Articles | Volume 39, issue 4
https://doi.org/10.5194/angeo-39-721-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-721-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Steepening of magnetosonic waves in the inner coma of comet 67P/Churyumov–Gerasimenko
Katharina Ostaszewski
CORRESPONDING AUTHOR
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
Karl-Heinz Glassmeier
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
Max-Planck-Institut fur Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
Charlotte Goetz
ESTEC, European Space Agency, Keplerlaan 1, 2201AZ Noordwijk, the Netherlands
Philip Heinisch
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
Pierre Henri
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR7328 CNRS/Université d'Orléans/CNES, Orléans, France
Laboratoire Lagrange, OCA, UCA, CNRS, Nice, France
Sang A. Park
Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA, USA
Hendrik Ranocha
Computer Electrical and Mathematical Science and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
present address: Applied Mathematics: Institute of Analysis and Numerics, University of Münster, Münster, Germany
Ingo Richter
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
Martin Rubin
Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Bruce Tsurutani
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
Related authors
No articles found.
Rumi Nakamura, Thierry Dudok de Wit, Geraint H. Jones, Matt G. G. T. Taylor, Nicolas C. Andre, Charlotte Goetz, Lina Z. Hadid, Laura A. Hayes, Heli Hietala, Caitriona M. Jackman, Larry Kepko, Aurelie Marchaudon, Adam Masters, Mathew Owens, Noora Partamies, Stefaan Poedts, Jonathan Rae, Yuri Shprits, Manuela Temmer, Daniel Verscharen, and Robert F. Wimmer-Schweingruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-3814, https://doi.org/10.5194/egusphere-2025-3814, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Heliophysics spans a wide range of disciplines covering the study of the Sun and the different Solar System bodies, such as Earth and other planets, moons, comets, and asteroids, and their interactions with the Sun, focusing on plasma and atmospheric processes. A grass-roots effort has been recently started toward establishing a European Heliophysics Community (https://www.heliophysics.eu/). This white paper outlines the motivation, priorities, and a future vision of Heliophysics in Europe.
Fernando L. Guarnieri, Bruce T. Tsurutani, Rajkumar Hajra, Ezequiel Echer, and Gurbax S. Lakhina
Nonlin. Processes Geophys., 32, 75–88, https://doi.org/10.5194/npg-32-75-2025, https://doi.org/10.5194/npg-32-75-2025, 2025
Short summary
Short summary
On February 03 2022, SpaceX launched a new group of satellites for its Starlink constellation. This launch simultaneously released 49 satellites into orbits between 200 km and 250 km height. The launches occurred during a geomagnetic storm that was followed by a second storm. There was an immediate loss of 32 satellites. The satellite losses may have been caused by an unusually high level of atmospheric drag (unexplained by current theory or modeling) or a high level of satellite collisions.
Ariel Tello Fallau, Charlotte Goetz, Cyril Simon Wedlund, Martin Volwerk, and Anja Moeslinger
Ann. Geophys., 41, 569–587, https://doi.org/10.5194/angeo-41-569-2023, https://doi.org/10.5194/angeo-41-569-2023, 2023
Short summary
Short summary
The plasma environment of comet 67P provides a unique laboratory to study plasma phenomena in the solar system. Previous studies have reported the existence of mirror modes at 67P but no further systematic investigation has so far been done. This study aims to learn more about these waves. We investigate the magnetic field measured by Rosetta and find 565 mirror mode signatures. The detected mirror modes are likely generated upstream of the observation and have been modified by the plasma.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Charlotte Goetz, Herbert Gunell, Fredrik Johansson, Kristie LLera, Hans Nilsson, Karl-Heinz Glassmeier, and Matthew G. G. T. Taylor
Ann. Geophys., 39, 379–396, https://doi.org/10.5194/angeo-39-379-2021, https://doi.org/10.5194/angeo-39-379-2021, 2021
Short summary
Short summary
Boundaries in the plasma around comet 67P separate regions with different properties. Many have been identified, including a new boundary called an infant bow shock. Here, we investigate how the plasma and fields behave at this boundary and where it can be found. The main result is that the infant bow shock occurs at intermediate activity and intermediate distances to the comet. Most plasma parameters behave as expected; however, some inconsistencies indicate that the boundary is non-stationary.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Herbert Gunell, Charlotte Goetz, Elias Odelstad, Arnaud Beth, Maria Hamrin, Pierre Henri, Fredrik L. Johansson, Hans Nilsson, and Gabriella Stenberg Wieser
Ann. Geophys., 39, 53–68, https://doi.org/10.5194/angeo-39-53-2021, https://doi.org/10.5194/angeo-39-53-2021, 2021
Short summary
Short summary
When the magnetised solar wind meets the plasma surrounding a comet, the magnetic field is enhanced in front of the comet, and the field lines are draped around it. This happens because electric currents are induced in the plasma. When these currents flow through the plasma, they can generate waves. In this article we present observations of ion acoustic waves, which is a kind of sound wave in the plasma, detected by instruments on the Rosetta spacecraft near comet 67P/Churyumov–Gerasimenko.
Cited articles
Acton, C. H.: Ancillary data services of NASA's Navigation and Ancillary
Information Facility, Planet. Space Sci., 44, 65–70,
https://doi.org/10.1016/0032-0633(95)00107-7, 1996. a
Balsiger, H., Altwegg, K., Bochsler, P., Eberhardt, P., Fischer, J.,
Graf, S., Jäckel, A., Kopp, E., Langer, U., Mildner, M.,
Müller, J., Riesen, T., Rubin, M., Scherer, S., Wurz, P.,
Wüthrich, S., Arijs, E., Delanoye, S., de Keyser, J., Neefs,
E., Nevejans, D., Rème, H., Aoustin, C., Mazelle, C.,
Médale, J. L., Sauvaud, J. A., Berthelier, J. J., Bertaux, J. L.,
Duvet, L., Illiano, J. M., Fuselier, S. A., Ghielmetti, A. G.,
Magoncelli, T., Shelley, E. G., Korth, A., Heerlein, K., Lauche,
H., Livi, S., Loose, A., Mall, U., Wilken, B., Gliem, F., Fiethe,
B., Gombosi, T. I., Block, B., Carignan, G. R., Fisk, L. A., Waite,
J. H., Young, D. T., and Wollnik, H.: Rosina Rosetta Orbiter
Spectrometer for Ion and Neutral Analysis, Space Sci. Rev., 128,
745–801, https://doi.org/10.1007/s11214-006-8335-3, 2007. a
Behar, E., Nilsson, H., Wieser, G. S., Nemeth, Z., Broiles, T. W., and Richter,
I.: Mass loading at 67P/Churyumov-Gerasimenko: A case study, Geophys.
Res. Lett, 43, 1411–1418, https://doi.org/10.1002/2015GL067436, 2016. a
Behlke, R., André, M., Bale, S. D., Pickett, J. S., Cattell, C. A., Lucek,
E. A., and Balogh, A.: Solitary structures associated with short
large-amplitude magnetic structures (SLAMS) upstream of the Earth's
quasi-parallel bow shock, Geophys. Res. Lett., 31, L16805,
https://doi.org/10.1029/2004GL019524, 2004. a
Besse, S., Vallat, C., Barthelemy, M., Coia, D., Costa, M., Marchi, G. D.,
Fraga, D., Grotheer, E., Heather, D., Lim, T., Martinez, S., Arviset, C.,
Barbarisi, I., Docasal, R., Macfarlane, A., Rios, C., Saiz, J., and Vallejo,
F.: ESA's Planetary Science Archive: Preserve and present reliable
scientific data sets, Planet. Space Sci., 150, 131–140,
https://doi.org/10.1016/j.pss.2017.07.013, 2018. a
Bieler, A., Altwegg, K., Balsiger, H., Berthelier, J.-J., Calmonte, U., Combi,
M., De Keyser, J., Fiethe, B., Fougere, N., Fuselier, S., Gasc, S.,
Gombosi, T., Hansen, K., Hässig, M., Huang, Z., Jäckel, A., Jia, X., Le
Roy, L., Mall, U. A., Rème, H., Rubin, M., Tenishev, V., Tóth, G., Tzou,
C.-Y., and Wurz, P.: Comparison of 3D kinetic and hydrodynamic models to
ROSINA-COPS measurements of the neutral coma of 67P/Churyumov-Gerasimenko,
Astron. Astrophys., 583, A7, https://doi.org/10.1051/0004-6361/201526178, 2015. a
Biermann, L., Brosowski, B., and Schmidt, H. U.: The interactions of the
solar wind with a comet, Solar Phys., 1, 254–284,
https://doi.org/10.1007/BF00150860, 1967. a
Buti, B. and Eviatar, A.: Plasma Conductivity for Comet Halley's
Ionosphere, Astrophys. J. Lett., 336, L71, https://doi.org/10.1086/185364,
1989. a
Butterworth, S.: On the Theory of Filter Amplifiers, Experimental Wireless
and the Wireless Engineer, 7, 536–541, 1930. a
Carr, C., Cupido, E., Lee, C., Balogh, A., Beek, T., Burch, J., Dunford, C.,
Eriksson, A., Gill, R., Glassmeier, K., Lagoutte, D., Lundin, R., Lundin, K.,
Lybekk, B., Michau, J., Musmann, G., Nilsson, H., Pollock, C., and Trotignon,
J.: RPC: The Rosetta plasma consortium, Space Sci. Rev., 128,
629–647, https://doi.org/10.1007/s11214-006-9136-4, 2007. a
Chree, C.: Some Phenomena of Sunspots and of Terrestrial Magnetism at Kew
Observatory, Philos. T. R. Soc. Lond.
A, 212, 75–116, https://doi.org/10.1098/rsta.1913.0003, 1913. a
Clawpack Development Team: Clawpack software, https://doi.org/10.5281/zenodo.3528429,
version 5.6.1, 2019. a
Clawpack development team: Clawpack (Conservation Laws Package), available at: http://www.clawpack.org, last access: 12 May 2020a. a
Clawpack development team: Clawpack Repositories, available at: https://github.com/clawpack, last access: 12 May 2020b. a
Cravens, T. E.: Theory and observations of cometary ionospheres, Adv. Space Res., 7, 147–158, https://doi.org/10.1016/0273-1177(87)90212-2, 1987. a
Edberg, N. J. T., Alho, M., André, M., Andrews, D. J., Behar, E., Burch,
J. L., Carr, M., Cupido, E., Engelhardt, I., Eriksson, I., Glassmeier, K.,
Goetz, C., Goldstein, R., Henri, P., Johansson, F. L., Koenders, C., Mandt,
K., Nilsson, H., Odelstad, E., Richter, I., Simon Wedlund, C.,
Stenberg Wieser, G., Szego, K., Vigren, E., and Volwerk, M.: CME impact on
comet 67P/Churyumov-Gerasimenko, Mon. Not. R. Astron.
Soc., 462, S45–S56, https://doi.org/10.1093/mnras/stw2112, 2016. a, b, c
Engelhardt, I. A. D., Eriksson, A. I., Odelstad, E., Stenberg Wieser, G.,
Nilsson, H., Goetz, C., Rubin, M., Henri, P., Hajra, R., and Vallières, X.:
Plasma density structures at comet 67P/Churyumov–Gerasimenko, Mon.
Not. R. Astron. Soc., 477, 1296–1307,
https://doi.org/10.1093/mnras/sty765, 2018. a, b, c, d, e, f, g, h, i, j
ESA: Planetary Science Archive, available at: https://archives.esac.esa.int/psa/, last access: 15 January 2020. a
Fontenla, J. M., Avrett, E. H., and Loeser, R.: Energy Balance in the
Solar Transition Region. III. Helium Emission in Hydrostatic,
Constant-Abundance Models with Diffusion, Astrophys. J., 406, 319,
https://doi.org/10.1086/172443, 1993. a
Fowler, C. M., Andersson, L., Ergun, R. E., Harada, Y., Hara, T.,
Collinson, G., Peterson, W. K., Espley, J., Halekas, J., Mcfadden,
J., Mitchell, D. L., Mazelle, C., Benna, M., and Jakosky, B. M.:
MAVEN Observations of Solar Wind-Driven Magnetosonic Waves Heating the
Martian Dayside Ionosphere, J. Geophys. Res.-Space,
123, 4129–4149, https://doi.org/10.1029/2018JA025208, 2018. a
Gary, S. P.: Electromagnetic Ion/Ion Instabilities and Their Consequences
in Space Plasmas – a Review, Space Sci. Rev., 56, 373–415,
https://doi.org/10.1007/BF00196632, 1991. a, b
Giacalone, J., Schwartz, S. J., and Burgess, D.: Observations of suprathermal
ions in association with SLAMS, Geophys. Res. Lett., 20, 149–152,
https://doi.org/10.1029/93GL00067, 1993. a
Glassmeier, K.-H.: Interaction of the solar wind with comets: a Rosetta
perspective, Philos. T. R. Soc. Lond.
A, 375, 20160256,
https://doi.org/10.1098/rsta.2016.0256, 2017. a, b, c, d
Glassmeier, K.-H., Boehnhardt, H., Koschny, D., Kührt, E., and Richter, I.:
The Rosetta Mission: Flying Towards the Origin of the Solar System, Space
Sci. Rev., 128, 1–21, https://doi.org/10.1007/s11214-006-9140-8,
2007a. a
Glassmeier, K.-H., Richter, I., Diedrich, A., Musmann, G., Auster, U.,
Motschmann, U., Balogh, A., Carr, C., Cupido, E., Coates, A., Rother, M.,
Schwingenschuh, K., Szegö, K., and Tsurutani, B.: RPC-MAG The Fluxgate
Magnetometer in the ROSETTA Plasma Consortium, Space Science Reviews, 128,
649–670, https://doi.org/10.1007/s11214-006-9114-x, 2007b. a
Goetz, C., Koenders, C., Frühauff, D., Richter, I., Glassmeier, K. H.,
Tsurutani, B., Volwerk, M., Hansen, K. C., Burch, J., Carr, C., Eriksson, A.,
Güttler, C., Sierks, H., Henri, P., Nilsson, H., and Rubin, M.: Structure
and evolution of the diamagnetic cavity at comet 67P/Churyumov–Gerasimenko,
Mon. Not. R. Astron. Soc., 462, S459–S467,
https://doi.org/10.1093/mnras/stw3148, 2016a. a, b, c
Goetz, C., Koenders, C., Richter, I., Altwegg, K., Burch, J., Carr, C., Cupido,
E., Eriksson, A., Güttler, C., Henri, P., Mokashi, P., Nemeth, Z., Nilsson,
H., Rubin, M., Sierks, H., Tsurutani, B., Vallat, C., Volwerk, M., and
Glassmeier, K.-H.: First detection of a diamagnetic cavity at comet
67P/Churyumov-Gerasimenko, Astron. Astrophys., 588, A24,
https://doi.org/10.1051/0004-6361/201527728, 2016b. a
Goetz, C., Volwerk, M., Richter, I., and Glassmeier, K.-H.: Evolution of the
magnetic field at comet 67P/Churyumov–Gerasimenko, Mon. Not.
R. Astron. Soc., 469, S268–S275, https://doi.org/10.1093/mnras/stx1570,
2017. a, b, c
Goetz, C., Tsurutani, B. T., Henri, P., Volwerk, M., Behar, E., Edberg, N.
J. T., Eriksson, A., Goldstein, R., Mokashi, P., Nilsson, H., Richter, I.,
Wellbrock, A., and Glassmeier, K. H.: Unusually high magnetic fields in the
coma of 67P/Churyumov-Gerasimenko during its high-activity phase, Astron. Astrophys., 630, A38, https://doi.org/10.1051/0004-6361/201833544, 2019. a, b
Goetz, C., Plaschke, F., and Taylor, M. G. G. T.: Singing Comet Waves in
a Solar Wind Convective Electric Field Frame, Geophys. Res. Lett.,
47, e87418, https://doi.org/10.1029/2020GL087418, 2020. a
Greenstadt, E., Le, G., and Strangeway, R.: ULF waves in the foreshock,
Adv. Space Res., 15, 71–84,
https://doi.org/10.1016/0273-1177(94)00087-H, 1995. a
Gunell, H., Nilsson, H., Hamrin, M., Eriksson, A., Odelstad, E., Maggiolo, R.,
Henri, P., Vallieres, X., Altwegg, K., Tzou, C.-Y., Rubin, M., Glassmeier,
K.-H., Stenberg Wieser, G., Simon Wedlund, C., De Keyser, J., Dhooghe,
F., Cessateur, G., and Gibbons, A.: Ion acoustic waves at comet
67P/Churyumov-Gerasimenko – Observations and computations, Astron.
Astrophys., 600, A3, https://doi.org/10.1051/0004-6361/201629801, 2017. a, b, c
Hada, T., Kennel, C. F., and Terasawa, T.: Excitation of compressional waves
and the formation of shocklets in the Earth's foreshock, J.
Geophys. Res.-Space, 92, 4423–4435,
https://doi.org/10.1029/JA092iA05p04423, 1987. a
Haerendel, G.: Plasma Transport Near the Magnetic Cavity Surrounding Comet
Halley, Geophys. Res. Lett., 14, 673–676,
https://doi.org/10.1029/GL014i007p00673, 1987. a
Hajra, R., Henri, P., Myllys, M., Héritier, K. L., Galand, M., Wedlund, S.,
C., Breuillard, H., Behar, E., Edberg, N. J. T., Goetz, C., Nilsson, H.,
Eriksson, A. I., Goldstein, R., Tsurutani, B. T., Moré, J., Vallières, X.,
and Wattieaux, G.: Cometary plasma response to interplanetary corotating
interaction regions during 2016 June–September: a quantitative study by the
Rosetta Plasma Consortium, Monthly Notices of the Royal Astronomical
Society, 480, 4544–4556, https://doi.org/10.1093/mnras/sty2166, 2018a. a
Hajra, R., Henri, P., Vallières, X., Moré, J., Gilet, N., Wattieaux, G.,
Goetz, C., Richter, I., Tsurutani, B. T., Gunell, H., Nilsson, H., Eriksson,
A. I., Nemeth, Z., Burch, J. L., and Rubin, M.: Dynamic unmagnetized plasma
in the diamagnetic cavity around comet 67P/Churyumov–Gerasimenko, Mon.
Not. R. Astron. Soc., 475, 4140–4147,
https://doi.org/10.1093/mnras/sty094, 2018b. a, b, c, d, e, f, g, h, i, j
Hansen, K. C., Bagdonat, T., Motschmann, U., Alexand er, C., Combi,
M. R., Cravens, T. E., Gombosi, T. I., Jia, Y. D., and Robertson,
I. P.: The Plasma Environment of Comet 67P/Churyumov-Gerasimenko Throughout
the Rosetta Main Mission, Space Sci. Rev., 128, 133–166,
https://doi.org/10.1007/s11214-006-9142-6, 2007. a
Hansen, K. C., Bieler, A., Toth, G., Combi, M. R., Fougere, N., Gombosi, T. I.,
Tenishev, V., Shou, Y., Huang, Z., Nilsson, H., Snodgrass, C., Simon Wedlund,
C., Tzou, C.-Y., Altwegg, K., Le Roy, L., Rubin, M., Gasc, S., Calmonte, U.,
Bockelée-Morvan, D., Berthelier, J.-J., Biver, N., Capaccioni, F.,
De Keyser, J., Fiethe, B., Fuselier, S. A., Lee, S., and the ROSINA team:
Evolution of water production of 67P/Churyumov–Gerasimenko: an empirical
model and a multi-instrument study, Mon. Not. R.
Astron. Soc., 462, S491–S506, https://doi.org/10.1093/mnras/stw2413, 2016. a
Heinisch, P., Auster, H.-U., Richter, I., Fornacon, K.-H., Glassmeier, K.-H.,
Haerendel, G., Apathy, I., and Cupido, E.: Joint two-point observations of
LF-waves at 67P/Churyumov—Gerasimenko, Mon. Not. R.
Astron. Soc., 469, S68–S72, https://doi.org/10.1093/mnras/stx1175, 2017. a
Henri, P., Hajra, R., Vallières, X., Wattieaux, G., Goetz, C., Richter, I.,
Glassmeier, K.-H., Beth, A., Carr, C., Galand, M., Rubin, M., Eriksson,
A. I., Vigren, E., Nemeth, Z., Burch, J., Nilsson, H., and Tsurutani, B.:
Diamagnetic region(s): structure of the unmagnetized plasma around Comet
67P/CG, Mon. Not. R. Astron. Soc., 469, S372–S379,
https://doi.org/10.1093/mnras/stx1540, 2017. a, b, c
Heritier, K. L., Altwegg, K., Balsiger, H., Berthelier, J.-J., Beth, A.,
Bieler, A., Biver, N., Calmonte, U., Combi, M. R., De Keyser, J., Eriksson,
A. I., Fiethe, B., Fougere, N., Fuselier, S. A., Galand, M., Gasc, S.,
Gombosi, T. I., Hansen, K. C., Hassig, M., Kopp, E., Odelstad, E., Rubin, M.,
Tzou, C.-Y., Vigren, E., and Vuitton, V.: Ion composition at comet 67P near
perihelion: Rosetta observations and model-based interpretation, Mon.
Not. R. Astron. Soc., 469, S427–S442,
https://doi.org/10.1093/mnras/stx1912, 2017. a
Itikawa, Y. and Mason, N.: Cross Sections for Electron Collisions with Water
Molecules, J. Phys. Chem. Ref. Data, 34, 1–22,
https://doi.org/10.1063/1.1799251, 2005. a, b
Ketcheson, D. I., Parsani, M., and LeVeque, R. J.: High-order wave propagation
algorithms for hyperbolic systems, SIAM J. Sci. Comput., 35,
A351–A377, https://doi.org/10.1137/110830320, 2013. a, b
Khodachenko, M. L., Arber, T. D., Rucker, H. O., and Hanslmeier, A.:
Collisional and viscous damping of MHD waves in partially ionized plasmas of
the solar atmosphere, Astron. Astrophys., 422, 1073–1084,
https://doi.org/10.1051/0004-6361:20034207, 2004. a
Koenders, C., Glassmeier, K.-H., Richter, I., Motschmann, U., and Rubin, M.:
Revisiting cometary bow shock positions, Planet. Space Sci., 87, 85–95, https://doi.org/10.1016/j.pss.2013.08.009, 2013. a, b
Koenders, C., Glassmeier, K.-H., Richter, I., Ranocha, H., and Motschmann, U.:
Dynamical features and spatial structures of the plasma interaction region of
67P/Churyumov–Gerasimenko and the solar wind, Planet. Space Sci.,
105, 101–116, https://doi.org/10.1016/j.pss.2014.11.014, 2015. a, b
Lai, I.-L., Ip, W.-H., Lee, J.-C., Lin, Z.-Y., Vincent, J.-B.,
Oklay, N., Sierks, H., Barbieri, C., Lamy, P., Rodrigo, R.,
Koschny, D., Rickman, H., Keller, H. U., Agarwal, J., Barucci, M.
A., Bertaux, J.-L., Bertini, I., Bodewits, D., Boudreault, S.,
Cremonese, G., Da Deppo, V., Davidsson, B., Debei, S., De Cecco,
M., Deller, J., Fornasier, S., Fulle, M., Groussin, O.,
Gutiérrez, P. J., Güttler, C., Hofmann, M., Hviid, S. F., Jorda,
L., Knollenberg, J., Kovacs, G., Kramm, J.-R., Kührt, E.,
Küppers, M., Lara, L. M., Lazzarin, M., López-Moreno, J. J.,
Marzari, F., Naletto, G., Shi, X., Tubiana, C., and Thomas, N.:
Seasonal variations in source regions of the dust jets on comet
67P/Churyumov-Gerasimenko, Astron. Astrophys., 630, A17,
https://doi.org/10.1051/0004-6361/201732094, 2019. a, b
LeVeque, R. J.: Finite Volume Methods for Hyperbolic Problems, Cambridge
Texts in Applied Mathematics, Cambridge University Press,
https://doi.org/10.1017/CBO9780511791253, 2002. a
Lucek, E. A., Horbury, T. S., Balogh, A., Dandouras, I., and Rème, H.: Cluster observations of structures at quasi-parallel bow shocks, Ann. Geophys., 22, 2309–2313, https://doi.org/10.5194/angeo-22-2309-2004, 2004. a
Läuter, M., Kramer, T., Rubin, M., and Altwegg, K.: The gas production of 14
species from comet 67P/Churyumov–Gerasimenko based on DFMS/COPS data from
2014 to 2016, Mon. Not. R. Astron. Soc., 498,
3995–4004, https://doi.org/10.1093/mnras/staa2643, 2020. a
Mandt, K. E., Eriksson, A., Beth, A., Galand, M., and Vigren, E.:
Influence of collisions on ion dynamics in the inner comae of four comets,
Astron. Astrophys., 630, A48, https://doi.org/10.1051/0004-6361/201834828, 2019. a
Mann, G., Lühr, H., and Baumjohann, W.: Statistical analysis of short
large-amplitude magnetic field structures in the vicinity of the
quasi-parallel bow shock, J. Geophys. Res.-Space, 99,
13315–13323, https://doi.org/10.1029/94JA00440, 1994. a
Marquardt, D. W.: An Algorithm for Least-Squares Estimation of Nonlinear
Parameters, J. Soc. Ind. Appl. Math.,
11, 431–441, 1963. a
Martínez-Gómez, D., Soler, R., and Terradas, J.: Multi-fluid
Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and
Plasma Heating, Astrophys. J., 856, 16,
https://doi.org/10.3847/1538-4357/aab156, 2018. a
Masunaga, K., Nilsson, H., Behar, E., Stenberg Wieser, G., Wieser,
M., and Goetz, C.: Flow pattern of accelerated cometary ions inside and
outside the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko, Astron. Astrophys., 630, A43, https://doi.org/10.1051/0004-6361/201935122, 2019. a
Meier, P., Glassmeier, K.-H., and Motschmann, U.: Modified ion-Weibel instability as a possible source of wave activity at Comet 67P/Churyumov-Gerasimenko, Ann. Geophys., 34, 691–707, https://doi.org/10.5194/angeo-34-691-2016, 2016. a, b
Mendis, D. A., Smith, E. J., Tsurutani, B. T., Slavin, J. A., Jones, D. E., and
Siscoe, G. L.: Comet-solar wind interaction: Dynamical length scales and
models, Geophys. Res. Lett., 13, 239–242,
https://doi.org/10.1029/GL013i003p00239, 1986. a, b
Motschmann, U. and Glassmeier, K.-H.: Nongyrotropic distribution of pickup
ions at comet P/Grigg-Skjellerup: A possible source of wave activity,
J. Geophys. Res.-Space, 98, 20977–20983,
https://doi.org/10.1029/93JA02533, 1993. a, b
Nabert, C.: Reduzierte Modellbildung für die dynamische Inversion von
Magnetfeldmessungen an Planeten, PhD thesis, Technische Univeristät
Braunschweig, https://doi.org/10.24355/dbbs.084-201708020931, 2017. a, b, c
Narita, Y.: Review article: Wave analysis methods for space plasma experiment, Nonlin. Processes Geophys., 24, 203–214, https://doi.org/10.5194/npg-24-203-2017, 2017. a
NASA: PDS archive, available at: https://pds.nasa.gov/, last access: 7 April 2020. a
Neubauer, F. M., Glassmeier, K. H., Coates, A. J., and Johnstone, A. D.:
Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup:
Analysis and interpretation, J. Geophys. Res.-Space,
98, 20937–20953, https://doi.org/10.1029/93JA02532, 1993. a
Nilsson, H., Wieser, G. S., Behar, E., Gunell, H., Wieser, M., Galand, M.,
Simon Wedlund, C., Alho, M., Goetz, C., Yamauchi, M., Henri, P., Odelstad,
E., and Vigren, E.: Evolution of the ion environment of comet 67P during the
Rosetta mission as seen by RPC-ICA, Mon. Not. R.
Astron. Soc., 469, S252–S261, https://doi.org/10.1093/mnras/stx1491, 2017. a
Nilsson, H., Williamson, H., Bergman, S., Stenberg Wieser, G., Wieser, M.,
Behar, E., Eriksson, A. I., Johansson, F. L., Richter, I., and Goetz, C.:
Average cometary ion flow pattern in the vicinity of comet 67P from moment
data, Mon. Not. R. Astron. Soc., 498, 5263–5272,
https://doi.org/10.1093/mnras/staa2613, 2020. a
Odelstad, E., Eriksson, A. I., Johansson, F. L., Vigren, E., Henri, P., Gilet,
N., Heritier, K. L., Vallières, X., Rubin, M., and André, M.: Ion Velocity
and Electron Temperature Inside and Around the Diamagnetic Cavity of Comet
67P, J. Geophys. Res.-Space, 123, 5870–5893,
https://doi.org/10.1029/2018JA025542, 2018. a, b
Omidi, N. and Winske, D.: Steepening of kinetic magnetosonic waves into
shocklets: Simulations and consequences for planetary shocks and comets,
J. Geophys. Res.-Space, 95, 2281–2300,
https://doi.org/10.1029/JA095iA03p02281, 1990. a
Ostaszewski, K., Heinisch, P., Richter, I., Kroll, H., Balke, W.-T., Fraga, D.,
and Glassmeier, K.-H.: Pattern recognition in time series for space missions:
A rosetta magnetic field case study, Acta Astronaut., 168, 123–129,
https://doi.org/10.1016/j.actaastro.2019.11.037, 2020. a, b
Ranocha, H., Ostaszewski, K., and Heinisch, P.: Discrete Vector Calculus and
Helmholtz Hodge Decomposition for Classical Finite Difference Summation by
Parts Operators, Communications on Applied Mathematics and Computation, 2,
581–611, https://doi.org/10.1007/s42967-019-00057-2, 2020. a
Richter, I., Koenders, C., Auster, H.-U., Frühauff, D., Götz, C., Heinisch, P., Perschke, C., Motschmann, U., Stoll, B., Altwegg, K., Burch, J., Carr, C., Cupido, E., Eriksson, A., Henri, P., Goldstein, R., Lebreton, J.-P., Mokashi, P., Nemeth, Z., Nilsson, H., Rubin, M., Szegö, K., Tsurutani, B. T., Vallat, C., Volwerk, M., and Glassmeier, K.-H.: Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko, Ann. Geophys., 33, 1031–1036, https://doi.org/10.5194/angeo-33-1031-2015, 2015. a, b, c, d
Richter, I., Auster, H.-U., Berghofer, G., Carr, C., Cupido, E., Fornaçon, K.-H., Goetz, C., Heinisch, P., Koenders, C., Stoll, B., Tsurutani, B. T., Vallat, C., Volwerk, M., and Glassmeier, K.-H.: Two-point observations of low-frequency waves at 67P/Churyumov-Gerasimenko during the descent of PHILAE: comparison of RPCMAG and ROMAP, Ann. Geophys., 34, 609–622, https://doi.org/10.5194/angeo-34-609-2016, 2016. a
Roe, P.: Approximate Riemann solvers, parameter vectors, and difference
schemes, J. Comput. Phys., 43, 357–372,
https://doi.org/10.1016/0021-9991(81)90128-5, 1981. a
Sagdeev, R. Z., Shapiro, V. D., Shevchenko, V. I., and Szego, K.: MHD
turbulence in the solar wind-comet interaction region, Geophys. Res.
Lett., 13, 85–88, https://doi.org/10.1029/GL013i002p00085, 1986. a
Schwartz, S. J., Burgess, D., Wilkinson, W. P., Kessel, R. L., Dunlop, M., and
Lühr, H.: Observations of short large-amplitude magnetic structures at a
quasi-parallel shock, J. Geophys. Res.-Space, 97,
4209–4227, https://doi.org/10.1029/91JA02581, 1992. a
Schwenn, R., Ip, W. H., Rosenbauer, H., Balsiger, H., Bühler, F.,
Goldstein, R., Meier, A., and Shelley, E. G.: Ion temperature and flow
profiles in comet P/Halley's close environment, in: Exploration of Halley's
Comet, edited by Grewing, M., Praderie, F., and Reinhard, R., pp. 160–162,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1988. a
Shan, L., Du, A., Tsurutani, B. T., Ge, Y. S., Lu, Q., Mazelle, C., Huang, C.,
Glassmeier, K.-H., and Henri, P.: In Situ Observations of the Formation of
Periodic Collisionless Plasma Shocks from Fast Mode Waves, Astrophys.
J., 888, L17, https://doi.org/10.3847/2041-8213/ab5db3, 2020. a
Shukla, P. K., Eliasson, B., Marklund, M., and Bingham, R.: Nonlinear model
for magnetosonic shocklets in plasmas, Phys. Plasmas, 11, 2311–2313,
https://doi.org/10.1063/1.1690297, 2004. a
Wedlund, C. S., Alho, M., Gronoff, G., Kallio, E., Gunell, H., Nilsson,
H., Lindkvist, J., Behar, E., Stenberg Wieser, G., and Miloch, W. J.:
Hybrid modelling of cometary plasma environments – I. Impact of
photoionisation, charge exchange, and electron ionisation on bow shock and
cometopause at 67P/Churyumov-Gerasimenko, Astron. Astrophys., 604,
A73, https://doi.org/10.1051/0004-6361/201730514, 2017. a
Wedlund, C. S., Behar, E., Nilsson, H., Alho, M.,
Kallio, E., Gunell, H., Bodewits, D., Heritier, K.,
Galand, M., Beth, A., Rubin, M., Altwegg, K.,
Volwerk, M., Gronoff, G., and Hoekstra, R.: Solar wind
charge exchange in cometary atmospheres – III. Results from the Rosetta
mission to comet 67P/Churyumov-Gerasimenko, Astron. Astrophys., 630, A37,
https://doi.org/10.1051/0004-6361/201834881, 2019. a
Smith, E. J., Tsurutani, B. T., and Rosenberg, R. L.: Observations of the
interplanetary sector structure up to heliographic latitudes of 16∘: Pioneer
11, J. Geophys. Res.-Space, 83, 717–724,
https://doi.org/10.1029/JA083iA02p00717, 1978. a
Smith, E. J., Tsurutani, B. T., Slvain, J. A., Jones, D. E., Siscoe, G. L., and
Mendis, D. A.: International Cometary Explorer Encounter with
Giacobini-Zinner: Magnetic Field Observations, Science, 232, 382–385,
https://doi.org/10.1126/science.232.4748.382, 1986. a
Soler, R., Carbonell, M., and Ballester, J. L.: MAGNETOACOUSTIC WAVES IN
A PARTIALLY IONIZED TWO-FLUID PLASMA, Astrophys. J.
Suppl. S., 209, 16, https://doi.org/10.1088/0067-0049/209/1/16, 2013. a
Sonnerup, B. U. O. and Cahill Jr., L. J.: Magnetopause Structure and
Attitude from Explorer 12 Observations, J. Geophys. Res., 72,
171, https://doi.org/10.1029/JZ072i001p00171, 1967. a
Sonnerup, B. U. Ö. and Scheible, M.: Minimum and Maximum Variance
Analysis, ISSI Scientific Reports Series, 1, 185–220, 1998. a
Stasiewicz, K., Longmore, M., Buchert, S., Shukla, P. K., Lavraud, B., and
Pickett, J.: Properties of fast magnetosonic shocklets at the bow shock,
Geophys. Res. Lett., 30, 2241, https://doi.org/10.1029/2003GL017971, 2003. a
Stenberg Wieser, G., Odelstad, E., Wieser, M., Nilsson, H., Goetz,
C., Karlsson, T., André, M., Kalla, L., Eriksson, A. I.,
Nicolaou, G., Simon Wedlund, C., Richter, I., and Gunell, H.:
Investigating short-time-scale variations in cometary ions around comet
67P, Mon. Not. R. Astron. Soc., 469, S522–S534,
https://doi.org/10.1093/mnras/stx2133, 2017. a, b
Svalgaard, L. and Wilcox, J. M.: The Hale solar sector boundary., Solar
Phys., 49, 177–185, https://doi.org/10.1007/BF00221492, 1976. a
Szegö, K., Glassmeier, K.-H., Bingham, R., Bogdanov, A. V., Fischer, C. F.,
Haerendel, G., Brinca, A. L., Cravens, T., Dubinin, E., Sauer, K., Fisk,
L. A., Gombosi, T. I., Schwadron, N. A., Isenberg, P., Lee, M. A., Mazelle,
C., Moebius, E., Motschmann, U., Shapiro, V. D., Tsurutani, B. T., and Zank,
G. P.: Physics of Mass Loaded Plasmas, Space Sci. Rev., 94, 429–671,
2000. a, b
Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y., and Yokoyama, T.: Magnetic
field variations in the Jovian magnetotail induced by solar wind dynamic
pressure enhancements, J. Geophys. Res.-Space, 110, A11208,
https://doi.org/10.1029/2004JA010959, 2005. a, b, c
Taylor, M. G. G. T., Altobelli, N., Buratti, B. J., and Choukroun, M.:
The Rosetta mission orbiter science overview: the comet phase,
Philos. T. R. Soc. Lond. A, 375,
20160262, https://doi.org/10.1098/rsta.2016.0262, 2017. a
Timar, A., Nemeth, Z., Szego, K., Dósa, M., Opitz, A., and
Madanian, H.: Estimating the solar wind pressure at comet 67P from Rosetta
magnetic field measurements, J. Space Weather Spac., 9,
A3, https://doi.org/10.1051/swsc/2018050, 2019. a
Trotignon, J. G., Michau, J. L., Lagoutte, D., Chabassière, M.,
Chalumeau, G., Colin, F., Décréau, P. M. E., Geiswiller, J.,
Gille, P., Grard, R., Hachemi, T., Hamelin, M., Eriksson, A.,
Laakso, H., Lebreton, J. P., Mazelle, C., Rand riamboarison, O.,
Schmidt, W., Smit, A., Telljohann, U., and Zamora, P.: RPC-MIP: the
Mutual Impedance Probe of the Rosetta Plasma Consortium, Space Sci.
Rev., 128, 713–728, https://doi.org/10.1007/s11214-006-9005-1, 2007. a
Tsurutani, B. T.: Cometary Plasma Waves and Instabilities, International
Astronomical Union Colloquium, 116, 1171–1210,
https://doi.org/10.1017/S0252921100012872, 1991. a
Tsurutani, B. T. and Rodriguez, P.: Upstream waves and particles – An
overview of ISEE results, J. Geophys. Res., 86, 4317,
https://doi.org/10.1029/JA086iA06p04317, 1981. a
Tsurutani, B. T. and Smith, E. J.: Hydromagnetic waves and instabilities
associated with cometary ion pickup: ICE observations, Geophys. Res.
Lett., 13, 263–266, https://doi.org/10.1029/GL013i003p00263, 1986. a
Tsurutani, B. T., Thorne, R. M., Smith, E. J., Gosling, J. T., and Matsumoto,
H.: Steepened magnetosonic waves at comet Giacobini-Zinner, J.
Geophys. Res.-Space, 92, 11074–11082,
https://doi.org/10.1029/JA092iA10p11074, 1987. a, b, c
Tsurutani, B. T., Smith, E. J., Matsumoto, H., Brinca, A. L., and Omidi, N.:
Highly nonlinear magnetic pulses at comet Giacobini-Zinner, Geophys.
Res. Lett., 17, 757–760,
https://doi.org/10.1029/GL017i006p00757, 1990. a
Tsurutani, B. T., Glassmeier, K. H., and Neubauer, F. M.: An
intercomparison of plasma turbulence at three comets: Grigg-Skjellerup,
Giacobini-Zinner, and Halley, Geophys. Res. Lett., 22, 1149–1152,
https://doi.org/10.1029/95GL00806, 1995. a
Tsurutani, B. T., Echer, E., Richter, I., Koenders, C., and Glassmeier, K.-H.:
SLAMS at comet 19P/Borrelly: DS1 observations, Planet. Space Sci.,
75, 17–27, https://doi.org/10.1016/j.pss.2012.11.002, 2013. a
Tsurutani, B. T., Hajra, R., Tanimori, T., Takada, A., Remya, B., Mannucci,
A. J., Lakhina, G. S., Kozyra, J. U., Shiokawa, K., Lee, L. C., Echer, E.,
Reddy, R. V., and Gonzalez, W. D.: Heliospheric plasma sheet (HPS)
impingement onto the magnetosphere as a cause of relativistic electron
dropouts (REDs) via coherent EMIC wave scattering with possible consequences
for climate change mechanisms, J. Geophys. Res.-Space, 121, 10130–10156, https://doi.org/10.1002/2016JA022499,
2016. a
Tsurutani, B. T., Lakhina, G. S., Sen, A., Hellinger, P., Glassmeier, K.-H.,
and Mannucci, A. J.: A Review of Alfvénic Turbulence in High-Speed Solar
Wind Streams: Hints From Cometary Plasma Turbulence, J. Geophys.
Res.-Space, 123, 2458–2492,
https://doi.org/10.1002/2017JA024203, 2018. a
Vigren, E., André, M., Edberg, N. J. T., Engelhardt, I. A. D., Eriksson,
A. I., Galand, M., Goetz, C., Henri, P., Heritier, K., Johansson, F. L.,
Nilsson, H., Odelstad, E., Rubin, M., Stenberg-Wieser, G., Tzou, C.-Y., and
Valliéres, X.: Effective ion speeds at 200–250 km from comet
67P/Churyumov–Gerasimenko near perihelion, Mon. Not. R.
Astron. Soc., 469, S142–S148, https://doi.org/10.1093/mnras/stx1472, 2017. a
Volwerk, M., Goetz, C., Richter, I., Delva, M., Ostaszewski, K.,
Schwingenschuh, K., and Glassmeier, K.-H.: A tail like no other – The
RPC-MAG view of Rosetta´s tail excursion at comet
67P/Churyumov-Gerasimenko, Astron. Astrophys., 614, A10,
https://doi.org/10.1051/0004-6361/201732198, 2018. a
Vranjes, J.: Viscosity effects on waves in partially and fully ionized plasma
in magnetic field, Mon. Not. R. Astron. Soc., 445,
1614–1624, https://doi.org/10.1093/mnras/stu1887, 2014. a, b
Warburton, T. and Karniadakis, G.: A Discontinuous Galerkin Method for the
Viscous MHD Equations, J. Comput. Phys., 152, 608–641,
https://doi.org/10.1006/jcph.1999.6248, 1999. a
Witasse, O., Sánchez-Cano, B., Mays, M. L., Kajdič, P., Opgenoorth, H.,
Elliott, H. A., Richardson, I. G., Zouganelis, I., Zender, J.,
Wimmer-Schweingruber, R. F., Turc, L., Taylor, M. G. G. T., Roussos, E.,
Rouillard, A., Richter, I., Richardson, J. D., Ramstad, R., Provan, G.,
Posner, A., Plaut, J. J., Odstrcil, D., Nilsson, H., Niemenen, P., Milan,
S. E., Mandt, K., Lohf, H., Lester, M., Lebreton, J.-P., Kuulkers, E., Krupp,
N., Koenders, C., James, M. K., Intzekara, D., Holmstrom, M., Hassler, D. M.,
Hall, B. E. S., Guo, J., Goldstein, R., Goetz, C., Glassmeier, K. H., Génot,
V., Evans, H., Espley, J., Edberg, N. J. T., Dougherty, M., Cowley, S. W. H.,
Burch, J., Behar, E., Barabash, S., Andrews, D. J., and Altobelli, N.:
Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet
67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto:
Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU, J.
Geophys. Res.-Space, 122, 7865–7890,
https://doi.org/10.1002/2017JA023884, 2017.
a
Wu, C. S. and Davidson, R. C.: Electromagnetic instabilities produced by
neutral-particle ionization in interplanetary space, J. Geophys.
Res., 77, 5399, https://doi.org/10.1029/JA077i028p05399, 1972. a, b
Zaqarashvili, T. V., Khodachenko, M. L., and Rucker, H. O.:
Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid
approach, Astron. Astrophys., 529, A82,
https://doi.org/10.1051/0004-6361/201016326, 2011. a
Zhdanov, V. M.: Transport Processes in Multicomponent Plasma, Plasma
Phys. Contr. F., 44, 2283, https://doi.org/10.1088/0741-3335/44/10/701,
2002. a, b
Short summary
Plasma waves are an integral part of cometary physics, as they facilitate the transfer of energy and momentum. From intermediate to strong activity, nonlinear asymmetric plasma and magnetic field enhancements dominate the inner coma of 67P/CG. We present a statistical survey of these structures from December 2014 to June 2016, facilitated by Rosetta's unprecedented long mission duration. Using a 1D MHD model, we show they can be described as a combination of nonlinear and dissipative effects.
Plasma waves are an integral part of cometary physics, as they facilitate the transfer of energy...