Articles | Volume 39, issue 4
https://doi.org/10.5194/angeo-39-721-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-721-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Steepening of magnetosonic waves in the inner coma of comet 67P/Churyumov–Gerasimenko
Katharina Ostaszewski
CORRESPONDING AUTHOR
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
Karl-Heinz Glassmeier
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
Max-Planck-Institut fur Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
Charlotte Goetz
ESTEC, European Space Agency, Keplerlaan 1, 2201AZ Noordwijk, the Netherlands
Philip Heinisch
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
Pierre Henri
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR7328 CNRS/Université d'Orléans/CNES, Orléans, France
Laboratoire Lagrange, OCA, UCA, CNRS, Nice, France
Sang A. Park
Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA, USA
Hendrik Ranocha
Computer Electrical and Mathematical Science and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
present address: Applied Mathematics: Institute of Analysis and Numerics, University of Münster, Münster, Germany
Ingo Richter
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
Martin Rubin
Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
Bruce Tsurutani
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
Related authors
No articles found.
Fernando L. Guarnieri, Bruce T. Tsurutani, Rajkumar Hajra, Ezequiel Echer, and Gurbax S. Lakhina
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-9, https://doi.org/10.5194/npg-2024-9, 2024
Revised manuscript accepted for NPG
Short summary
Short summary
On February 03, 2022, SpaceX launched a new group of satellites for its Starlink constellation. This launch simultaneously released 49 satellites in orbits between 200 km and 250 km height. The launches occurred during a geomagnetic storm, followed by a second one. There was an immediate loss of 32 satellites. The satellite losses may have been caused by an unusually high level of atmospheric drag (unexplained by current theory/modeling) or a high level of satellite collisions.
Ariel Tello Fallau, Charlotte Goetz, Cyril Simon Wedlund, Martin Volwerk, and Anja Moeslinger
Ann. Geophys., 41, 569–587, https://doi.org/10.5194/angeo-41-569-2023, https://doi.org/10.5194/angeo-41-569-2023, 2023
Short summary
Short summary
The plasma environment of comet 67P provides a unique laboratory to study plasma phenomena in the solar system. Previous studies have reported the existence of mirror modes at 67P but no further systematic investigation has so far been done. This study aims to learn more about these waves. We investigate the magnetic field measured by Rosetta and find 565 mirror mode signatures. The detected mirror modes are likely generated upstream of the observation and have been modified by the plasma.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Charlotte Goetz, Herbert Gunell, Fredrik Johansson, Kristie LLera, Hans Nilsson, Karl-Heinz Glassmeier, and Matthew G. G. T. Taylor
Ann. Geophys., 39, 379–396, https://doi.org/10.5194/angeo-39-379-2021, https://doi.org/10.5194/angeo-39-379-2021, 2021
Short summary
Short summary
Boundaries in the plasma around comet 67P separate regions with different properties. Many have been identified, including a new boundary called an infant bow shock. Here, we investigate how the plasma and fields behave at this boundary and where it can be found. The main result is that the infant bow shock occurs at intermediate activity and intermediate distances to the comet. Most plasma parameters behave as expected; however, some inconsistencies indicate that the boundary is non-stationary.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Herbert Gunell, Charlotte Goetz, Elias Odelstad, Arnaud Beth, Maria Hamrin, Pierre Henri, Fredrik L. Johansson, Hans Nilsson, and Gabriella Stenberg Wieser
Ann. Geophys., 39, 53–68, https://doi.org/10.5194/angeo-39-53-2021, https://doi.org/10.5194/angeo-39-53-2021, 2021
Short summary
Short summary
When the magnetised solar wind meets the plasma surrounding a comet, the magnetic field is enhanced in front of the comet, and the field lines are draped around it. This happens because electric currents are induced in the plasma. When these currents flow through the plasma, they can generate waves. In this article we present observations of ion acoustic waves, which is a kind of sound wave in the plasma, detected by instruments on the Rosetta spacecraft near comet 67P/Churyumov–Gerasimenko.
Karl-Heinz Glassmeier
Hist. Geo Space. Sci., 11, 71–80, https://doi.org/10.5194/hgss-11-71-2020, https://doi.org/10.5194/hgss-11-71-2020, 2020
Short summary
Short summary
The German Geophysical Society was founded in 1922 as the Deutsche Seismologische Vereinigung. One of the 24 founders of this society was Karl Friedrich Almstedt. Born in 1891 and deceased in 1964, Almstedt represents a generation of academics and scientists who grew up during the decline of the European empires, experiencing the devastations of the two World Wars and the cruelties of the Nazi era as well as the resurrection of academic and cultural life in post-war Germany.
Bruce T. Tsurutani, Gurbax S. Lakhina, and Rajkumar Hajra
Nonlin. Processes Geophys., 27, 75–119, https://doi.org/10.5194/npg-27-75-2020, https://doi.org/10.5194/npg-27-75-2020, 2020
Short summary
Short summary
Current space weather problems are discussed for young researchers. We have discussed some of the major problems that need to be solved for space weather forecasting to become a reality.
Martin Volwerk, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Heyner, and Brian Anderson
Ann. Geophys., 38, 51–60, https://doi.org/10.5194/angeo-38-51-2020, https://doi.org/10.5194/angeo-38-51-2020, 2020
Short summary
Short summary
The magnetic field that is carried by the solar wind slowly decreases in strength as it moves further from the Sun. However, there are sometimes localized decreases in the magnetic field strength, called magnetic holes. These are small structures where the magnetic field strength decreases to less than 50 % of the surroundings and the plasma density increases. This paper presents a statistical study of the behaviour of these holes between Mercury and Venus using MESSENGER data.
Anthony J. Mannucci, Ryan McGranaghan, Xing Meng, Bruce T. Tsurutani, and Olga P. Verkhoglyadova
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-108, https://doi.org/10.5194/angeo-2019-108, 2019
Preprint withdrawn
Short summary
Short summary
The interaction between the Earth's environment and the electrically charged gas known as the solar wind is highly complex and has been under study for decades. We use a universal principle of physics – the relativity principle – to gain physical insight into this interaction. We apply this principle to physical processes that occur during geomagnetic storms. We clarify how the solar wind ultimately causes currents to flow between the Earth's upper atmosphere and space.
Ferdinand Plaschke, Hans-Ulrich Auster, David Fischer, Karl-Heinz Fornaçon, Werner Magnes, Ingo Richter, Dragos Constantinescu, and Yasuhito Narita
Geosci. Instrum. Method. Data Syst., 8, 63–76, https://doi.org/10.5194/gi-8-63-2019, https://doi.org/10.5194/gi-8-63-2019, 2019
Short summary
Short summary
Raw output of spacecraft magnetometers has to be converted into meaningful units and coordinate systems before it is usable for scientific applications. This conversion is defined by 12 calibration parameters, 8 of which are more easily determined in flight if the spacecraft is spinning. We present theory and advanced algorithms to determine these eight parameters. They take into account the physical magnetometer and spacecraft behavior, making them superior to previously published algorithms.
Evelyn Liebert, Christian Nabert, and Karl-Heinz Glassmeier
Ann. Geophys., 36, 1073–1080, https://doi.org/10.5194/angeo-36-1073-2018, https://doi.org/10.5194/angeo-36-1073-2018, 2018
Short summary
Short summary
At the bow shock the solar wind is slowed down in front of Earth's magnetosphere. This is accompanied by a gain in strength of the magnetic field, which implies that the bow shock carries electric currents. We present the a comprehensive statistical study of bow shock currents making use of multi-point data collected by Cluster spacecraft. We find that the currents depend on the shock geometry and the interplanetary magnetic field and are in good accordance with theory and simulation results.
Gurbax S. Lakhina, Bruce T. Tsurutani, George J. Morales, Annick Pouquet, Masahiro Hoshino, Juan Alejandro Valdivia, Yasuhito Narita, and Roger Grimshaw
Nonlin. Processes Geophys., 25, 477–479, https://doi.org/10.5194/npg-25-477-2018, https://doi.org/10.5194/npg-25-477-2018, 2018
Fernando L. Guarnieri, Bruce T. Tsurutani, Luis E. A. Vieira, Rajkumar Hajra, Ezequiel Echer, Anthony J. Mannucci, and Walter D. Gonzalez
Nonlin. Processes Geophys., 25, 67–76, https://doi.org/10.5194/npg-25-67-2018, https://doi.org/10.5194/npg-25-67-2018, 2018
Short summary
Short summary
In this work we developed a method to obtain a time series named as AE* which is well correlated with the geomagnetic AE index. In this process, wavelet filtering is applied to interplanetary solar wind data from spacecrafts around the L1 libration point. This geomagnetic indicator AE* can be obtained well before the AE index release in its final form, and it can be used to feed models for geomagnetic effects, such as the relativistic electrons, giving forecasts ~ 1 to 2 days in advance.
Gurbax S. Lakhina and Bruce T. Tsurutani
Nonlin. Processes Geophys., 24, 745–750, https://doi.org/10.5194/npg-24-745-2017, https://doi.org/10.5194/npg-24-745-2017, 2017
Short summary
Short summary
A preliminary estimate of the drag force per unit mass on typical low-Earth-orbiting satellites moving through the ionosphere during Carrington-type super magnetic storms is calculated by a simple first-order model which takes into account the ion-neutral drag between the upward-moving oxygen ions and O neutral atoms. It is shown that oxygen ions and atoms can be uplifted to 850 km altitude, where they produce about 40 times more satellite drag per unit mass than normal.
Evelyn Liebert, Christian Nabert, Christopher Perschke, Karl-Heinz Fornaçon, and Karl-Heinz Glassmeier
Ann. Geophys., 35, 645–657, https://doi.org/10.5194/angeo-35-645-2017, https://doi.org/10.5194/angeo-35-645-2017, 2017
Short summary
Short summary
We present a statistical survey of current magnitudes, directions and locations at the high-latitude day-side magnetopause using Cluster's multi-spacecraft data. Our results show that the magnetopause current flow directions match expectations based on existing models and simulations. Current magnitudes are in correspondence with former studies. In addition, we observe a varying location of the currents with respect to changes in the ambient plasma properties.
Christian Nabert, Carsten Othmer, and Karl-Heinz Glassmeier
Ann. Geophys., 35, 613–628, https://doi.org/10.5194/angeo-35-613-2017, https://doi.org/10.5194/angeo-35-613-2017, 2017
Short summary
Short summary
The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field contribution by minimizing the misfit between simulation results and in situ spacecraft data. The approach is developed with respect to the upcoming BepiColombo mission to Mercury aimed at determining the planet's magnetic field.
Christian Nabert, Daniel Heyner, and Karl-Heinz Glassmeier
Ann. Geophys., 35, 465–474, https://doi.org/10.5194/angeo-35-465-2017, https://doi.org/10.5194/angeo-35-465-2017, 2017
Short summary
Short summary
Knowledge of planetary magnetic fields provides deep insights into the structure and dynamics of planets. Due to the interaction of a planet with the solar wind plasma, electrical currents are generated which modify the planetary magnetic field outside the planet. New methods are presented to estimate the planetary magnetic field contribution from spacecraft observations. A reduced model of the interaction relates the time-varying observations to the planetary magnetic field magnitude.
Dennis Frühauff, Johannes Z. D. Mieth, and Karl-Heinz Glassmeier
Ann. Geophys., 35, 253–262, https://doi.org/10.5194/angeo-35-253-2017, https://doi.org/10.5194/angeo-35-253-2017, 2017
Short summary
Short summary
The determination of the polytropic index the plasma sheet of Earth's magnetosphere using THEMIS data. The data set reveals that the active magnetotail density and pressure data are well correlated. Yet, considering broad distributions of specific entropies, the evaluation is best performed on shorter timescales.
Dennis Frühauff, Ferdinand Plaschke, and Karl-Heinz Glassmeier
Ann. Geophys., 35, 117–121, https://doi.org/10.5194/angeo-35-117-2017, https://doi.org/10.5194/angeo-35-117-2017, 2017
Short summary
Short summary
Vector magnetic field instruments mounted on spacecraft require precise in-flight calibration of the offsets of all three axes, i.e., the output in vanishing ambient field. While calibration of the spin plane offsets is trivial, we apply a new technique for determining the spin axis offset, not relying on solar wind data but on magnetosheath encounters. This technique is successfully applied to the satellites of the THEMIS mission to update the calibration parameters of the complete mission.
Martin Volwerk, Daniel Schmid, Bruce T. Tsurutani, Magda Delva, Ferdinand Plaschke, Yasuhito Narita, Tielong Zhang, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 1099–1108, https://doi.org/10.5194/angeo-34-1099-2016, https://doi.org/10.5194/angeo-34-1099-2016, 2016
Short summary
Short summary
The behaviour of mirror mode waves in Venus's magnetosheath is investigated for solar minimum and maximum conditions. It is shown that the total observational rate of these waves does not change much; however, the distribution over the magnetosheath is significantly different, as well as the growth and decay of the waves during these different solar activity conditions.
Patrick Meier, Karl-Heinz Glassmeier, and Uwe Motschmann
Ann. Geophys., 34, 691–707, https://doi.org/10.5194/angeo-34-691-2016, https://doi.org/10.5194/angeo-34-691-2016, 2016
Short summary
Short summary
A new type of wave has been detected by the magnetometer of the Rosetta spacecraft close to comet P67/Churyumov-Gerasimenko. We provide the analytical model of this wave excitation from linear perturbation theory. A modified ion-Weibel instability is identified as source of this wave excited by a cometary current. The waves predominantly grow perpendicular to this current. A fan-like phase structure results from superposing the strongest growing waves in a cometary rest frame.
Ingo Richter, Hans-Ulrich Auster, Gerhard Berghofer, Chris Carr, Emanuele Cupido, Karl-Heinz Fornaçon, Charlotte Goetz, Philip Heinisch, Christoph Koenders, Bernd Stoll, Bruce T. Tsurutani, Claire Vallat, Martin Volwerk, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 609–622, https://doi.org/10.5194/angeo-34-609-2016, https://doi.org/10.5194/angeo-34-609-2016, 2016
Short summary
Short summary
We have analysed the magnetic field measurements performed on the ROSETTA orbiter and the lander PHILAE during PHILAE's descent to comet 67P/Churyumov-Gerasimenko on 12 November 2014. We observed a new type of low-frequency wave with amplitudes of ~ 3 nT, frequencies of 20–50 mHz, wavelengths of ~ 300 km, and propagation velocities of ~ 6 km s−1. The waves are generated in a ~ 100 km region around the comet a show a highly correlated behaviour, which could only be determined by two-point observations.
Christian Nabert and Karl-Heinz Glassmeier
Ann. Geophys., 34, 421–425, https://doi.org/10.5194/angeo-34-421-2016, https://doi.org/10.5194/angeo-34-421-2016, 2016
Short summary
Short summary
Electrical resistivity can influence the occurrence of shock waves. We derive analytically necessary conditions for shocks in a nonuniform resistive magnetohydrodynamic plasma. The nonuniform resistivity significantly modifies the characteristic velocity of wave propagation. A sufficient gradient of the resistivity in a diffusion region can satisfy the necessary condition for the occurrence of slow shocks, which is related to Petschek reconnection.
Dennis Frühauff and Karl-Heinz Glassmeier
Ann. Geophys., 34, 399–409, https://doi.org/10.5194/angeo-34-399-2016, https://doi.org/10.5194/angeo-34-399-2016, 2016
Short summary
Short summary
This study presents an investigation on the occurrence of fast flows in the magnetotail using the complete available data set of the THEMIS spacecraft for the years 2007 to 2015. First, basic statistical findings concerning velocity distributions, occurrence rates, group structures and key features of 16 000 events are presented using Superposed Epoch and Minimum Variance Analysis techniques.
Y. Narita, E. Marsch, C. Perschke, K.-H. Glassmeier, U. Motschmann, and H. Comişel
Ann. Geophys., 34, 393–398, https://doi.org/10.5194/angeo-34-393-2016, https://doi.org/10.5194/angeo-34-393-2016, 2016
Y. Narita, R. Nakamura, W. Baumjohann, K.-H. Glassmeier, U. Motschmann, and H. Comişel
Ann. Geophys., 34, 85–89, https://doi.org/10.5194/angeo-34-85-2016, https://doi.org/10.5194/angeo-34-85-2016, 2016
Short summary
Short summary
Four-spacecraft Cluster observations of turbulent fluctuations in the magnetic reconnection region in the geomagnetic tail show for the first time an indication of ion Bernstein waves, electromagnetic waves that propagate nearly perpendicular to the mean magnetic field and are in resonance with ions. Bernstein waves may influence current sheet dynamics in the reconnection outflow such as a bifurcation of the current sheet.
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
C. Nabert, C. Othmer, and K.-H. Glassmeier
Ann. Geophys., 33, 1513–1524, https://doi.org/10.5194/angeo-33-1513-2015, https://doi.org/10.5194/angeo-33-1513-2015, 2015
Short summary
Short summary
The solar wind plasma interacts with a planetary magnetic field. A magnetohydrodynamic model is used to simulate the interaction and resulting plasma flow. The model uses solar wind inflow parameters as boundary condition. Spacecraft data of the interaction region are compared to the flow model. The solar wind boundary parameters are varied until the model matches the data. With a time-resolution of about 10min, the time-dependent solar wind boundary parameters were reconstructed from the data.
L. Dai, C. Wang, V. Angelopoulos, and K.-H. Glassmeier
Ann. Geophys., 33, 1147–1153, https://doi.org/10.5194/angeo-33-1147-2015, https://doi.org/10.5194/angeo-33-1147-2015, 2015
Short summary
Short summary
Magnetic reconnection is a ubiquitous process that drives global-scale dynamics in plasmas. For reconnection to proceed, both ion and electrons must be unfrozen in a localized diffusion region. By analyzing in situ measurements, we show that the non-gyrotropic ion pressure is mainly responsible for breaking the ion frozen-in condition in reconnection. The reported non-gyrotropic ion pressure tensor can specify the reconnection electric field that controls how quickly reconnection proceeds.
I. Richter, C. Koenders, H.-U. Auster, D. Frühauff, C. Götz, P. Heinisch, C. Perschke, U. Motschmann, B. Stoll, K. Altwegg, J. Burch, C. Carr, E. Cupido, A. Eriksson, P. Henri, R. Goldstein, J.-P. Lebreton, P. Mokashi, Z. Nemeth, H. Nilsson, M. Rubin, K. Szegö, B. T. Tsurutani, C. Vallat, M. Volwerk, and K.-H. Glassmeier
Ann. Geophys., 33, 1031–1036, https://doi.org/10.5194/angeo-33-1031-2015, https://doi.org/10.5194/angeo-33-1031-2015, 2015
Short summary
Short summary
We present a first report on magnetic field measurements made in the coma of comet 67P/C-G in its low-activity state. The plasma environment is dominated by quasi-coherent, large-amplitude, compressional magnetic field oscillations around 40mHz, differing from the observations at strongly active comets where waves at the cometary ion gyro-frequencies are the main feature. We propose a cross-field current instability associated with the newborn cometary ions as a possible source mechanism.
B. T. Tsurutani, R. Hajra, E. Echer, and J. W. Gjerloev
Ann. Geophys., 33, 519–524, https://doi.org/10.5194/angeo-33-519-2015, https://doi.org/10.5194/angeo-33-519-2015, 2015
Short summary
Short summary
Particularly intense substorms (SSS), brilliant auroral displays with strong >106A currents in the ionosphere, are studied. It is believed that these SSS events cause power outages during magnetic storms. It is shown that SSS events can occur during all intensity magnetic storms; thus power problems are not necessarily restricted to the rare most intense storms. We show four SSS events that are triggered by solar wind pressure pulses. If this is typical, ~30-minute warnings could be issued.
M. Volwerk, K.-H. Glassmeier, M. Delva, D. Schmid, C. Koenders, I. Richter, and K. Szegö
Ann. Geophys., 32, 1441–1453, https://doi.org/10.5194/angeo-32-1441-2014, https://doi.org/10.5194/angeo-32-1441-2014, 2014
Short summary
Short summary
We discuss three flybys (within an 8-day time span) of comet 1P/Halley by VEGA 1, 2 and Giotto. Looking at two different plasma phenomena: mirror mode waves and field line draping; we study the differences in SW--comet interaction between these three flybys. We find that on this time scale (comparable to Rosetta's orbits) there is a significant difference, both caused by changing outgassing rate of the comet and changes in the solar wind. We discuss implications for Rosetta RPC observations.
K.-H. Glassmeier and B. T. Tsurutani
Hist. Geo Space. Sci., 5, 11–62, https://doi.org/10.5194/hgss-5-11-2014, https://doi.org/10.5194/hgss-5-11-2014, 2014
R. Nakamura, F. Plaschke, R. Teubenbacher, L. Giner, W. Baumjohann, W. Magnes, M. Steller, R. B. Torbert, H. Vaith, M. Chutter, K.-H. Fornaçon, K.-H. Glassmeier, and C. Carr
Geosci. Instrum. Method. Data Syst., 3, 1–11, https://doi.org/10.5194/gi-3-1-2014, https://doi.org/10.5194/gi-3-1-2014, 2014
M. Volwerk, C. Koenders, M. Delva, I. Richter, K. Schwingenschuh, M. S. Bentley, and K.-H. Glassmeier
Ann. Geophys., 31, 2201–2206, https://doi.org/10.5194/angeo-31-2201-2013, https://doi.org/10.5194/angeo-31-2201-2013, 2013
C. Perschke, Y. Narita, S. P. Gary, U. Motschmann, and K.-H. Glassmeier
Ann. Geophys., 31, 1949–1955, https://doi.org/10.5194/angeo-31-1949-2013, https://doi.org/10.5194/angeo-31-1949-2013, 2013
C. Nabert, K.-H. Glassmeier, and F. Plaschke
Ann. Geophys., 31, 419–437, https://doi.org/10.5194/angeo-31-419-2013, https://doi.org/10.5194/angeo-31-419-2013, 2013
B. T. Tsurutani, A. J. Mannuccci, O. P. Verkhoglyadova, and G. S. Lakhina
Ann. Geophys., 31, 145–150, https://doi.org/10.5194/angeo-31-145-2013, https://doi.org/10.5194/angeo-31-145-2013, 2013
A. Alexandrova, R. Nakamura, V. S. Semenov, I. V. Kubyshkin, S. Apatenkov, E. V. Panov, D. Korovinskiy, H. Biernat, W. Baumjohann, K.-H. Glassmeier, and J. P. McFadden
Ann. Geophys., 30, 1727–1741, https://doi.org/10.5194/angeo-30-1727-2012, https://doi.org/10.5194/angeo-30-1727-2012, 2012
Cited articles
Acton, C. H.: Ancillary data services of NASA's Navigation and Ancillary
Information Facility, Planet. Space Sci., 44, 65–70,
https://doi.org/10.1016/0032-0633(95)00107-7, 1996. a
Balsiger, H., Altwegg, K., Bochsler, P., Eberhardt, P., Fischer, J.,
Graf, S., Jäckel, A., Kopp, E., Langer, U., Mildner, M.,
Müller, J., Riesen, T., Rubin, M., Scherer, S., Wurz, P.,
Wüthrich, S., Arijs, E., Delanoye, S., de Keyser, J., Neefs,
E., Nevejans, D., Rème, H., Aoustin, C., Mazelle, C.,
Médale, J. L., Sauvaud, J. A., Berthelier, J. J., Bertaux, J. L.,
Duvet, L., Illiano, J. M., Fuselier, S. A., Ghielmetti, A. G.,
Magoncelli, T., Shelley, E. G., Korth, A., Heerlein, K., Lauche,
H., Livi, S., Loose, A., Mall, U., Wilken, B., Gliem, F., Fiethe,
B., Gombosi, T. I., Block, B., Carignan, G. R., Fisk, L. A., Waite,
J. H., Young, D. T., and Wollnik, H.: Rosina Rosetta Orbiter
Spectrometer for Ion and Neutral Analysis, Space Sci. Rev., 128,
745–801, https://doi.org/10.1007/s11214-006-8335-3, 2007. a
Behar, E., Nilsson, H., Wieser, G. S., Nemeth, Z., Broiles, T. W., and Richter,
I.: Mass loading at 67P/Churyumov-Gerasimenko: A case study, Geophys.
Res. Lett, 43, 1411–1418, https://doi.org/10.1002/2015GL067436, 2016. a
Behlke, R., André, M., Bale, S. D., Pickett, J. S., Cattell, C. A., Lucek,
E. A., and Balogh, A.: Solitary structures associated with short
large-amplitude magnetic structures (SLAMS) upstream of the Earth's
quasi-parallel bow shock, Geophys. Res. Lett., 31, L16805,
https://doi.org/10.1029/2004GL019524, 2004. a
Besse, S., Vallat, C., Barthelemy, M., Coia, D., Costa, M., Marchi, G. D.,
Fraga, D., Grotheer, E., Heather, D., Lim, T., Martinez, S., Arviset, C.,
Barbarisi, I., Docasal, R., Macfarlane, A., Rios, C., Saiz, J., and Vallejo,
F.: ESA's Planetary Science Archive: Preserve and present reliable
scientific data sets, Planet. Space Sci., 150, 131–140,
https://doi.org/10.1016/j.pss.2017.07.013, 2018. a
Bieler, A., Altwegg, K., Balsiger, H., Berthelier, J.-J., Calmonte, U., Combi,
M., De Keyser, J., Fiethe, B., Fougere, N., Fuselier, S., Gasc, S.,
Gombosi, T., Hansen, K., Hässig, M., Huang, Z., Jäckel, A., Jia, X., Le
Roy, L., Mall, U. A., Rème, H., Rubin, M., Tenishev, V., Tóth, G., Tzou,
C.-Y., and Wurz, P.: Comparison of 3D kinetic and hydrodynamic models to
ROSINA-COPS measurements of the neutral coma of 67P/Churyumov-Gerasimenko,
Astron. Astrophys., 583, A7, https://doi.org/10.1051/0004-6361/201526178, 2015. a
Biermann, L., Brosowski, B., and Schmidt, H. U.: The interactions of the
solar wind with a comet, Solar Phys., 1, 254–284,
https://doi.org/10.1007/BF00150860, 1967. a
Buti, B. and Eviatar, A.: Plasma Conductivity for Comet Halley's
Ionosphere, Astrophys. J. Lett., 336, L71, https://doi.org/10.1086/185364,
1989. a
Butterworth, S.: On the Theory of Filter Amplifiers, Experimental Wireless
and the Wireless Engineer, 7, 536–541, 1930. a
Carr, C., Cupido, E., Lee, C., Balogh, A., Beek, T., Burch, J., Dunford, C.,
Eriksson, A., Gill, R., Glassmeier, K., Lagoutte, D., Lundin, R., Lundin, K.,
Lybekk, B., Michau, J., Musmann, G., Nilsson, H., Pollock, C., and Trotignon,
J.: RPC: The Rosetta plasma consortium, Space Sci. Rev., 128,
629–647, https://doi.org/10.1007/s11214-006-9136-4, 2007. a
Chree, C.: Some Phenomena of Sunspots and of Terrestrial Magnetism at Kew
Observatory, Philos. T. R. Soc. Lond.
A, 212, 75–116, https://doi.org/10.1098/rsta.1913.0003, 1913. a
Clawpack Development Team: Clawpack software, https://doi.org/10.5281/zenodo.3528429,
version 5.6.1, 2019. a
Clawpack development team: Clawpack (Conservation Laws Package), available at: http://www.clawpack.org, last access: 12 May 2020a. a
Clawpack development team: Clawpack Repositories, available at: https://github.com/clawpack, last access: 12 May 2020b. a
Cravens, T. E.: Theory and observations of cometary ionospheres, Adv. Space Res., 7, 147–158, https://doi.org/10.1016/0273-1177(87)90212-2, 1987. a
Edberg, N. J. T., Alho, M., André, M., Andrews, D. J., Behar, E., Burch,
J. L., Carr, M., Cupido, E., Engelhardt, I., Eriksson, I., Glassmeier, K.,
Goetz, C., Goldstein, R., Henri, P., Johansson, F. L., Koenders, C., Mandt,
K., Nilsson, H., Odelstad, E., Richter, I., Simon Wedlund, C.,
Stenberg Wieser, G., Szego, K., Vigren, E., and Volwerk, M.: CME impact on
comet 67P/Churyumov-Gerasimenko, Mon. Not. R. Astron.
Soc., 462, S45–S56, https://doi.org/10.1093/mnras/stw2112, 2016. a, b, c
Engelhardt, I. A. D., Eriksson, A. I., Odelstad, E., Stenberg Wieser, G.,
Nilsson, H., Goetz, C., Rubin, M., Henri, P., Hajra, R., and Vallières, X.:
Plasma density structures at comet 67P/Churyumov–Gerasimenko, Mon.
Not. R. Astron. Soc., 477, 1296–1307,
https://doi.org/10.1093/mnras/sty765, 2018. a, b, c, d, e, f, g, h, i, j
ESA: Planetary Science Archive, available at: https://archives.esac.esa.int/psa/, last access: 15 January 2020. a
Fontenla, J. M., Avrett, E. H., and Loeser, R.: Energy Balance in the
Solar Transition Region. III. Helium Emission in Hydrostatic,
Constant-Abundance Models with Diffusion, Astrophys. J., 406, 319,
https://doi.org/10.1086/172443, 1993. a
Fowler, C. M., Andersson, L., Ergun, R. E., Harada, Y., Hara, T.,
Collinson, G., Peterson, W. K., Espley, J., Halekas, J., Mcfadden,
J., Mitchell, D. L., Mazelle, C., Benna, M., and Jakosky, B. M.:
MAVEN Observations of Solar Wind-Driven Magnetosonic Waves Heating the
Martian Dayside Ionosphere, J. Geophys. Res.-Space,
123, 4129–4149, https://doi.org/10.1029/2018JA025208, 2018. a
Gary, S. P.: Electromagnetic Ion/Ion Instabilities and Their Consequences
in Space Plasmas – a Review, Space Sci. Rev., 56, 373–415,
https://doi.org/10.1007/BF00196632, 1991. a, b
Giacalone, J., Schwartz, S. J., and Burgess, D.: Observations of suprathermal
ions in association with SLAMS, Geophys. Res. Lett., 20, 149–152,
https://doi.org/10.1029/93GL00067, 1993. a
Glassmeier, K.-H.: Interaction of the solar wind with comets: a Rosetta
perspective, Philos. T. R. Soc. Lond.
A, 375, 20160256,
https://doi.org/10.1098/rsta.2016.0256, 2017. a, b, c, d
Glassmeier, K.-H., Boehnhardt, H., Koschny, D., Kührt, E., and Richter, I.:
The Rosetta Mission: Flying Towards the Origin of the Solar System, Space
Sci. Rev., 128, 1–21, https://doi.org/10.1007/s11214-006-9140-8,
2007a. a
Glassmeier, K.-H., Richter, I., Diedrich, A., Musmann, G., Auster, U.,
Motschmann, U., Balogh, A., Carr, C., Cupido, E., Coates, A., Rother, M.,
Schwingenschuh, K., Szegö, K., and Tsurutani, B.: RPC-MAG The Fluxgate
Magnetometer in the ROSETTA Plasma Consortium, Space Science Reviews, 128,
649–670, https://doi.org/10.1007/s11214-006-9114-x, 2007b. a
Goetz, C., Koenders, C., Frühauff, D., Richter, I., Glassmeier, K. H.,
Tsurutani, B., Volwerk, M., Hansen, K. C., Burch, J., Carr, C., Eriksson, A.,
Güttler, C., Sierks, H., Henri, P., Nilsson, H., and Rubin, M.: Structure
and evolution of the diamagnetic cavity at comet 67P/Churyumov–Gerasimenko,
Mon. Not. R. Astron. Soc., 462, S459–S467,
https://doi.org/10.1093/mnras/stw3148, 2016a. a, b, c
Goetz, C., Koenders, C., Richter, I., Altwegg, K., Burch, J., Carr, C., Cupido,
E., Eriksson, A., Güttler, C., Henri, P., Mokashi, P., Nemeth, Z., Nilsson,
H., Rubin, M., Sierks, H., Tsurutani, B., Vallat, C., Volwerk, M., and
Glassmeier, K.-H.: First detection of a diamagnetic cavity at comet
67P/Churyumov-Gerasimenko, Astron. Astrophys., 588, A24,
https://doi.org/10.1051/0004-6361/201527728, 2016b. a
Goetz, C., Volwerk, M., Richter, I., and Glassmeier, K.-H.: Evolution of the
magnetic field at comet 67P/Churyumov–Gerasimenko, Mon. Not.
R. Astron. Soc., 469, S268–S275, https://doi.org/10.1093/mnras/stx1570,
2017. a, b, c
Goetz, C., Tsurutani, B. T., Henri, P., Volwerk, M., Behar, E., Edberg, N.
J. T., Eriksson, A., Goldstein, R., Mokashi, P., Nilsson, H., Richter, I.,
Wellbrock, A., and Glassmeier, K. H.: Unusually high magnetic fields in the
coma of 67P/Churyumov-Gerasimenko during its high-activity phase, Astron. Astrophys., 630, A38, https://doi.org/10.1051/0004-6361/201833544, 2019. a, b
Goetz, C., Plaschke, F., and Taylor, M. G. G. T.: Singing Comet Waves in
a Solar Wind Convective Electric Field Frame, Geophys. Res. Lett.,
47, e87418, https://doi.org/10.1029/2020GL087418, 2020. a
Greenstadt, E., Le, G., and Strangeway, R.: ULF waves in the foreshock,
Adv. Space Res., 15, 71–84,
https://doi.org/10.1016/0273-1177(94)00087-H, 1995. a
Gunell, H., Nilsson, H., Hamrin, M., Eriksson, A., Odelstad, E., Maggiolo, R.,
Henri, P., Vallieres, X., Altwegg, K., Tzou, C.-Y., Rubin, M., Glassmeier,
K.-H., Stenberg Wieser, G., Simon Wedlund, C., De Keyser, J., Dhooghe,
F., Cessateur, G., and Gibbons, A.: Ion acoustic waves at comet
67P/Churyumov-Gerasimenko – Observations and computations, Astron.
Astrophys., 600, A3, https://doi.org/10.1051/0004-6361/201629801, 2017. a, b, c
Hada, T., Kennel, C. F., and Terasawa, T.: Excitation of compressional waves
and the formation of shocklets in the Earth's foreshock, J.
Geophys. Res.-Space, 92, 4423–4435,
https://doi.org/10.1029/JA092iA05p04423, 1987. a
Haerendel, G.: Plasma Transport Near the Magnetic Cavity Surrounding Comet
Halley, Geophys. Res. Lett., 14, 673–676,
https://doi.org/10.1029/GL014i007p00673, 1987. a
Hajra, R., Henri, P., Myllys, M., Héritier, K. L., Galand, M., Wedlund, S.,
C., Breuillard, H., Behar, E., Edberg, N. J. T., Goetz, C., Nilsson, H.,
Eriksson, A. I., Goldstein, R., Tsurutani, B. T., Moré, J., Vallières, X.,
and Wattieaux, G.: Cometary plasma response to interplanetary corotating
interaction regions during 2016 June–September: a quantitative study by the
Rosetta Plasma Consortium, Monthly Notices of the Royal Astronomical
Society, 480, 4544–4556, https://doi.org/10.1093/mnras/sty2166, 2018a. a
Hajra, R., Henri, P., Vallières, X., Moré, J., Gilet, N., Wattieaux, G.,
Goetz, C., Richter, I., Tsurutani, B. T., Gunell, H., Nilsson, H., Eriksson,
A. I., Nemeth, Z., Burch, J. L., and Rubin, M.: Dynamic unmagnetized plasma
in the diamagnetic cavity around comet 67P/Churyumov–Gerasimenko, Mon.
Not. R. Astron. Soc., 475, 4140–4147,
https://doi.org/10.1093/mnras/sty094, 2018b. a, b, c, d, e, f, g, h, i, j
Hansen, K. C., Bagdonat, T., Motschmann, U., Alexand er, C., Combi,
M. R., Cravens, T. E., Gombosi, T. I., Jia, Y. D., and Robertson,
I. P.: The Plasma Environment of Comet 67P/Churyumov-Gerasimenko Throughout
the Rosetta Main Mission, Space Sci. Rev., 128, 133–166,
https://doi.org/10.1007/s11214-006-9142-6, 2007. a
Hansen, K. C., Bieler, A., Toth, G., Combi, M. R., Fougere, N., Gombosi, T. I.,
Tenishev, V., Shou, Y., Huang, Z., Nilsson, H., Snodgrass, C., Simon Wedlund,
C., Tzou, C.-Y., Altwegg, K., Le Roy, L., Rubin, M., Gasc, S., Calmonte, U.,
Bockelée-Morvan, D., Berthelier, J.-J., Biver, N., Capaccioni, F.,
De Keyser, J., Fiethe, B., Fuselier, S. A., Lee, S., and the ROSINA team:
Evolution of water production of 67P/Churyumov–Gerasimenko: an empirical
model and a multi-instrument study, Mon. Not. R.
Astron. Soc., 462, S491–S506, https://doi.org/10.1093/mnras/stw2413, 2016. a
Heinisch, P., Auster, H.-U., Richter, I., Fornacon, K.-H., Glassmeier, K.-H.,
Haerendel, G., Apathy, I., and Cupido, E.: Joint two-point observations of
LF-waves at 67P/Churyumov—Gerasimenko, Mon. Not. R.
Astron. Soc., 469, S68–S72, https://doi.org/10.1093/mnras/stx1175, 2017. a
Henri, P., Hajra, R., Vallières, X., Wattieaux, G., Goetz, C., Richter, I.,
Glassmeier, K.-H., Beth, A., Carr, C., Galand, M., Rubin, M., Eriksson,
A. I., Vigren, E., Nemeth, Z., Burch, J., Nilsson, H., and Tsurutani, B.:
Diamagnetic region(s): structure of the unmagnetized plasma around Comet
67P/CG, Mon. Not. R. Astron. Soc., 469, S372–S379,
https://doi.org/10.1093/mnras/stx1540, 2017. a, b, c
Heritier, K. L., Altwegg, K., Balsiger, H., Berthelier, J.-J., Beth, A.,
Bieler, A., Biver, N., Calmonte, U., Combi, M. R., De Keyser, J., Eriksson,
A. I., Fiethe, B., Fougere, N., Fuselier, S. A., Galand, M., Gasc, S.,
Gombosi, T. I., Hansen, K. C., Hassig, M., Kopp, E., Odelstad, E., Rubin, M.,
Tzou, C.-Y., Vigren, E., and Vuitton, V.: Ion composition at comet 67P near
perihelion: Rosetta observations and model-based interpretation, Mon.
Not. R. Astron. Soc., 469, S427–S442,
https://doi.org/10.1093/mnras/stx1912, 2017. a
Itikawa, Y. and Mason, N.: Cross Sections for Electron Collisions with Water
Molecules, J. Phys. Chem. Ref. Data, 34, 1–22,
https://doi.org/10.1063/1.1799251, 2005. a, b
Ketcheson, D. I., Parsani, M., and LeVeque, R. J.: High-order wave propagation
algorithms for hyperbolic systems, SIAM J. Sci. Comput., 35,
A351–A377, https://doi.org/10.1137/110830320, 2013. a, b
Khodachenko, M. L., Arber, T. D., Rucker, H. O., and Hanslmeier, A.:
Collisional and viscous damping of MHD waves in partially ionized plasmas of
the solar atmosphere, Astron. Astrophys., 422, 1073–1084,
https://doi.org/10.1051/0004-6361:20034207, 2004. a
Koenders, C., Glassmeier, K.-H., Richter, I., Motschmann, U., and Rubin, M.:
Revisiting cometary bow shock positions, Planet. Space Sci., 87, 85–95, https://doi.org/10.1016/j.pss.2013.08.009, 2013. a, b
Koenders, C., Glassmeier, K.-H., Richter, I., Ranocha, H., and Motschmann, U.:
Dynamical features and spatial structures of the plasma interaction region of
67P/Churyumov–Gerasimenko and the solar wind, Planet. Space Sci.,
105, 101–116, https://doi.org/10.1016/j.pss.2014.11.014, 2015. a, b
Lai, I.-L., Ip, W.-H., Lee, J.-C., Lin, Z.-Y., Vincent, J.-B.,
Oklay, N., Sierks, H., Barbieri, C., Lamy, P., Rodrigo, R.,
Koschny, D., Rickman, H., Keller, H. U., Agarwal, J., Barucci, M.
A., Bertaux, J.-L., Bertini, I., Bodewits, D., Boudreault, S.,
Cremonese, G., Da Deppo, V., Davidsson, B., Debei, S., De Cecco,
M., Deller, J., Fornasier, S., Fulle, M., Groussin, O.,
Gutiérrez, P. J., Güttler, C., Hofmann, M., Hviid, S. F., Jorda,
L., Knollenberg, J., Kovacs, G., Kramm, J.-R., Kührt, E.,
Küppers, M., Lara, L. M., Lazzarin, M., López-Moreno, J. J.,
Marzari, F., Naletto, G., Shi, X., Tubiana, C., and Thomas, N.:
Seasonal variations in source regions of the dust jets on comet
67P/Churyumov-Gerasimenko, Astron. Astrophys., 630, A17,
https://doi.org/10.1051/0004-6361/201732094, 2019. a, b
LeVeque, R. J.: Finite Volume Methods for Hyperbolic Problems, Cambridge
Texts in Applied Mathematics, Cambridge University Press,
https://doi.org/10.1017/CBO9780511791253, 2002. a
Lucek, E. A., Horbury, T. S., Balogh, A., Dandouras, I., and Rème, H.: Cluster observations of structures at quasi-parallel bow shocks, Ann. Geophys., 22, 2309–2313, https://doi.org/10.5194/angeo-22-2309-2004, 2004. a
Läuter, M., Kramer, T., Rubin, M., and Altwegg, K.: The gas production of 14
species from comet 67P/Churyumov–Gerasimenko based on DFMS/COPS data from
2014 to 2016, Mon. Not. R. Astron. Soc., 498,
3995–4004, https://doi.org/10.1093/mnras/staa2643, 2020. a
Mandt, K. E., Eriksson, A., Beth, A., Galand, M., and Vigren, E.:
Influence of collisions on ion dynamics in the inner comae of four comets,
Astron. Astrophys., 630, A48, https://doi.org/10.1051/0004-6361/201834828, 2019. a
Mann, G., Lühr, H., and Baumjohann, W.: Statistical analysis of short
large-amplitude magnetic field structures in the vicinity of the
quasi-parallel bow shock, J. Geophys. Res.-Space, 99,
13315–13323, https://doi.org/10.1029/94JA00440, 1994. a
Marquardt, D. W.: An Algorithm for Least-Squares Estimation of Nonlinear
Parameters, J. Soc. Ind. Appl. Math.,
11, 431–441, 1963. a
Martínez-Gómez, D., Soler, R., and Terradas, J.: Multi-fluid
Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and
Plasma Heating, Astrophys. J., 856, 16,
https://doi.org/10.3847/1538-4357/aab156, 2018. a
Masunaga, K., Nilsson, H., Behar, E., Stenberg Wieser, G., Wieser,
M., and Goetz, C.: Flow pattern of accelerated cometary ions inside and
outside the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko, Astron. Astrophys., 630, A43, https://doi.org/10.1051/0004-6361/201935122, 2019. a
Meier, P., Glassmeier, K.-H., and Motschmann, U.: Modified ion-Weibel instability as a possible source of wave activity at Comet 67P/Churyumov-Gerasimenko, Ann. Geophys., 34, 691–707, https://doi.org/10.5194/angeo-34-691-2016, 2016. a, b
Mendis, D. A., Smith, E. J., Tsurutani, B. T., Slavin, J. A., Jones, D. E., and
Siscoe, G. L.: Comet-solar wind interaction: Dynamical length scales and
models, Geophys. Res. Lett., 13, 239–242,
https://doi.org/10.1029/GL013i003p00239, 1986. a, b
Motschmann, U. and Glassmeier, K.-H.: Nongyrotropic distribution of pickup
ions at comet P/Grigg-Skjellerup: A possible source of wave activity,
J. Geophys. Res.-Space, 98, 20977–20983,
https://doi.org/10.1029/93JA02533, 1993. a, b
Nabert, C.: Reduzierte Modellbildung für die dynamische Inversion von
Magnetfeldmessungen an Planeten, PhD thesis, Technische Univeristät
Braunschweig, https://doi.org/10.24355/dbbs.084-201708020931, 2017. a, b, c
Narita, Y.: Review article: Wave analysis methods for space plasma experiment, Nonlin. Processes Geophys., 24, 203–214, https://doi.org/10.5194/npg-24-203-2017, 2017. a
NASA: PDS archive, available at: https://pds.nasa.gov/, last access: 7 April 2020. a
Neubauer, F. M., Glassmeier, K. H., Coates, A. J., and Johnstone, A. D.:
Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup:
Analysis and interpretation, J. Geophys. Res.-Space,
98, 20937–20953, https://doi.org/10.1029/93JA02532, 1993. a
Nilsson, H., Wieser, G. S., Behar, E., Gunell, H., Wieser, M., Galand, M.,
Simon Wedlund, C., Alho, M., Goetz, C., Yamauchi, M., Henri, P., Odelstad,
E., and Vigren, E.: Evolution of the ion environment of comet 67P during the
Rosetta mission as seen by RPC-ICA, Mon. Not. R.
Astron. Soc., 469, S252–S261, https://doi.org/10.1093/mnras/stx1491, 2017. a
Nilsson, H., Williamson, H., Bergman, S., Stenberg Wieser, G., Wieser, M.,
Behar, E., Eriksson, A. I., Johansson, F. L., Richter, I., and Goetz, C.:
Average cometary ion flow pattern in the vicinity of comet 67P from moment
data, Mon. Not. R. Astron. Soc., 498, 5263–5272,
https://doi.org/10.1093/mnras/staa2613, 2020. a
Odelstad, E., Eriksson, A. I., Johansson, F. L., Vigren, E., Henri, P., Gilet,
N., Heritier, K. L., Vallières, X., Rubin, M., and André, M.: Ion Velocity
and Electron Temperature Inside and Around the Diamagnetic Cavity of Comet
67P, J. Geophys. Res.-Space, 123, 5870–5893,
https://doi.org/10.1029/2018JA025542, 2018. a, b
Omidi, N. and Winske, D.: Steepening of kinetic magnetosonic waves into
shocklets: Simulations and consequences for planetary shocks and comets,
J. Geophys. Res.-Space, 95, 2281–2300,
https://doi.org/10.1029/JA095iA03p02281, 1990. a
Ostaszewski, K., Heinisch, P., Richter, I., Kroll, H., Balke, W.-T., Fraga, D.,
and Glassmeier, K.-H.: Pattern recognition in time series for space missions:
A rosetta magnetic field case study, Acta Astronaut., 168, 123–129,
https://doi.org/10.1016/j.actaastro.2019.11.037, 2020. a, b
Ranocha, H., Ostaszewski, K., and Heinisch, P.: Discrete Vector Calculus and
Helmholtz Hodge Decomposition for Classical Finite Difference Summation by
Parts Operators, Communications on Applied Mathematics and Computation, 2,
581–611, https://doi.org/10.1007/s42967-019-00057-2, 2020. a
Richter, I., Koenders, C., Auster, H.-U., Frühauff, D., Götz, C., Heinisch, P., Perschke, C., Motschmann, U., Stoll, B., Altwegg, K., Burch, J., Carr, C., Cupido, E., Eriksson, A., Henri, P., Goldstein, R., Lebreton, J.-P., Mokashi, P., Nemeth, Z., Nilsson, H., Rubin, M., Szegö, K., Tsurutani, B. T., Vallat, C., Volwerk, M., and Glassmeier, K.-H.: Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko, Ann. Geophys., 33, 1031–1036, https://doi.org/10.5194/angeo-33-1031-2015, 2015. a, b, c, d
Richter, I., Auster, H.-U., Berghofer, G., Carr, C., Cupido, E., Fornaçon, K.-H., Goetz, C., Heinisch, P., Koenders, C., Stoll, B., Tsurutani, B. T., Vallat, C., Volwerk, M., and Glassmeier, K.-H.: Two-point observations of low-frequency waves at 67P/Churyumov-Gerasimenko during the descent of PHILAE: comparison of RPCMAG and ROMAP, Ann. Geophys., 34, 609–622, https://doi.org/10.5194/angeo-34-609-2016, 2016. a
Roe, P.: Approximate Riemann solvers, parameter vectors, and difference
schemes, J. Comput. Phys., 43, 357–372,
https://doi.org/10.1016/0021-9991(81)90128-5, 1981. a
Sagdeev, R. Z., Shapiro, V. D., Shevchenko, V. I., and Szego, K.: MHD
turbulence in the solar wind-comet interaction region, Geophys. Res.
Lett., 13, 85–88, https://doi.org/10.1029/GL013i002p00085, 1986. a
Schwartz, S. J., Burgess, D., Wilkinson, W. P., Kessel, R. L., Dunlop, M., and
Lühr, H.: Observations of short large-amplitude magnetic structures at a
quasi-parallel shock, J. Geophys. Res.-Space, 97,
4209–4227, https://doi.org/10.1029/91JA02581, 1992. a
Schwenn, R., Ip, W. H., Rosenbauer, H., Balsiger, H., Bühler, F.,
Goldstein, R., Meier, A., and Shelley, E. G.: Ion temperature and flow
profiles in comet P/Halley's close environment, in: Exploration of Halley's
Comet, edited by Grewing, M., Praderie, F., and Reinhard, R., pp. 160–162,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1988. a
Shan, L., Du, A., Tsurutani, B. T., Ge, Y. S., Lu, Q., Mazelle, C., Huang, C.,
Glassmeier, K.-H., and Henri, P.: In Situ Observations of the Formation of
Periodic Collisionless Plasma Shocks from Fast Mode Waves, Astrophys.
J., 888, L17, https://doi.org/10.3847/2041-8213/ab5db3, 2020. a
Shukla, P. K., Eliasson, B., Marklund, M., and Bingham, R.: Nonlinear model
for magnetosonic shocklets in plasmas, Phys. Plasmas, 11, 2311–2313,
https://doi.org/10.1063/1.1690297, 2004. a
Wedlund, C. S., Alho, M., Gronoff, G., Kallio, E., Gunell, H., Nilsson,
H., Lindkvist, J., Behar, E., Stenberg Wieser, G., and Miloch, W. J.:
Hybrid modelling of cometary plasma environments – I. Impact of
photoionisation, charge exchange, and electron ionisation on bow shock and
cometopause at 67P/Churyumov-Gerasimenko, Astron. Astrophys., 604,
A73, https://doi.org/10.1051/0004-6361/201730514, 2017. a
Wedlund, C. S., Behar, E., Nilsson, H., Alho, M.,
Kallio, E., Gunell, H., Bodewits, D., Heritier, K.,
Galand, M., Beth, A., Rubin, M., Altwegg, K.,
Volwerk, M., Gronoff, G., and Hoekstra, R.: Solar wind
charge exchange in cometary atmospheres – III. Results from the Rosetta
mission to comet 67P/Churyumov-Gerasimenko, Astron. Astrophys., 630, A37,
https://doi.org/10.1051/0004-6361/201834881, 2019. a
Smith, E. J., Tsurutani, B. T., and Rosenberg, R. L.: Observations of the
interplanetary sector structure up to heliographic latitudes of 16∘: Pioneer
11, J. Geophys. Res.-Space, 83, 717–724,
https://doi.org/10.1029/JA083iA02p00717, 1978. a
Smith, E. J., Tsurutani, B. T., Slvain, J. A., Jones, D. E., Siscoe, G. L., and
Mendis, D. A.: International Cometary Explorer Encounter with
Giacobini-Zinner: Magnetic Field Observations, Science, 232, 382–385,
https://doi.org/10.1126/science.232.4748.382, 1986. a
Soler, R., Carbonell, M., and Ballester, J. L.: MAGNETOACOUSTIC WAVES IN
A PARTIALLY IONIZED TWO-FLUID PLASMA, Astrophys. J.
Suppl. S., 209, 16, https://doi.org/10.1088/0067-0049/209/1/16, 2013. a
Sonnerup, B. U. O. and Cahill Jr., L. J.: Magnetopause Structure and
Attitude from Explorer 12 Observations, J. Geophys. Res., 72,
171, https://doi.org/10.1029/JZ072i001p00171, 1967. a
Sonnerup, B. U. Ö. and Scheible, M.: Minimum and Maximum Variance
Analysis, ISSI Scientific Reports Series, 1, 185–220, 1998. a
Stasiewicz, K., Longmore, M., Buchert, S., Shukla, P. K., Lavraud, B., and
Pickett, J.: Properties of fast magnetosonic shocklets at the bow shock,
Geophys. Res. Lett., 30, 2241, https://doi.org/10.1029/2003GL017971, 2003. a
Stenberg Wieser, G., Odelstad, E., Wieser, M., Nilsson, H., Goetz,
C., Karlsson, T., André, M., Kalla, L., Eriksson, A. I.,
Nicolaou, G., Simon Wedlund, C., Richter, I., and Gunell, H.:
Investigating short-time-scale variations in cometary ions around comet
67P, Mon. Not. R. Astron. Soc., 469, S522–S534,
https://doi.org/10.1093/mnras/stx2133, 2017. a, b
Svalgaard, L. and Wilcox, J. M.: The Hale solar sector boundary., Solar
Phys., 49, 177–185, https://doi.org/10.1007/BF00221492, 1976. a
Szegö, K., Glassmeier, K.-H., Bingham, R., Bogdanov, A. V., Fischer, C. F.,
Haerendel, G., Brinca, A. L., Cravens, T., Dubinin, E., Sauer, K., Fisk,
L. A., Gombosi, T. I., Schwadron, N. A., Isenberg, P., Lee, M. A., Mazelle,
C., Moebius, E., Motschmann, U., Shapiro, V. D., Tsurutani, B. T., and Zank,
G. P.: Physics of Mass Loaded Plasmas, Space Sci. Rev., 94, 429–671,
2000. a, b
Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y., and Yokoyama, T.: Magnetic
field variations in the Jovian magnetotail induced by solar wind dynamic
pressure enhancements, J. Geophys. Res.-Space, 110, A11208,
https://doi.org/10.1029/2004JA010959, 2005. a, b, c
Taylor, M. G. G. T., Altobelli, N., Buratti, B. J., and Choukroun, M.:
The Rosetta mission orbiter science overview: the comet phase,
Philos. T. R. Soc. Lond. A, 375,
20160262, https://doi.org/10.1098/rsta.2016.0262, 2017. a
Timar, A., Nemeth, Z., Szego, K., Dósa, M., Opitz, A., and
Madanian, H.: Estimating the solar wind pressure at comet 67P from Rosetta
magnetic field measurements, J. Space Weather Spac., 9,
A3, https://doi.org/10.1051/swsc/2018050, 2019. a
Trotignon, J. G., Michau, J. L., Lagoutte, D., Chabassière, M.,
Chalumeau, G., Colin, F., Décréau, P. M. E., Geiswiller, J.,
Gille, P., Grard, R., Hachemi, T., Hamelin, M., Eriksson, A.,
Laakso, H., Lebreton, J. P., Mazelle, C., Rand riamboarison, O.,
Schmidt, W., Smit, A., Telljohann, U., and Zamora, P.: RPC-MIP: the
Mutual Impedance Probe of the Rosetta Plasma Consortium, Space Sci.
Rev., 128, 713–728, https://doi.org/10.1007/s11214-006-9005-1, 2007. a
Tsurutani, B. T.: Cometary Plasma Waves and Instabilities, International
Astronomical Union Colloquium, 116, 1171–1210,
https://doi.org/10.1017/S0252921100012872, 1991. a
Tsurutani, B. T. and Rodriguez, P.: Upstream waves and particles – An
overview of ISEE results, J. Geophys. Res., 86, 4317,
https://doi.org/10.1029/JA086iA06p04317, 1981. a
Tsurutani, B. T. and Smith, E. J.: Hydromagnetic waves and instabilities
associated with cometary ion pickup: ICE observations, Geophys. Res.
Lett., 13, 263–266, https://doi.org/10.1029/GL013i003p00263, 1986. a
Tsurutani, B. T., Thorne, R. M., Smith, E. J., Gosling, J. T., and Matsumoto,
H.: Steepened magnetosonic waves at comet Giacobini-Zinner, J.
Geophys. Res.-Space, 92, 11074–11082,
https://doi.org/10.1029/JA092iA10p11074, 1987. a, b, c
Tsurutani, B. T., Smith, E. J., Matsumoto, H., Brinca, A. L., and Omidi, N.:
Highly nonlinear magnetic pulses at comet Giacobini-Zinner, Geophys.
Res. Lett., 17, 757–760,
https://doi.org/10.1029/GL017i006p00757, 1990. a
Tsurutani, B. T., Glassmeier, K. H., and Neubauer, F. M.: An
intercomparison of plasma turbulence at three comets: Grigg-Skjellerup,
Giacobini-Zinner, and Halley, Geophys. Res. Lett., 22, 1149–1152,
https://doi.org/10.1029/95GL00806, 1995. a
Tsurutani, B. T., Echer, E., Richter, I., Koenders, C., and Glassmeier, K.-H.:
SLAMS at comet 19P/Borrelly: DS1 observations, Planet. Space Sci.,
75, 17–27, https://doi.org/10.1016/j.pss.2012.11.002, 2013. a
Tsurutani, B. T., Hajra, R., Tanimori, T., Takada, A., Remya, B., Mannucci,
A. J., Lakhina, G. S., Kozyra, J. U., Shiokawa, K., Lee, L. C., Echer, E.,
Reddy, R. V., and Gonzalez, W. D.: Heliospheric plasma sheet (HPS)
impingement onto the magnetosphere as a cause of relativistic electron
dropouts (REDs) via coherent EMIC wave scattering with possible consequences
for climate change mechanisms, J. Geophys. Res.-Space, 121, 10130–10156, https://doi.org/10.1002/2016JA022499,
2016. a
Tsurutani, B. T., Lakhina, G. S., Sen, A., Hellinger, P., Glassmeier, K.-H.,
and Mannucci, A. J.: A Review of Alfvénic Turbulence in High-Speed Solar
Wind Streams: Hints From Cometary Plasma Turbulence, J. Geophys.
Res.-Space, 123, 2458–2492,
https://doi.org/10.1002/2017JA024203, 2018. a
Vigren, E., André, M., Edberg, N. J. T., Engelhardt, I. A. D., Eriksson,
A. I., Galand, M., Goetz, C., Henri, P., Heritier, K., Johansson, F. L.,
Nilsson, H., Odelstad, E., Rubin, M., Stenberg-Wieser, G., Tzou, C.-Y., and
Valliéres, X.: Effective ion speeds at 200–250 km from comet
67P/Churyumov–Gerasimenko near perihelion, Mon. Not. R.
Astron. Soc., 469, S142–S148, https://doi.org/10.1093/mnras/stx1472, 2017. a
Volwerk, M., Goetz, C., Richter, I., Delva, M., Ostaszewski, K.,
Schwingenschuh, K., and Glassmeier, K.-H.: A tail like no other – The
RPC-MAG view of Rosetta´s tail excursion at comet
67P/Churyumov-Gerasimenko, Astron. Astrophys., 614, A10,
https://doi.org/10.1051/0004-6361/201732198, 2018. a
Vranjes, J.: Viscosity effects on waves in partially and fully ionized plasma
in magnetic field, Mon. Not. R. Astron. Soc., 445,
1614–1624, https://doi.org/10.1093/mnras/stu1887, 2014. a, b
Warburton, T. and Karniadakis, G.: A Discontinuous Galerkin Method for the
Viscous MHD Equations, J. Comput. Phys., 152, 608–641,
https://doi.org/10.1006/jcph.1999.6248, 1999. a
Witasse, O., Sánchez-Cano, B., Mays, M. L., Kajdič, P., Opgenoorth, H.,
Elliott, H. A., Richardson, I. G., Zouganelis, I., Zender, J.,
Wimmer-Schweingruber, R. F., Turc, L., Taylor, M. G. G. T., Roussos, E.,
Rouillard, A., Richter, I., Richardson, J. D., Ramstad, R., Provan, G.,
Posner, A., Plaut, J. J., Odstrcil, D., Nilsson, H., Niemenen, P., Milan,
S. E., Mandt, K., Lohf, H., Lester, M., Lebreton, J.-P., Kuulkers, E., Krupp,
N., Koenders, C., James, M. K., Intzekara, D., Holmstrom, M., Hassler, D. M.,
Hall, B. E. S., Guo, J., Goldstein, R., Goetz, C., Glassmeier, K. H., Génot,
V., Evans, H., Espley, J., Edberg, N. J. T., Dougherty, M., Cowley, S. W. H.,
Burch, J., Behar, E., Barabash, S., Andrews, D. J., and Altobelli, N.:
Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet
67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto:
Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU, J.
Geophys. Res.-Space, 122, 7865–7890,
https://doi.org/10.1002/2017JA023884, 2017.
a
Wu, C. S. and Davidson, R. C.: Electromagnetic instabilities produced by
neutral-particle ionization in interplanetary space, J. Geophys.
Res., 77, 5399, https://doi.org/10.1029/JA077i028p05399, 1972. a, b
Zaqarashvili, T. V., Khodachenko, M. L., and Rucker, H. O.:
Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid
approach, Astron. Astrophys., 529, A82,
https://doi.org/10.1051/0004-6361/201016326, 2011. a
Zhdanov, V. M.: Transport Processes in Multicomponent Plasma, Plasma
Phys. Contr. F., 44, 2283, https://doi.org/10.1088/0741-3335/44/10/701,
2002. a, b
Short summary
Plasma waves are an integral part of cometary physics, as they facilitate the transfer of energy and momentum. From intermediate to strong activity, nonlinear asymmetric plasma and magnetic field enhancements dominate the inner coma of 67P/CG. We present a statistical survey of these structures from December 2014 to June 2016, facilitated by Rosetta's unprecedented long mission duration. Using a 1D MHD model, we show they can be described as a combination of nonlinear and dissipative effects.
Plasma waves are an integral part of cometary physics, as they facilitate the transfer of energy...