Articles | Volume 39, issue 5
https://doi.org/10.5194/angeo-39-849-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-849-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observations of sunlit N2+ aurora at high altitudes during the RENU2 flight
Pål Gunnar Ellingsen
CORRESPONDING AUTHOR
Department of Electrical Engineering, UiT The Arctic University of Norway, 8505 Narvik, Norway
Dag Lorentzen
Department of Arctic Geophysics, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, 5020 Bergen, Norway
David Kenward
Department of Physics and Astronomy, University of New Hampshire, Durham, NH 03824, USA
James H. Hecht
Space Science Applications Laboratory, The Aerospace Corporation, El Segundo, CA, USA
J. Scott Evans
Computational Physics Inc., Springfield, VA, USA
Fred Sigernes
Department of Arctic Geophysics, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, 5020 Bergen, Norway
Marc Lessard
Department of Physics and Astronomy, University of New Hampshire, Durham, NH 03824, USA
Related authors
Luke Harry Marsden, Øystein Godøy, Tove Margrethe Gabrielsen, Pål Gunnar Ellingsen, Marit Reigstad, Miriam Marquardt, Arnfinn Morvik, Helge Sagen, Stein Tronstad, and Lara Ferrighi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-56, https://doi.org/10.5194/essd-2025-56, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
This article presents the data management strategies of the Nansen Legacy project, developed to handle data from 300+ researchers and 20 expeditions in the northern Barents Sea. Data collection protocols were documented and followed for consistency, and a searchable data overview was available soon after each cruise. The project required early data sharing and publishing in line with FAIR principles where possible. This article details these strategies to guide future projects.
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary
Short summary
Small-scale auroral features are still being discovered and are not well understood. Where aurorae are caused by particle precipitation, the newly reported fragmented aurora-like emissions (FAEs) seem to be locally generated in the ionosphere (hence,
aurora-like). We analyse data from multiple instruments located near Longyearbyen to derive their main characteristics. They seem to occur as two types in a narrow altitude region (individually or in regularly spaced groups).
Luke Harry Marsden, Øystein Godøy, Tove Margrethe Gabrielsen, Pål Gunnar Ellingsen, Marit Reigstad, Miriam Marquardt, Arnfinn Morvik, Helge Sagen, Stein Tronstad, and Lara Ferrighi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-56, https://doi.org/10.5194/essd-2025-56, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
This article presents the data management strategies of the Nansen Legacy project, developed to handle data from 300+ researchers and 20 expeditions in the northern Barents Sea. Data collection protocols were documented and followed for consistency, and a searchable data overview was available soon after each cruise. The project required early data sharing and publishing in line with FAIR principles where possible. This article details these strategies to guide future projects.
Richard Eastes, J. Scott Evans, Quan Gan, William McClintock, and Jerry Lumpe
Atmos. Meas. Tech., 18, 921–928, https://doi.org/10.5194/amt-18-921-2025, https://doi.org/10.5194/amt-18-921-2025, 2025
Short summary
Short summary
Temperature is essential to understanding the thermosphere. Most temperature measurements have been indirect or had large uncertainties, especially in the lower-middle thermosphere, where data are rarely available. Since October 2018, NASA’s GOLD mission has produced disk images of neutral temperatures near 160 km at locations over the Americas and Atlantic Ocean. This paper discusses both temperature retrieval techniques and issues in interpreting GOLD’s images of thermospheric temperatures.
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary
Short summary
Small-scale auroral features are still being discovered and are not well understood. Where aurorae are caused by particle precipitation, the newly reported fragmented aurora-like emissions (FAEs) seem to be locally generated in the ionosphere (hence,
aurora-like). We analyse data from multiple instruments located near Longyearbyen to derive their main characteristics. They seem to occur as two types in a narrow altitude region (individually or in regularly spaced groups).
Cited articles
Abdou, W. A., Torr, D. G., Richards, P. G., Torr, M. R., and Breig, E. L.: Results of a comprehensive study of the photochemistry of in the ionosphere, J. Geophys. Res., 89, 9069, https://doi.org/10.1029/JA089iA10p09069, 1984. a
Brasseur, G.: Aeronomy of the middle atmosphere: chemistry and physics of the Stratosphere and Mesosphere, Atmospheric sciences library, Reidel, Dordrecht, 2nd rev. edn., 1986. a
Bug, M. U., Gargioni, E., Nettelbeck, H., Baek, W. Y., Hilgers, G., Rosenfeld, A. B., and Rabus, H.: Ionization cross section data of nitrogen, methane, and propane for light ions and electrons and their suitability for use in track structure simulations, Phys. Rev. E, 88, 043308, https://doi.org/10.1103/PhysRevE.88.043308, 2013. a
Carlson, H. C., Spain, T., Aruliah, A., Skjaeveland, A., and Moen, J.: First-principles physics of cusp/polar cap thermospheric disturbances, Geophys. Res. Lett., 39, 1–5, https://doi.org/10.1029/2012GL053034, 2012. a, b, c
Chakrabarti, S.: Ground based spectroscopic studies of sunlit airglow and aurora, J. Atmos. Sol.-Terr. Phys., 60, 1403–1423, https://doi.org/10.1016/S1364-6826(98)00060-1, 1998. a
Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., McWilliams, K. A., Ruohoniemi, J. M., Yeoman, T. K., Dyson, P. L., Greenwald, R. A., Kikuchi, T., Pinnock, M., Rash, J. P. S., Sato, N., Sofko, G. J., Villain, J. P., and Walker, A. D. M.: A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions, Surv. Geophys., 28, 33–109, https://doi.org/10.1007/s10712-007-9017-8, 2007. a
Cohen, I. J., Lessard, M. R., Varney, R. H., Oksavik, K., Zettergren, M., and Lynch, K. A.: Ion upflow dependence on ionospheric density and solar photoionization, J. Geophys. Res., 120, 10039–10052, https://doi.org/10.1002/2015JA021523, 2015. a, b
Deehr, C., Sivjee, G., Egeland, A., Henriksen, K., Sandholt, P., Smith, R., Sweeney, P., Duncan, C., and Gilmer, J.: Ground-based observations of F region aurora associated with the magnetospheric cusp, J. Geophys. Res., 85, 2185, https://doi.org/10.1029/JA085iA05p02185, 1980. a
Deng, Y., Fuller-Rowell, T. J., Ridley, A. J., Knipp, D., and Lopez, R. E.: Theoretical study: Influence of different energy sources on the cusp neutral density enhancement, J. Geophys. Res., 118, 2340–2349, https://doi.org/10.1002/jgra.50197, 2013. a
Didkovsky, L., Judge, D., Wieman, S., Woods, T., and Jones, A.: EUV SpectroPhotometer (ESP) in Extreme Ultraviolet Variability Experiment (EVE): Algorithms and Calibrations, Solar Physics, 275, 179–205, https://doi.org/10.1007/s11207-009-9485-8, 2012. a
Edwards, C. H. and Penney, D. E.: Elementary Linear Algebra, Prentice-Hall, New Jersey, 1982. a
Fasel, G. J.: Dayside poleward moving auroral forms: A statistical study, J. Geophys. Res., 100, 11891, https://doi.org/10.1029/95ja00854, 1995. a
Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., Thomas, E. C., Villain, J. P., Cerisier, J. C., Senior, C., Hanuise, C., Hunsucker, R. D., Sofko, G., Koehler, J., Nielsen, E., Pellinen, R., Walker, A. D., Sato, N., and Yamagishi, H.: DARN/SuperDARN – A global view of the dynamics of high-latitude convection, Space Sci. Rev., 71, 761–796, https://doi.org/10.1007/BF00751350, 1995. a
Hecht, J. H.: RENU2 photometer and model data, [data set], available at: http://mirl.sr.unh.edu/projects_renu2/FlightData/Hecht/, last access: 31 August 2021. a
Hecht, J. H., Clemmons, J. H., Lessard, M. R., Kenward, D. L., Sadler, F. B., Fritz, B. A., Evans, J. S., and Lynch, K. A.: A New Technique for Estimating The Lifetime of Bursts of Electron Precipitation From Sounding Rocket Measurements, Geophys. Res. Lett., 47, e2019GL082894, https://doi.org/10.1029/2019gl082894, 2019. a, b, c, d, e, f, g
Herlingshaw, K., Baddeley, L. J., Oksavik, K., Lorentzen, D. A., and Bland, E. C.: A Study of Automatically Detected Flow Channels in the Polar Cap Ionosphere, J. Geophys. Res., 124, 9430–9447, https://doi.org/10.1029/2019JA026916, 2019. a
Hock, R. A., Chamberlin, P. C., Woods, T. N., Crotser, D., Eparvier, F. G., Woodraska, D. L., and Woods, E. C.: Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results, Sol. Phys., 275, 145–178, https://doi.org/10.1007/s11207-010-9520-9, 2012. a
Hunten, D. M.: Sunlit aurora and the ion: A personal perspective, Planet. Space Sci., 51, 887–890, https://doi.org/10.1016/S0032-0633(03)00079-5, 2003. a, b, c
Itikawa, Y., Hayashi, M., Ichimura, A., Onda, K., Sakimoto, K., Takayanagi, K., Nakamura, M., Nishimura, H., and Takayanagi, T.: Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules, J. Phys. Chem. Ref. Data, 15, 985–1010, https://doi.org/10.1063/1.555762, 1986. a, b, c, d, e
Johnsen, M. G., Lorentzen, D. A., Holmes, J. M., and Løvhaug, U. P.: A model based method for obtaining the open/closed field line boundary from the cusp auroral 6300 Å[OI] red line, J. Geophys. Res., 117, A03319, https://doi.org/10.1029/2011JA016980, 2012. a
Jokiaho, O., Lanchester, B. S., and Ivchenko, N.: Resonance scattering by auroral : steady state theory and observations from Svalbard, Ann. Geophys., 27, 3465–3478, https://doi.org/10.5194/angeo-27-3465-2009, 2009. a
Jokiaho, O.-P.: Spectral modelling of molecular nitrogen in aurora, Doctoral thesis, University of Southampton, available at: http://eprints.soton.ac.uk/161195/ (last access: 31 August 2021), 2009. a
Kenward, D. R.: The Impact of Fine Scale Drivers on Upwelling Processes, PhD thesis, University of New Hampshire, Ann Arbor, United States, available at: https://www.proquest.com/dissertations-theses/impact-fine-scale-drivers-on-upwelling-processes/docview/2423440975/se-2?accountid=17260 (last access: 20 September 2021), 130 pp., 2020. a, b, c
The Laboratory for Atmospheric and Space Physics:
Solar Dynamics Observatory (SDO) Extreme
Ultraviolet Variability Experiment (EVE) level 2 data, version 6, the Laboratory for Atmospheric and Space Physics [data set], Boulder, Colorado, available at: https://lasp.colorado.edu/eve/data_access/index.html, (last access: 31 August 2021), 2017. a
Lessard, M. R., Fritz, B., Sadler, B., Cohen, I., Kenward, D., Godbole, N., Clemmons, J. H., Hecht, J. H., Lynch, K. A., Harrington, M., Roberts, T. M., Hysell, D., Crowely, G., Sigernes, F., Syrjäsuo, M., Ellingsen, P., Partamies, N., Moen, J., Clausen, L., Oksavik, K., Yeoman, T.: Overview of the Rocket Experiment for Neutral Upwelling Sounding Rocket 2 (RENU2), Geophys. Res. Lett., 47, e2018GL081885, https://doi.org/10.1029/2018GL081885, 2020. a, b, c, d
Lessard, M. R., Fritz, B., Sadler, B., Cohen, I., Kenward, D., Godbole, N., Clemmons, J. H., Hecht, J. H., Lynch, K. A., Harrington, M., Roberts, T. M., Hysell, D., Crowley, G., Sigernes, F., Syrjäsuo, M., Ellingsen, P., Partamies, N., Moen, J., Clausen, L., Oksavik, K., and Yeoman, T.: RENU2 sounding rocket data, NASA [data set], available at: https://spdf.gsfc.nasa.gov, last access: 31 August 2021. a
Lorentzen, D. A., Kintner, P. M., Moen, J., Sigernes, F., Oksavik, K., Ogawa, Y., and Holmes, J.: Pulsating dayside aurora in relation to ion upflow events during a northward interplanetary magnetic field (IMF) dominated by a strongly negative IMF By, J. Geophys. Res., 112, 1–12, https://doi.org/10.1029/2006JA011757, 2007. a
Lorentzen, D. A., Moen, J., Oksavik, K., Sigernes, F., Saito, Y., and Johnsen, M. G.: In situ measurement of a newly created polar cap patch, J. Geophys. Res., 115, 1–11, https://doi.org/10.1029/2010JA015710, 2010. a
Lühr, H., Rother, M., Köhler, W., Ritter, P., and Grunwaldt, L.: Thermospheric up-welling in the cusp region: Evidence from CHAMP observations, Geophys. Res. Lett., 31, 6805, https://doi.org/10.1029/2003GL019314, 2004. a, b
Lund, E. J., Lessard, M. R., Sigernes, F., Lorentzen, D. A., Oksavik, K., Kintner, P. M., Lynch, K. A., Huang, D. H., Zhang, B. C., Yang, H. G., and Ogawa, Y.: Electron temperature in the cusp as measured with the SCIFER-2 sounding rocket, J. Geophys. Res., 117, A06326, https://doi.org/10.1029/2011JA017404, 2012. a
Moen, J., Oksavik, K., and Carlson, H. C.: On the relationship between ion upflow events and cusp auroral transients, Geophys. Res. Lett., 31, 1–5, https://doi.org/10.1029/2004GL020129, 2004. a
Omholt, A.: The Optical Aurora,
Springer, Berlin Heidelberg, https://doi.org/10.1007/978-3-642-46269-6, 1971. a
Pesnell, W. D., Thompson, B. J., and Chamberlin, P. C.: The Solar Dynamics Observatory (SDO), Sol. Phys., 275, 3–15, https://doi.org/10.1007/s11207-011-9841-3, 2012. a, b
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107, 1–16, https://doi.org/10.1029/2002JA009430, 2002. a
Remick, K., Smith, R., and Lummerzheim, D.: The significance of resonant scatter in the measurement of first negative 0–1 emissions during auroral activity, J. Atmos. Sol.-Terr. Phys., 63, 295–308, https://doi.org/10.1016/S1364-6826(00)00233-9, 2001.
a
Romick, G. J., Yee, J. H., Morgan, M. F., Morrison, D., Paxton, L. J., and Meng, C. I.: Polar cap optical observations of topside (>900 km) molecular nitrogen ions, Geophys. Res. Lett., 26, 1003–1006, https://doi.org/10.1029/1999GL900091, 1999. a, b
Russell, C. T. and Elphic, R. C.: Initial ISEE magnetometer results: magnetopause observations, Space Sci. Rev., 22, 681–715, https://doi.org/10.1007/BF00212619, 1978. a
Sadler, F. B., Lessard, M., Lund, E., Otto, A., and Lühr, H.: Auroral precipitation/ion upwelling as a driver of neutral density enhancement in the cusp, J. Atmos. Sol.-Terr. Phys., 87–88, 82–90, https://doi.org/10.1016/j.jastp.2012.03.003, 2012. a, b
Sandholt, P. E. and Farrugia, C. J.: Poleward moving auroral forms (PMAFs) revisited: responses of aurorae, plasma convection and Birkeland currents in the pre- and postnoon sectors under positive and negative IMF By conditions, Ann. Geophys., 25, 1629–1652, https://doi.org/10.5194/angeo-25-1629-2007, 2007. a, b, c
Strickland, D., Bishop, J., Evans, J., Majeed, T., Shen, P., Cox, R., Link, R., and Huffman, R.: Atmospheric Ultraviolet Radiance Integrated Code (AURIC): theory, software architecture, inputs, and selected results, J. Quant. Spectrosc. Ra., 62, 689–742, https://doi.org/10.1016/S0022-4073(98)00098-3, 1999. a
Strickland, D. J., Daniell, R. E., Jasperse, J. R., and Basu, B.: Transport-Theoretic Model for the Electron-Proton-Hydrogen Atom Aurora, 2. Model Results, J. Geophys. Res., 98, 21533–21548, https://doi.org/10.1029/93JA01645, 1993. a
Tabata, T., Shirai, T., Sataka, M., and Kubo, H.: Analytic cross sections for electron impact collisions with nitrogen molecules, Atom. Data Nucl. Data, 92, 375–406, https://doi.org/10.1016/j.adt.2006.02.002, 2006. a
Woods, T. N., Eparvier, F. G., Hock, R., Jones, A. R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W. K., and Viereck, R.: Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments, Sol. Phys., 275, 115–143, https://doi.org/10.1007/s11207-009-9487-6, 2012. a
Yau, A. W., Whalen, B. A., Goodenough, C., Sagawa, E., and Mukai, T.: EXOS D (Akebono) observations of molecular NO+ and upflowing ions in the high-altitude auroral ionosphere, J. Geophys. Res., 98, 11205, https://doi.org/10.1029/92ja02019, 1993. a
Short summary
Using the RENU2 rocket and ground-based instruments, we show that significant parts of the blue aurora above Svalbard at the time of launch were sunlit aurora. A sunlit aurora occurs when nitrogen molecules are ionised by extreme UV sunlight and subsequently hit by electrons from the Sun, resulting in blue and violet emissions. Understanding the source of an auroral emission gives insight into the interaction between the Sun and the Earth's upper atmosphere.
Using the RENU2 rocket and ground-based instruments, we show that significant parts of the blue...