Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 35, issue 3
Ann. Geophys., 35, 613–628, 2017
https://doi.org/10.5194/angeo-35-613-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 35, 613–628, 2017
https://doi.org/10.5194/angeo-35-613-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Regular paper 09 May 2017

Regular paper | 09 May 2017

Estimating a planetary magnetic field with time-dependent global MHD simulations using an adjoint approach

Christian Nabert1, Carsten Othmer1, and Karl-Heinz Glassmeier1,2 Christian Nabert et al.
  • 1Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
  • 2Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany

Abstract. The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD) simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms) magnetosheath data to estimate Earth's dipole moment.

Publications Copernicus
Short summary
The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field contribution by minimizing the misfit between simulation results and in situ spacecraft data. The approach is developed with respect to the upcoming BepiColombo mission to Mercury aimed at determining the planet's magnetic field.
The interaction of the solar wind with a planetary magnetic field causes electrical currents...
Citation