Chalmers, J. A.: Atmospheric Electricity, 2nd Edn., Pergamon Press, London, 1967.
a,
b,
c,
d
Dhanorkar, S. and Kamra, A. K.: Calculation of electrical conductivity from ion–aerosol balance equations, J. Geophys. Res., 102, 30147–30159,
https://doi.org/10.1029/97JD02677, 1997.
a
Dragović, S., Yamauchi, M., Aoyama, M., Kajino, M., Petrović, J., Ćujić, M., Dragović, R., Đorđević, M., and Bór, J.: Synthesis of studies on significant atmospheric electrical effects of major nuclear accidents in Chernobyl and Fukushima, Sci. Total Environ., 733, 139271,
https://doi.org/10.1016/j.scitotenv.2020.139271, 2020.
a
Dziembowska, A.: Eighty Years of Fair-Weather Atmospheric Electricity Monitoring in Poland, Publications of the Institute of Geophysics Polish Academy of Sciences, available at:
https://pub.igf.edu.pl/files/Pdf/Pubs/20.pdf?t=1625667068 (last access: 8 July 2021), 2009.
a,
b,
c
Harrison, R. G.: Twentieth-century atmospheric electrical measurements at the observatories of Kew, Eskdalemuir and Lerwick, Weather, 58, 11–19, 2003. a
Harrison, R. G. and Nicoll, K. A.: Fair weather criteria for atmospheric electricity measurements, J. Atmos. Sol.-Terr. Phy., 179, 239–250, 2018.
a,
b
Israelsson, S. and Knudsen, E.: Effect of radioactive fallout from a nuclear power plant accident on electrical parameters, J. Geophys. Res., 91, 11909–11910,
https://doi.org/10.1029/JD091iD11p11909, 1986.
a
Jamil, M., Hassan, M. K., Al-Matterneh, H. M. A., and Zain, M. F. M.: Concrete dielectric properties investigation using microwave nondestructive techniques, Mater. Struct., 46, 77–87, 2013.
a,
b,
c
Lees, C. H.: On the Shapes of Equipotential Surfaces in the Air near Long Walls or Buildings and on their Effect on the Measurement of Atmospheric Potential Gradients, P. Roy. Soc. A, 91, 440–451, 1915.
a,
b,
c,
d
Lucas, G. M., Thayer, J. P., and Deierling, W.: Statistical analysis of spatial and temporal variations in atmospheric electric fields from a regional array of field mills, J. Geophys. Res.-Atmos., 122, 1158–1174,
https://doi.org/10.1002/2016JD025944, 2017.
a,
b,
c,
d,
e
Kubicki, M.: Results of Atmospheric Electricity and Meteorological Observations, S. Kalinowski Geophysical Observatory at Świder, Vol. 321, Publications of the Institute of Geophysics Polish Academy of Sciences, Warszava, 1999.
a,
b
Kubicki, M., Odzimek, A., and Neska, M.: Relationship of ground-level aerosol concentration and atmospheric electricfield at three observation sites in the Arctic, Antarctic and Europe, Atmos. Res., 178–179, 329–346,
https://doi.org/10.1016/j.atmosres.2016.03.029, 2016.
a
Kubicki, M., Mysłek-Laurikainen, B., and Odzimek, A.: Nature of Relationships Between Atmospheric Electricity Parameters at Ground Surface and Air Ionization on the Basis of Nuclear Accidents in Power Plants and Weapons Tests, Front. Earth Sci., 9, 647913,
https://doi.org/10.3389/feart.2021.647913, 2021.
a,
b,
c,
d
Märcz, F.: Short-term changes in atmospheric electricity associated with Forbush decreases, J. Atmos. Sol.-Terr. Phy., 59, 975–982, 1997. a
Märcz, F. and Harrison, R. G.: Long-term changes in atmospheric electrical parameters observed at Nagycenk (Hungary) and the UK observatories at Eskdalemuir and Kew, Ann. Geophys., 21, 2193–2200,
https://doi.org/10.5194/angeo-21-2193-2003, 2003.
a,
b,
c,
d,
e,
f,
g
Märcz, F. and Harrison, R. G.: Comment on “Shielding effects of trees on the measurement of the Earth’s electric field: Implications for secular variations of the global electrical circuit” by E. Williams et al., Geophys. Res. Lett., 33, 1987–1995,
https://doi.org/10.1029/2005GL025574, 2006.
a,
b,
c,
d
Märcz, F. and Sátori, G.: Long-term changes in atmospheric electricity and the Multivariate ENSO Index, Acta Geod. Geophys. Hu., 40, 379–390, 2005. a
Märcz, F., Horváth J., Bencze, P., Sátori G., and Bór, J.: Simultaneous measurements of the atmospheric electric potential gradient at Nagycenk observatory by means of two individual equipments, Acta Geod. Geophys. Hu., 36, 269–278, 2001.
a,
b
Meeker, D.: Finite Element Methods Magnetics Version 4.2 User's Manual, available at:
http://www.femm.info/Archives/doc/manual42.pdf (last access: 6 July 2021), 2015.
a,
b
Nicoll, K. A., Harrison, R. G., Barta, V., Bor, J., Brugge, R., Chillingarian, A., Chum, J., Georgoulias, A. K., Guha, A., Kourtidis, K., Kubicki, M., Mareev, E., Matthews, J., Mkrtchyan, H., Odzimek, A., Raulin, J.-P., Robert, D., Silva, H. G., Tacza, J., and Yair, Y.: A global atmospheric electricity monitoring network for climate and geophysical research, J. Atmos. Sol.-Terr. Phy., 184, 18–29, 2019.
a,
b
Pierce, E. T.: Radioactive fallout and secular effects in atmospheric electricity, J. Gepohys. Res.-Oceans, 77, 482–487, 1972. a
Retalis, D. and Pitta, A.: Effects on electrical parameters at Athens, Greece by radioactive fallout from a nuclear power plant accident, J. Geophys. Res., 94, 13093–13097,
https://doi.org/10.1029/JD094iD11p13093, 1989.
a
Rycroft, M. J., Israelsson, S., and Price, C.: The global atmospheric electric circuit, solar activity and climate change, J. Atmos. Sol.-Terr. Phy., 62, 1563–1576, 2000.
a,
b
Salas, W. A., Ranson, J. K., Rock, B. N., and Smith, K. T.: Temporal and Spatial Variations in Dielectric Constant and Water Status of Dominant Forest Species from New England, Remote Sens. Environ., 47, 109–119, 1994.
a,
b,
c
Sátori, G., Rycroft, M., Bencze, P., Märcz, F., Bór, J., Barta, V., Nagy, T., and Kovács, K.: An Overview of Thunderstorm-Related Research on the Atmospheric Electric Field, Schumann Resonances, Sprites, and the Ionosphere at Sopron, Hungary, Surv. Geophys., 34, 255–292,
https://doi.org/10.1007/s10712-013-9222-6, 2013.
a,
b
Silva, H. G., Bezzeghoud, M., Reis, A. H., Rosa, R. N., Tlemçani, M., Araújo, A. A., Serrano, C., Borges, J. F., Caldeira, B., and Biagi, P. F.: Atmospheric electrical field decrease during the
M=4.1 Sousel earthquake (Portugal), Nat. Hazards Earth Syst. Sci., 11, 987–991,
https://doi.org/10.5194/nhess-11-987-2011, 2011.
a
Solymos, L.: Az erdeifenyő állományok fatermése Magyarországon, Erdészeti Kutatások, 67, 203–232, 1971. a
Sopp, L.: Fatömegszámítási táblázatok, Mezőgazdasági Könyvkiadó Vállalat, Budapest, 1970. a
Tomasanis, D.: Effective Dielectric Constants of Foliage Media, RADC-TR-90-157 Interim Report, available at:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a226296.pdf (last access: 6 July 2021), 1990.
a,
b,
c
Tuomi, T. J.: Ten Year Summary 1977–1986 of Atmospheric Electricity Measured at Helsinki-Vantaa Airport, Finland, Geophysica, 25, 1–20, 1989. a
Wan, H., Wei, G., Cui, Y., and Chen, Y.: Influence factor analysis of atmospheric electric field monitoring near ground under different weather conditions, J. Phys. Conf. Ser., 418, 012029,
https://doi.org/10.1088/1742-6596/418/1/012029, 2013.
a,
b
Warzecha, S.: Results of atmospheric electricity measurements at Świder after the Chernobyl nuclear power plant accident, Publs. Inst. Geophys. Pol. Acad. Sc., Warszava, 1987.
a,
b
Williams, E., Markson, R., and Heckman, S.: Shielding effects of trees on the measurement of the Earth's electric field: Implications for secular variations of the global electrical circuit, Geophys. Res. Lett., 32, L19810,
https://doi.org/10.1029/2005GL023717, 2005.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o