophys. Res., 112, 1–12,
https://doi.org/10.1029/2006JA011757, 2007.
a
Lorentzen, D. A., Moen, J., Oksavik, K., Sigernes, F., Saito, Y., and Johnsen, M. G.: In situ measurement of a newly created polar cap patch, J. Geophys. Res., 115, 1–11,
https://doi.org/10.1029/2010JA015710, 2010.
a
Lühr, H., Rother, M., Köhler, W., Ritter, P., and Grunwaldt, L.: Thermospheric up-welling in the cusp region: Evidence from CHAMP observations, Geophys. Res. Lett., 31, 6805,
https://doi.org/10.1029/2003GL019314, 2004.
a,
b
Lund, E. J., Lessard, M. R., Sigernes, F., Lorentzen, D. A., Oksavik, K., Kintner, P. M., Lynch, K. A., Huang, D. H., Zhang, B. C., Yang, H. G., and Ogawa, Y.: Electron temperature in the cusp as measured with the SCIFER-2 sounding rocket, J. Geophys. Res., 117, A06326,
https://doi.org/10.1029/2011JA017404, 2012.
a
Moen, J., Oksavik, K., and Carlson, H. C.: On the relationship between ion upflow events and cusp auroral transients, Geophys. Res. Lett., 31, 1–5,
https://doi.org/10.1029/2004GL020129, 2004.
a
Pesnell, W. D., Thompson, B. J., and Chamberlin, P. C.: The Solar Dynamics Observatory (SDO), Sol. Phys., 275, 3–15,
https://doi.org/10.1007/s11207-011-9841-3, 2012.
a,
b
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107, 1–16,
https://doi.org/10.1029/2002JA009430, 2002.
a
Remick, K., Smith, R., and Lummerzheim, D.: The significance of resonant scatter in the measurement of
first negative 0–1 emissions during auroral activity, J. Atmos. Sol.-Terr. Phys., 63, 295–308,
https://doi.org/10.1016/S1364-6826(00)00233-9, 2001.
a
Romick, G. J., Yee, J. H., Morgan, M. F., Morrison, D., Paxton, L. J., and Meng, C. I.: Polar cap optical observations of topside (
>900 km) molecular nitrogen ions, Geophys. Res. Lett., 26, 1003–1006,
https://doi.org/10.1029/1999GL900091, 1999.
a,
b
Sadler, F. B., Lessard, M., Lund, E., Otto, A., and Lühr, H.: Auroral precipitation/ion upwelling as a driver of neutral density enhancement in the cusp, J. Atmos. Sol.-Terr. Phys., 87–88, 82–90,
https://doi.org/10.1016/j.jastp.2012.03.003, 2012.
a,
b
Sandholt, P. E. and Farrugia, C. J.: Poleward moving auroral forms (PMAFs) revisited: responses of aurorae, plasma convection and Birkeland currents in the pre- and postnoon sectors under positive and negative IMF
By conditions, Ann. Geophys., 25, 1629–1652,
https://doi.org/10.5194/angeo-25-1629-2007, 2007.
a,
b,
c
Strickland, D., Bishop, J., Evans, J., Majeed, T., Shen, P., Cox, R., Link, R., and Huffman, R.: Atmospheric Ultraviolet Radiance Integrated Code (AURIC): theory, software architecture, inputs, and selected results, J. Quant. Spectrosc. Ra., 62, 689–742,
https://doi.org/10.1016/S0022-4073(98)00098-3, 1999.
a
Strickland, D. J., Daniell, R. E., Jasperse, J. R., and Basu, B.: Transport-Theoretic Model for the Electron-Proton-Hydrogen Atom Aurora, 2. Model Results, J. Geophys. Res., 98, 21533–21548,
https://doi.org/10.1029/93JA01645, 1993.
a
Tabata, T., Shirai, T., Sataka, M., and Kubo, H.: Analytic cross sections for electron impact collisions with nitrogen molecules, Atom. Data Nucl. Data, 92, 375–406,
https://doi.org/10.1016/j.adt.2006.02.002, 2006.
a
Woods, T. N., Eparvier, F. G., Hock, R., Jones, A. R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W. K., and Viereck, R.: Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments, Sol. Phys., 275, 115–143,
https://doi.org/10.1007/s11207-009-9487-6, 2012.
a
Yau, A. W., Whalen, B. A., Goodenough, C., Sagawa, E., and Mukai, T.: EXOS D (Akebono) observations of molecular
NO+ and
upflowing ions in the high-altitude auroral ionosphere, J. Geophys. Res., 98, 11205,
https://doi.org/10.1029/92ja02019, 1993.
a