Articles | Volume 39, issue 3
https://doi.org/10.5194/angeo-39-487-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-487-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Winds and tides of the Extended Unified Model in the mesosphere and lower thermosphere validated with meteor radar observations
Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
Shaun M. Dempsey
Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
David R. Jackson
Met Office, Fitzroy Rd, Exeter, EX1 3PB, UK
Tracy Moffat-Griffin
British Antarctic Survey, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
Nicholas J. Mitchell
Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
British Antarctic Survey, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
Related authors
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Matthew J. Griffith and Nicholas J. Mitchell
Ann. Geophys., 40, 327–358, https://doi.org/10.5194/angeo-40-327-2022, https://doi.org/10.5194/angeo-40-327-2022, 2022
Short summary
Short summary
There is great scientific interest in extending atmospheric models, such as the Met Office’s Unified Model, upwards to include the upper atmosphere. Atmospheric tides are an important driver of circulation at these greater heights. This study provides a first in-depth analysis of the migrating and non-migrating components of these tides, examining important tidal properties. Our results show that the ExUM produces a rich spectrum of spatial components, with significant non-migrating components.
Ales Kuchar, Gunter Stober, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Manfred Ern, Damian Murphy, Diego Janches, Tracy Moffat-Griffin, Nicholas Mitchell, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2827, https://doi.org/10.5194/egusphere-2025-2827, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
We studied how the healing of the Antarctic ozone layer is affecting winds high above the South Pole. Using ground-based radar, satellite data, and computer models, we found that winds in the upper atmosphere have become stronger over the past two decades. These changes appear to be linked to shifts in the lower atmosphere caused by ozone recovery. Our results show that human efforts to repair the ozone layer are also influencing climate patterns far above Earth’s surface.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Tracy Moffat-Griffin, Damian John Murphy, Toyese Tunde Ayorinde, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3114, https://doi.org/10.5194/egusphere-2025-3114, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This work analyzes the medium-scale atmospheric gravity waves observed by ground-based airglow imaging over the Antarctic continent. Medium-scale gravity waves refer to waves larger than 50 km of horizontal wavelength, and have not been analyzed in that region so far. Wave parameters and horizontal propagation characteristics were obtained by a recently improved methodology and are described thoroughly.
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys., 43, 427–440, https://doi.org/10.5194/angeo-43-427-2025, https://doi.org/10.5194/angeo-43-427-2025, 2025
Short summary
Short summary
This study focuses on a TIMED Doppler Interferometer (TIDI)–meteor radar (MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI wind measurements and MR winds shows good agreement. A TIDI–MR seasonal comparison and analysis of the altitude–latitude dependence for winds are performed. TIDI reproduces the mean circulation well when compared with MRs and may be a useful lower boundary for general circulation models.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Neil P. Hindley, Nicholas J. Mitchell, Neil Cobbett, Anne K. Smith, Dave C. Fritts, Diego Janches, Corwin J. Wright, and Tracy Moffat-Griffin
Atmos. Chem. Phys., 22, 9435–9459, https://doi.org/10.5194/acp-22-9435-2022, https://doi.org/10.5194/acp-22-9435-2022, 2022
Short summary
Short summary
We present observations of winds in the mesosphere and lower thermosphere (MLT) from a recently installed meteor radar on the remote island of South Georgia (54° S, 36° W). We characterise mean winds, tides, planetary waves, and gravity waves in the MLT at this location and compare our measured winds with a leading climate model. We find that the observed wintertime winds are unexpectedly reversed from model predictions, probably because of missing impacts of secondary gravity waves in the model.
Matthew J. Griffith and Nicholas J. Mitchell
Ann. Geophys., 40, 327–358, https://doi.org/10.5194/angeo-40-327-2022, https://doi.org/10.5194/angeo-40-327-2022, 2022
Short summary
Short summary
There is great scientific interest in extending atmospheric models, such as the Met Office’s Unified Model, upwards to include the upper atmosphere. Atmospheric tides are an important driver of circulation at these greater heights. This study provides a first in-depth analysis of the migrating and non-migrating components of these tides, examining important tidal properties. Our results show that the ExUM produces a rich spectrum of spatial components, with significant non-migrating components.
Phoebe Noble, Neil Hindley, Corwin Wright, Chihoko Cullens, Scott England, Nicholas Pedatella, Nicholas Mitchell, and Tracy Moffat-Griffin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-150, https://doi.org/10.5194/acp-2022-150, 2022
Revised manuscript not accepted
Short summary
Short summary
We use long term radar data and the WACCM-X model to study the impact of dynamical phenomena, including the 11-year solar cycle, ENSO, QBO and SAM, on Antarctic mesospheric winds. We find that in summer, the zonal wind (both observationally and in the model) is strongly correlated with the solar cycle. We also see important differences in the results from the other processes. In addition we find important and large biases in the winter model zonal winds relative to the observations.
Neil P. Hindley, Corwin J. Wright, Alan M. Gadian, Lars Hoffmann, John K. Hughes, David R. Jackson, John C. King, Nicholas J. Mitchell, Tracy Moffat-Griffin, Andrew C. Moss, Simon B. Vosper, and Andrew N. Ross
Atmos. Chem. Phys., 21, 7695–7722, https://doi.org/10.5194/acp-21-7695-2021, https://doi.org/10.5194/acp-21-7695-2021, 2021
Short summary
Short summary
One limitation of numerical atmospheric models is spatial resolution. For atmospheric gravity waves (GWs) generated over small mountainous islands, the driving effect of these waves on atmospheric circulations can be underestimated. Here we use a specialised high-resolution model over South Georgia island to compare simulated stratospheric GWs to colocated 3-D satellite observations. We find reasonable model agreement with observations, with some GW amplitudes much larger than expected.
Gunter Stober, Diego Janches, Vivien Matthias, Dave Fritts, John Marino, Tracy Moffat-Griffin, Kathrin Baumgarten, Wonseok Lee, Damian Murphy, Yong Ha Kim, Nicholas Mitchell, and Scott Palo
Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021, https://doi.org/10.5194/angeo-39-1-2021, 2021
Andrew Orr, J. Scott Hosking, Aymeric Delon, Lars Hoffmann, Reinhold Spang, Tracy Moffat-Griffin, James Keeble, Nathan Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 20, 12483–12497, https://doi.org/10.5194/acp-20-12483-2020, https://doi.org/10.5194/acp-20-12483-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) are clouds found in the Antarctic winter stratosphere and are implicated in the formation of the ozone hole. These clouds can sometimes be formed or enhanced by mountain waves, formed as air passes over hills or mountains. However, this important mechanism is missing in coarse-resolution climate models, limiting our ability to simulate ozone. This study examines an attempt to include the effects of mountain waves and their impact on PSCs and ozone.
Cited articles
Akmaev, R.:
Whole atmosphere modeling: Connecting terrestrial and space weather,
Rev. Geophys.,
49, RG4004, https://doi.org/10.1029/2011rg000364, 2011. a
Akmaev, R. A., Fuller-Rowell, T., Wu, F., Forbes, J., Zhang, X., Anghel, A., Iredell, M., Moorthi, S., and Juang, H.-M.:
Tidal variability in the lower thermosphere: Comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED,
Geophys. Res. Lett.,
35, L03810, https://doi.org/10.1029/2007gl032584, 2008. a
Baldwin, M. P., Birner, T., Brasseur, G., Burrows, J., Butchart, N., Garcia, R., Geller, M., Gray, L., Hamilton, K., Harnik, N., Hegglin, M. I., Langematz, U., Robock, A., Sato, K., and Scaife, A. A.:
100 Years of Progress in Understanding the Stratosphere and Mesosphere,
Meteor. Mon.,
59, 27.1–27.62, https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0003.1, 2019. a
Beagley, S. R., McLandress, C., Fomichev, V. I., and Ward, W. E.:
The extended Canadian middle atmosphere model,
Geophys. Res. Lett.,
27, 2529–2532, https://doi.org/10.1029/1999gl011233, 2000. a
Beard, A., Mitchell, N., Williams, P., and Kunitake, M.:
Non-linear interactions between tides and planetary waves resulting in periodic tidal variability,
J. Atmos. Sol.-Terr. Phy.,
61, 363–376, https://doi.org/10.1016/s1364-6826(99)00003-6, 1999. a, b
Becker, E. and Vadas, S. L.:
Explicit Global Simulation of Gravity Waves in the Thermosphere,
J. Geophys. Res.-Space,
125, e2020JA028 034, https://doi.org/10.1029/2020ja028034, 2020. a, b, c, d
Bessarab, F., Korenkov, Y. N., Klimenko, M., Klimenko, V., Karpov, I., Ratovsky, K., and Chernigovskaya, M.:
Modeling the effect of sudden stratospheric warming within the thermosphere–ionosphere system,
J. Atmos. Sol.-Terr. Phy.,
90, 77–85, https://doi.org/10.1016/j.jastp.2012.09.005, 2012. a
Borchert, S., Zhou, G., Baldauf, M., Schmidt, H., Zängl, G., and Reinert, D.: The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0), Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019, 2019. a
Christiansen, B., Yang, S., and Madsen, M. S.:
Do strong warm ENSO events control the phase of the stratospheric QBO?,
Geophys. Res. Lett.,
43, 10–489, https://doi.org/10.1002/2016GL070751, 2016. a
Davis, R. N., Du, J., Smith, A. K., Ward, W. E., and Mitchell, N. J.: The diurnal and semidiurnal tides over Ascension Island (8∘ S, 14∘ W) and their interaction with the stratospheric quasi-biennial oscillation: studies with meteor radar, eCMAM and WACCM, Atmos. Chem. Phys., 13, 9543–9564, https://doi.org/10.5194/acp-13-9543-2013, 2013. a, b, c, d, e, f, g, h, i
Dempsey, S., Hindley, N., Moffat-Griffin, T., Wright, C., Smith, A., Du, J., and Mitchell, N.:
Winds and Tides of the Antarctic Mesosphere and Lower Thermosphere: One Year of Meteor-Radar Observations Over Rothera (68∘ S, 68∘ W) and Comparisons with WACCM and eCMAM,
J. Atmos. Sol.-Terr. Phy.,
212, 105 510, https://doi.org/10.1016/j.jastp.2020.105510, 2021. a, b, c, d, e, f, g, h, i
England, S., Dobbin, A., Harris, M., Arnold, N., and Aylward, A.:
A study into the effects of gravity wave activity on the diurnal tide and airglow emissions in the equatorial mesosphere and lower thermosphere using the Coupled Middle Atmosphere and Thermosphere (CMAT) general circulation model,
J. Atmos. Sol.-Terr. Phy.,
68, 293–308, https://doi.org/10.1016/j.jastp.2005.05.006, 2006. a
Fiedler, J., Baumgarten, G., and von Cossart, G.: Mean diurnal variations of noctilucent clouds during 7 years of lidar observations at ALOMAR, Ann. Geophys., 23, 1175–1181, https://doi.org/10.5194/angeo-23-1175-2005, 2005. a
Fomichev, V., Ward, W. E., Beagley, S., McLandress, C., McConnell, J., McFarlane, N., and Shepherd, T.:
Extended Canadian Middle Atmosphere Model: Zonal-mean climatology and physical parameterizations,
J. Geophys. Res.-Atmos.,
107, ACL 9-1–ACL 9-14, https://doi.org/10.1029/2001jd000479, 2002. a, b
Fritts, D. C. and Alexander, M. J.:
Gravity wave dynamics and effects in the middle atmosphere,
Rev. Geophys.,
41, 1003, https://doi.org/10.1029/2001RG000106, 2003. a
Fujiwara, H. and Miyoshi, Y.: Morphological features and variations of temperature in the upper thermosphere simulated by a whole atmosphere GCM, Ann. Geophys., 28, 427–437, https://doi.org/10.5194/angeo-28-427-2010, 2010. a
Fuller‐Rowell, T. J., Akmaev, R. A., Wu, F., Anghel, A., Maruyama, N., Anderson, D. N., Codrescu, M. V., Iredell, M., Moorthi, S., Juang, H. M., and Hou, Y. T.:
Impact of terrestrial weather on the upper atmosphere,
Geophys. Res. Lett.,
35, L09808, https://doi.org/10.1029/2007gl032911, 2008. a
Garcia, R., Marsh, D., Kinnison, D., Boville, B., and Sassi, F.:
Simulation of secular trends in the middle atmosphere, 1950–2003,
J. Geophys. Res.-Atmos.,
112, D09301, https://doi.org/10.1029/2006jd007485, 2007. a
Giorgetta, M., Manzini, E., Roeckner, E., Esch, M., and Bengtsson, L.:
Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model,
J. Climate,
19, 3882–3901, https://doi.org/10.1175/jcli3830.1, 2006. a
Griffin, D. and Thuburn, J.:
Numerical effects on vertical wave propagation in deep-atmosphere models,
Q. J. Roy. Meteor. Soc.,
144, 567–580, https://doi.org/10.1002/qj.3229, 2018. a
Hickey, M., Walterscheid, R., and Schubert, G.:
Gravity wave heating and cooling of the thermosphere: Sensible heat flux and viscous flux of kinetic energy,
J. Geophys. Res.-Space,
116, A12326, https://doi.org/10.1029/2011ja016792, 2011. a
Hocking, W., Fuller, B., and Vandepeer, B.:
Real-time determination of meteor-related parameters utilizing modern digital technology,
J. Atmos. Sol.-Terr. Phy.,
63, 155–169, https://doi.org/10.1016/s1364-6826(00)00138-3, 2001. a
Jackson, D. R., Fuller-Rowell, T. J., Griffin, D. J., Griffith, M. J., Kelly, C. W., Marsh, D. R., and Walach, M.-T.:
Future Directions for Whole Atmosphere Modelling: Developments in the context of space weather,
Space Weather,
17, 1342–1350, https://doi.org/10.1029/2019sw002267, 2019. a
Jackson, D. R., Bruinsma, S., Negrin, S., Stolle, C., Budd, C. J., Gonzalez, R. D., Down, E., Griffin, D. J., Griffith, M. J., Kervalishvili, G. and Arenillas, D. L.:
The Space Weather Atmosphere Models and Indices (SWAMI) Project: Overview and first results,
J. Space Weather Spac.,
10, 18, https://doi.org/10.1051/swsc/2020019, 2020. a, b
Jin, H., Miyoshi, Y., Pancheva, D., Mukhtarov, P., Fujiwara, H., and Shinagawa, H.:
Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations,
J. Geophys. Res.-Space,
117, A10323, https://doi.org/10.1029/2012ja017650, 2012. a, b
Jones Jr., M., Forbes, J., Hagan, M., and Maute, A.:
Impacts of vertically propagating tides on the mean state of the ionosphere-thermosphere system,
J. Geophys. Res.-Space,
119, 2197–2213, https://doi.org/10.1002/2013ja019744, 2014. a
Klimenko, M. V., Klimenko, V. V., Bessarab, F. S., Sukhodolov, T. V., Vasilev, P. A., Karpov, I. V., Korenkov, Y. N., Zakharenkova, I. E., Funke, B., and Rozanov, E. V.:
Identification of the mechanisms responsible for anomalies in the tropical lower thermosphere/ionosphere caused by the January 2009 sudden stratospheric warming,
J. Space Weather Spac.,
9, A39, https://doi.org/10.1051/swsc/2019037, 2019. a, b
Korenkov, Y. N., Klimenko, V. V., Klimenko, M. V., Bessarab, F. S., Korenkova, N. A., Ratovsky, K. G., Chernigovskaya, M. A., Shcherbakov, A. A., Sahai, Y., Fagundes, P. R., and De Jesus, R.:
The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event,
J. Geophys. Res.-Space,
117, A10309, https://doi.org/10.1029/2012ja018018, 2012. a
Lieberman, R., Oberheide, J., Hagan, M., Remsberg, E., and Gordley, L.:
Variability of diurnal tides and planetary waves during November 1978–May 1979,
J. Atmos. Sol.-Terr. Phy.,
66, 517–528, https://doi.org/10.1016/j.jastp.2004.01.006, 2004. a
Lieberman, R., Akmaev, R., Fuller-Rowell, T., and Doornbos, E.:
Thermospheric zonal mean winds and tides revealed by CHAMP,
Geophys. Res. Lett.,
40, 2439–2443, https://doi.org/10.1002/grl.50481, 2013. a
Lilienthal, F., Yiğit, E., Samtleben, N., and Jacobi, C.:
Variability of Gravity Wave Effects on the Zonal Mean Circulation and Migrating Terdiurnal Tide as Studied with the Middle and Upper Atmosphere Model (MUAM2019) Using a Whole Atmosphere Nonlinear Gravity Wave Scheme,
Frontiers in Astronomy and Space Sciences,
7, 588956, https://doi.org/10.3389/fspas.2020.588956, 2020. a
Liu, H.-L.:
Variability and predictability of the space environment as related to lower atmosphere forcing,
Space Weather,
14, 634–658, https://doi.org/10.1002/2016SW001450, 2016. a, b
Liu, H. L., Foster, B. T., Hagan, M. E., McInerney, J. M., Maute, A., Qian, L., Richmond, A. D., Roble, R. G., Solomon, S. C., Garcia, R. R., and Kinnison, D.:
Thermosphere extension of the whole atmosphere community climate model,
J. Geophys. Res.-Space,
115, A12302, https://doi.org/10.1029/2010JA015586, 2010. a
Liu, H. L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., Marsh, D. R., Maute, A., McInerney, J. M., Pedatella, N. M., and Qian, L.:
Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X 2.0),
J. Adv. Model. Earth Sy.,
10, 381–402, https://doi.org/10.1002/2017ms001232, 2018a. a, b
Liu, J., Liu, H., Wang, W., Burns, A. G., Wu, Q., Gan, Q., Solomon, S. C., Marsh, D. R., Qian, L., Lu, G., and Pedatella, N. M.:
First results from the ionospheric extension of WACCM-X during the deep solar minimum year of 2008,
J. Geophys. Res.-Space,
123, 1534–1553, https://doi.org/10.1002/2017ja025010, 2018b. a
Manzini, E., Giorgetta, M., Esch, M., Kornblueh, L., and Roeckner, E.:
The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model,
J. Climate,
19, 3863–3881, https://doi.org/10.1175/jcli3826.1, 2006. a
McLandress, C.:
The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part I: The role of gravity waves and planetary waves,
J. Atmos. Sci.,
59, 893–906, https://doi.org/10.1175/1520-0469(2002)059<0893:tsvotp>2.0.co;2, 2002. a
Medvedev, A. and Klaassen, G.:
Thermal effects of saturating gravity waves in the atmosphere,
J. Geophys. Res.-Atmos.,
108, ACL 4-1–ACL 4-18, https://doi.org/10.1029/2002jd002504, 2003. a
Meraner, K. and Schmidt, H.: Transport of nitrogen oxides through the winter mesopause in HAMMONIA,
J. Geophys. Res.-Atmos.,
121, 2556–2570, https://doi.org/10.1002/2015jd024136, 2016. a
Millward, G., Moffett, R., Quegan, S., and Fuller-Rowell, T.:
A coupled thermosphere-ionosphere-plasmasphere model (CTIP), Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, edited by: Schunk, R. W., 239–279, Cent. for Atmos. and Space Sci., Utah State Univ., Logan, Utah, available at: https://www.bc.edu/content/dam/bc1/offices/ISR/SCOSTEP/Multimedia/other/ionospheric-models.pdf (last access: 8 June 2021), 1996. a
Mitchell, N. J.: University of Bath: Rothera Skiymet Meteor Radar data (2005–present), Centre for Environmental Data Analysis, available at: https://catalogue.ceda.ac.uk/uuid/aa44e02718fd4ba49cefe36d884c6e50 (last access: 8 June 2021), 2019a. a
Mitchell, N. J.: University of Bath: Ascension Island Skiymet Meteor Radar data (2001–2012), Centre for Environmental Data Analysis, available at: https://catalogue.ceda.ac.uk/uuid/0d05cf74e17f49c2b7c5cd02faa59291 (last access: 8 June 2021), 2019b. a
Mitchell, N., Pancheva, D., Middleton, H., and Hagan, M.:
Mean winds and tides in the Arctic mesosphere and lower thermosphere,
J. Geophys. Res.-Space,
107, SIA 2-1–SIA 2-14, https://doi.org/10.1029/2001ja900127, 2002. a, b
Miyahara, S. and Forbes, J. M.:
Interactions between gravity waves and the diurnal tide in the mesosphere and lower thermosphere,
J. Meteorol. Soc. Jpn. Ser. II,
69, 523–531, https://doi.org/10.2151/jmsj1965.69.5_523, 1991. a
Miyahara, S., Yoshida, Y., and Miyoshi, Y.:
Dynamic coupling between the lower and upper atmosphere by tides and gravity waves,
J. Atmos. Terr. Phys.,
55, 1039–1053, https://doi.org/10.1016/0021-9169(93)90096-h, 1993. a
Miyoshi, Y. and Fujiwara, H.:
Gravity waves in the thermosphere simulated by a general circulation model,
J. Geophys. Res.-Atmos.,
113, D01101, https://doi.org/10.1029/2007jd008874, 2008. a
Oberheide, J., Forbes, J., Häusler, K., Wu, Q., and Bruinsma, S.:
Tropospheric tides from 80 to 400 km: Propagation, interannual variability, and solar cycle effects,
J. Geophys. Res.-Atmos.,
114, D00I05, https://doi.org/10.1029/2009jd012388, 2009. a
Palo, S., Forbes, J., Zhang, X., Russell III, J., and Mlynczak, M.:
An eastward propagating two-day wave: Evidence for nonlinear planetary wave and tidal coupling in the mesosphere and lower thermosphere,
Geophys. Res. Lett.,
34, L07807, https://doi.org/10.1029/2006gl027728, 2007. a, b
Pancheva, D., Merzlyakov, E., Mitchell, N. J., Portnyagin, Y., Manson, A. H., Jacobi, C., Meek, C. E., Luo, Y., Clark, R. R., Hocking, W. K., and MacDougall, J.:
Global-scale tidal variability during the PSMOS campaign of June–August 1999: interaction with planetary waves,
J. Atmos. Sol.-Terr. Phy.,
64, 1865–1896, https://doi.org/10.1016/s1364-6826(02)00199-2, 2002. a
Pancheva, D. V. and Mitchell, N. J.:
Planetary waves and variability of the semidiurnal tide in the mesosphere and lower thermosphere over Esrange (68∘ N, 21∘ E) during winter,
J. Geophys. Res.-Space,
109, A08307, https://doi.org/10.1029/2004ja010433, 2004. a
Park, J., Lühr, H., Lee, C., Kim, Y. H., Jee, G., and Kim, J.-H.:
A climatology of medium-scale gravity wave activity in the midlatitude/low-latitude daytime upper thermosphere as observed by CHAMP,
J. Geophys. Res.-Space,
119, 2187–2196, https://doi.org/10.1002/2013ja019705, 2014. a
Pogoreltsev, A.:
Generation of normal atmospheric modes by stratospheric vacillations,
Izv. Atmos. Ocean. Phy+.,
43, 423–435, https://doi.org/10.1134/s0001433807040044, 2007. a
Pogoreltsev, A., Vlasov, A., Fröhlich, K., and Jacobi, C.:
Planetary waves in coupling the lower and upper atmosphere,
J. Atmos. Sol.-Terr. Phy.,
69, 2083–2101, https://doi.org/10.1016/j.jastp.2007.05.014, 2007. a
Riggin, D., Meyer, C., Fritts, D., Jarvis, M., Murayama, Y., Singer, W., Vincent, R., and Murphy, D.:
MF radar observations of seasonal variability of semidiurnal motions in the mesosphere at high northern and southern latitudes,
J. Atmos. Sol.-Terr. Phy.,
65, 483–493, https://doi.org/10.1016/s1364-6826(02)00340-1, 2003. a
Riggin, D. M. and Lieberman, R. S.:
Variability of the diurnal tide in the equatorial MLT,
J. Atmos. Sol.-Terr. Phy.,
102, 198–206, https://doi.org/10.1016/j.jastp.2013.05.011, 2013. a
Sandford, D. J., Beldon, C. L., Hibbins, R. E., and Mitchell, N. J.: Dynamics of the Antarctic and Arctic mesosphere and lower thermosphere – Part 1: Mean winds, Atmos. Chem. Phys., 10, 10273–10289, https://doi.org/10.5194/acp-10-10273-2010, 2010. a, b
Scaife, A., Butchart, N., Warner, C., and Swinbank, R.:
Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model,
J. Atmos. Sci.,
59, 1473–1489, https://doi.org/10.1175/1520-0469(2002)059<1473:ioasgw>2.0.co;2, 2002. a, b
Schmidt, H., Brasseur, G., Charron, M., Manzini, E., Giorgetta, M., Diehl, T., Fomichev, V., Kinnison, D., Marsh, D., and Walters, S.:
The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling,
J. Climate,
19, 3903–3931, https://doi.org/10.1175/jcli3829.1, 2006. a, b
Smith, A. K., Pancheva, D. V., Mitchell, N. J., Marsh, D. R., Russell III, J. M., and Mlynczak, M. G.:
A link between variability of the semidiurnal tide and planetary waves in the opposite hemisphere,
Geophys. Res. Lett.,
34, L07809, https://doi.org/10.1029/2006gl028929, 2007. a
Stober, G., Janches, D., Matthias, V., Fritts, D., Marino, J., Moffat-Griffin, T., Baumgarten, K., Lee, W., Murphy, D., Kim, Y. H., Mitchell, N., and Palo, S.: Seasonal evolution of winds, atmospheric tides, and Reynolds stress components in the Southern Hemisphere mesosphere–lower thermosphere in 2019, Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021, 2021. a, b
Suvorova, E. and Pogoreltsev, A.:
Modeling of nonmigrating tides in the middle atmosphere,
Geomagn. Aeronomy+.,
51, 105–115, https://doi.org/10.1134/s0016793210061039, 2011. a
Teitelbaum, H. and Vial, F.:
On tidal variability induced by nonlinear interaction with planetary waves,
J. Geophys. Res.-Space,
96, 14169–14178, https://doi.org/10.1029/91ja01019, 1991. a, b
Trinh, Q. T., Ern, M., Doornbos, E., Preusse, P., and Riese, M.: Satellite observations of middle atmosphere–thermosphere vertical coupling by gravity waves, Ann. Geophys., 36, 425–444, https://doi.org/10.5194/angeo-36-425-2018, 2018. a
Vadas, S., Liu, H.-L., and Lieberman, R.:
Numerical modeling of the global changes to the thermosphere and ionosphere from the dissipation of gravity waves from deep convection,
J. Geophys. Res.-Space,
119, 7762–7793, https://doi.org/10.1002/2014ja020280, 2014. a
Vitharana, A., Zhu, X., Du, J., Oberheide, J., and Ward, W. E.:
Statistical Modeling of Tidal Weather in the Mesosphere and Lower Thermosphere,
J. Geophys. Res.-Atmos.,
124, 9011–9027, https://doi.org/10.1029/2019jd030573, 2019. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
a, b, c, d
Warner, C. and McIntyre, M.:
An ultrasimple spectral parameterization for nonorographic gravity waves,
J. Atmos. Sci.,
58, 1837–1857, https://doi.org/10.1175/1520-0469(2001)058<1837:auspfn>2.0.co;2, 2001. a, b
Wilhelm, S., Stober, G., and Chau, J. L.: A comparison of 11-year mesospheric and lower thermospheric winds determined by meteor and MF radar at 69∘ N, Ann. Geophys., 35, 893–906, https://doi.org/10.5194/angeo-35-893-2017, 2017. a
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.:
An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations,
Q. J. Roy. Meteor. Soc.,
140, 1505–1520, https://doi.org/10.1002/qj.2235, 2014. a, b
Yiğit, E. and Medvedev, A. S.:
Heating and cooling of the thermosphere by internal gravity waves,
Geophys. Res. Lett.,
36, L14807, https://doi.org/10.1029/2009gl038507, 2009. a
Yiğit, E. and Medvedev, A. S.:
Internal wave coupling processes in Earth's atmosphere,
Adv. Space Res.,
55, 983–1003, https://doi.org/10.1016/j.asr.2014.11.020, 2015. a
Yiğit, E. and Medvedev, A. S.:
Influence of parameterized small-scale gravity waves on the migrating diurnal tide in Earth's thermosphere,
J. Geophys. Res.-Space,
122, 4846–4864, https://doi.org/10.1002/2017ja024089, 2017. a, b, c, d
Yiğit, E., Aylward, A. D., and Medvedev, A. S.:
Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study,
J. Geophys. Res.-Atmos.,
113, D19106, https://doi.org/10.1029/2008jd010135, 2008. a, b, c
Yiğit, E., Medvedev, A. S., Aylward, A. D., Hartogh, P., and Harris, M. J.:
Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause,
J. Geophys. Res.-Atmos.,
114, D07101, https://doi.org/10.1029/2008jd011132, 2009. a, b
Yiğit, E., Knížová, P. K., Georgieva, K., and Ward, W.:
A review of vertical coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity,
J. Atmos. Sol.-Terr. Phy.,
141, 1–12, https://doi.org/10.1016/j.jastp.2016.02.011, 2016. a
Yiğit, E., Medvedev, A. S., and Ern, M.:
Effects of Latitude-Dependent Gravity Wave Source Variations on the Middle and Upper Atmosphere,
Frontiers in Astronomy and Space Sciences,
7, 614018, https://doi.org/10.3389/fspas.2020.614018, 2021. a, b, c
Short summary
There is great scientific interest in extending atmospheric models upwards to include the upper atmosphere. The Met Office’s Unified Model has recently been successfully extended to include this region. Atmospheric tides are an important driver of atmospheric motion at these greater heights. This paper provides a first comparison of winds and tides produced by the new extended model with meteor radar observations, comparing key tidal properties and discussing their similarities and differences.
There is great scientific interest in extending atmospheric models upwards to include the upper...