Articles | Volume 39, issue 3
https://doi.org/10.5194/angeo-39-487-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-487-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Winds and tides of the Extended Unified Model in the mesosphere and lower thermosphere validated with meteor radar observations
Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
Shaun M. Dempsey
Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
David R. Jackson
Met Office, Fitzroy Rd, Exeter, EX1 3PB, UK
Tracy Moffat-Griffin
British Antarctic Survey, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
Nicholas J. Mitchell
Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
British Antarctic Survey, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
Related authors
Matthew J. Griffith and Nicholas J. Mitchell
Ann. Geophys., 40, 327–358, https://doi.org/10.5194/angeo-40-327-2022, https://doi.org/10.5194/angeo-40-327-2022, 2022
Short summary
Short summary
There is great scientific interest in extending atmospheric models, such as the Met Office’s Unified Model, upwards to include the upper atmosphere. Atmospheric tides are an important driver of circulation at these greater heights. This study provides a first in-depth analysis of the migrating and non-migrating components of these tides, examining important tidal properties. Our results show that the ExUM produces a rich spectrum of spatial components, with significant non-migrating components.
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-13, https://doi.org/10.5194/angeo-2024-13, 2024
Preprint under review for ANGEO
Short summary
Short summary
This study focuses on the TIMED Doppler Interferometer (TIDI)-Meteor Radar(MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI winds measurements and MR winds shows good agreement. A TIDI-MR seasonal comparison and the altitude-latitude dependence for winds is performed. TIDI reproduce the mean circulation well when compared with the MRs and might be useful as a lower boundary for general circulation models.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Neil P. Hindley, Nicholas J. Mitchell, Neil Cobbett, Anne K. Smith, Dave C. Fritts, Diego Janches, Corwin J. Wright, and Tracy Moffat-Griffin
Atmos. Chem. Phys., 22, 9435–9459, https://doi.org/10.5194/acp-22-9435-2022, https://doi.org/10.5194/acp-22-9435-2022, 2022
Short summary
Short summary
We present observations of winds in the mesosphere and lower thermosphere (MLT) from a recently installed meteor radar on the remote island of South Georgia (54° S, 36° W). We characterise mean winds, tides, planetary waves, and gravity waves in the MLT at this location and compare our measured winds with a leading climate model. We find that the observed wintertime winds are unexpectedly reversed from model predictions, probably because of missing impacts of secondary gravity waves in the model.
Matthew J. Griffith and Nicholas J. Mitchell
Ann. Geophys., 40, 327–358, https://doi.org/10.5194/angeo-40-327-2022, https://doi.org/10.5194/angeo-40-327-2022, 2022
Short summary
Short summary
There is great scientific interest in extending atmospheric models, such as the Met Office’s Unified Model, upwards to include the upper atmosphere. Atmospheric tides are an important driver of circulation at these greater heights. This study provides a first in-depth analysis of the migrating and non-migrating components of these tides, examining important tidal properties. Our results show that the ExUM produces a rich spectrum of spatial components, with significant non-migrating components.
Phoebe Noble, Neil Hindley, Corwin Wright, Chihoko Cullens, Scott England, Nicholas Pedatella, Nicholas Mitchell, and Tracy Moffat-Griffin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-150, https://doi.org/10.5194/acp-2022-150, 2022
Revised manuscript not accepted
Short summary
Short summary
We use long term radar data and the WACCM-X model to study the impact of dynamical phenomena, including the 11-year solar cycle, ENSO, QBO and SAM, on Antarctic mesospheric winds. We find that in summer, the zonal wind (both observationally and in the model) is strongly correlated with the solar cycle. We also see important differences in the results from the other processes. In addition we find important and large biases in the winter model zonal winds relative to the observations.
Neil P. Hindley, Corwin J. Wright, Alan M. Gadian, Lars Hoffmann, John K. Hughes, David R. Jackson, John C. King, Nicholas J. Mitchell, Tracy Moffat-Griffin, Andrew C. Moss, Simon B. Vosper, and Andrew N. Ross
Atmos. Chem. Phys., 21, 7695–7722, https://doi.org/10.5194/acp-21-7695-2021, https://doi.org/10.5194/acp-21-7695-2021, 2021
Short summary
Short summary
One limitation of numerical atmospheric models is spatial resolution. For atmospheric gravity waves (GWs) generated over small mountainous islands, the driving effect of these waves on atmospheric circulations can be underestimated. Here we use a specialised high-resolution model over South Georgia island to compare simulated stratospheric GWs to colocated 3-D satellite observations. We find reasonable model agreement with observations, with some GW amplitudes much larger than expected.
Gunter Stober, Diego Janches, Vivien Matthias, Dave Fritts, John Marino, Tracy Moffat-Griffin, Kathrin Baumgarten, Wonseok Lee, Damian Murphy, Yong Ha Kim, Nicholas Mitchell, and Scott Palo
Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021, https://doi.org/10.5194/angeo-39-1-2021, 2021
Andrew Orr, J. Scott Hosking, Aymeric Delon, Lars Hoffmann, Reinhold Spang, Tracy Moffat-Griffin, James Keeble, Nathan Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 20, 12483–12497, https://doi.org/10.5194/acp-20-12483-2020, https://doi.org/10.5194/acp-20-12483-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) are clouds found in the Antarctic winter stratosphere and are implicated in the formation of the ozone hole. These clouds can sometimes be formed or enhanced by mountain waves, formed as air passes over hills or mountains. However, this important mechanism is missing in coarse-resolution climate models, limiting our ability to simulate ozone. This study examines an attempt to include the effects of mountain waves and their impact on PSCs and ozone.
Neil P. Hindley, Corwin J. Wright, Nathan D. Smith, Lars Hoffmann, Laura A. Holt, M. Joan Alexander, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Atmos. Chem. Phys., 19, 15377–15414, https://doi.org/10.5194/acp-19-15377-2019, https://doi.org/10.5194/acp-19-15377-2019, 2019
Short summary
Short summary
In this study, a 3–D Stockwell transform is applied to AIRS–Aqua satellite observations in the first extended 3–D study of stratospheric gravity waves over the Southern Ocean during winter. A dynamic environment is revealed that contains some of the most intense gravity wave sources on Earth. A particularly striking result is a large–scale meridional convergence of gravity wave momentum flux towards latitudes near 60 °S, something which is not normally considered in model parameterisations.
Corwin J. Wright, Neil P. Hindley, Lars Hoffmann, M. Joan Alexander, and Nicholas J. Mitchell
Atmos. Chem. Phys., 17, 8553–8575, https://doi.org/10.5194/acp-17-8553-2017, https://doi.org/10.5194/acp-17-8553-2017, 2017
Short summary
Short summary
We introduce a novel 3-D method of measuring atmospheric gravity waves, based around a 3-D Stockwell transform. Our method lets us measure new properties, including wave intrinsic frequencies and phase and group velocities. We apply it to data from the AIRS satellite instrument over the Southern Andes for two consecutive winters. Our results show clear evidence that the waves measured are primarily orographic in origin, and that their group velocity vectors are focused into the polar night jet.
Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P. Gerber, V. Lynn Harvey, Michaela I. Hegglin, Cameron R. Homeyer, John A. Knox, Kirstin Krüger, Alyn Lambert, Craig S. Long, Patrick Martineau, Andrea Molod, Beatriz M. Monge-Sanz, Michelle L. Santee, Susann Tegtmeier, Simon Chabrillat, David G. H. Tan, David R. Jackson, Saroja Polavarapu, Gilbert P. Compo, Rossana Dragani, Wesley Ebisuzaki, Yayoi Harada, Chiaki Kobayashi, Will McCarty, Kazutoshi Onogi, Steven Pawson, Adrian Simmons, Krzysztof Wargan, Jeffrey S. Whitaker, and Cheng-Zhi Zou
Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, https://doi.org/10.5194/acp-17-1417-2017, 2017
Short summary
Short summary
We introduce the SPARC Reanalysis Intercomparison Project (S-RIP), review key concepts and elements of atmospheric reanalysis systems, and summarize the technical details of and differences among 11 of these systems. This work supports scientific studies and intercomparisons of reanalysis products by collecting these background materials and technical details into a single reference. We also address several common misunderstandings and points of confusion regarding reanalyses.
David A. Newnham, George P. Ford, Tracy Moffat-Griffin, and Hugh C. Pumphrey
Atmos. Meas. Tech., 9, 3309–3323, https://doi.org/10.5194/amt-9-3309-2016, https://doi.org/10.5194/amt-9-3309-2016, 2016
Short summary
Short summary
We demonstrate the feasibility of measuring polar atmospheric winds over the altitude range 23–97 km using ground-based millimetre-wave Doppler radiometry. Atmospheric and instrument simulations were carried out for Halley station, Antarctica. This remote sensing technique will provide continuous horizontal wind observations in the stratosphere and mesosphere where measurements are currently very limited. The data are needed for meteorological analyses and atmospheric modelling applications.
Neil P. Hindley, Nathan D. Smith, Corwin J. Wright, D. Andrew S. Rees, and Nicholas J. Mitchell
Atmos. Meas. Tech., 9, 2545–2565, https://doi.org/10.5194/amt-9-2545-2016, https://doi.org/10.5194/amt-9-2545-2016, 2016
Short summary
Short summary
Gravity waves are medium-sized momentum-carrying atmospheric waves that nearly all weather and climate models struggle to represent. Thus, the accurate global measurement of gravity-wave properties in the real atmosphere is of key importance. Here we use a new two-dimensional Stockwell transform (2-DST) method to measure key GW properties in 2-D satellite data. We show that our 2-DST approach greatly improves upon current methods, particularly if a new elliptical spectral window is used.
Corwin J. Wright, Neil P. Hindley, Andrew C. Moss, and Nicholas J. Mitchell
Atmos. Meas. Tech., 9, 877–908, https://doi.org/10.5194/amt-9-877-2016, https://doi.org/10.5194/amt-9-877-2016, 2016
Short summary
Short summary
Seven gravity-wave-resolving instruments (satellites, radiosondes and a meteor radar) are used to compare gravity-wave energy and vertical wavelength over the Southern Andes hotspot. Several conclusions are drawn, including that limb sounders and the radar show strong positive correlations. Radiosondes and AIRS weakly anticorrelate with other instruments and we see strong correlations with local stratospheric winds. Short-timescale variability is larger than the seasonal cycle.
Andrew C. Moss, Corwin J. Wright, Robin N. Davis, and Nicholas J. Mitchell
Ann. Geophys., 34, 323–330, https://doi.org/10.5194/angeo-34-323-2016, https://doi.org/10.5194/angeo-34-323-2016, 2016
Short summary
Short summary
Gravity waves are fundamental to the dynamics of the mesosphere. In some years very strong winds are observed in the first phase of the MSAO. It has been proposed that this is due to filtering of ascending gravity waves. We report the first gravity-wave momentum flux observations from the Ascension Island (8° S, 14° W) meteor radar and show that anomalous fluxes were observed during one such event in 2002. Analysis of the underlying winds suggests the wave-filtering hypothesis is not valid.
H. Iimura, D. C. Fritts, D. Janches, W. Singer, and N. J. Mitchell
Ann. Geophys., 33, 1349–1359, https://doi.org/10.5194/angeo-33-1349-2015, https://doi.org/10.5194/angeo-33-1349-2015, 2015
Short summary
Short summary
The quasi-5-day wave at mid- and high-latitudes in the mesosphere and lower-thermosphere was compared between the hemispheres using meteor radar horizontal wind measurements, spanning June 2010 to December 2012. Variances of the quasi-5-day wave showed a wave activity from July to August in both hemispheres and in April 2012 in the Northern Hemisphere and November 2012 in the Southern Hemisphere with unique characteristics at each site.
N. P. Hindley, C. J. Wright, N. D. Smith, and N. J. Mitchell
Atmos. Chem. Phys., 15, 7797–7818, https://doi.org/10.5194/acp-15-7797-2015, https://doi.org/10.5194/acp-15-7797-2015, 2015
Short summary
Short summary
In nearly all GCMs, unresolved gravity wave (GW) drag may cause the southern stratospheric winter polar vortex to break down too late. Here, we characterise GWs in this region of the atmosphere using GPS radio occultation. We find GWs may propagate into the region from other latitudes. We develop a new quantitative wave identification method to learn about regional wave populations. We also find intense GW momentum fluxes over the southern Andes and Antarctic Peninsula GW hot spot.
N. J. Mayne, I. Baraffe, D. M. Acreman, C. Smith, N. Wood, D. S. Amundsen, J. Thuburn, and D. R. Jackson
Geosci. Model Dev., 7, 3059–3087, https://doi.org/10.5194/gmd-7-3059-2014, https://doi.org/10.5194/gmd-7-3059-2014, 2014
R. N. Davis, J. Du, A. K. Smith, W. E. Ward, and N. J. Mitchell
Atmos. Chem. Phys., 13, 9543–9564, https://doi.org/10.5194/acp-13-9543-2013, https://doi.org/10.5194/acp-13-9543-2013, 2013
K. A. Day and N. J. Mitchell
Atmos. Chem. Phys., 13, 9515–9523, https://doi.org/10.5194/acp-13-9515-2013, https://doi.org/10.5194/acp-13-9515-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Modelling of the atmosphere
Analysis of migrating and non-migrating tides of the Extended Unified Model in the mesosphere and lower thermosphere
Observing geometry effects on a Global Navigation Satellite System (GNSS)-based water vapor tomography solved by least squares and by compressive sensing
Propagation to the upper atmosphere of acoustic-gravity waves from atmospheric fronts in the Moscow region
Sensitivity of GNSS tropospheric gradients to processing options
Comparisons between the WRF data assimilation and the GNSS tomography technique in retrieving 3-D wet refractivity fields in Hong Kong
An empirical model of the thermospheric mass density derived from CHAMP satellite
Matthew J. Griffith and Nicholas J. Mitchell
Ann. Geophys., 40, 327–358, https://doi.org/10.5194/angeo-40-327-2022, https://doi.org/10.5194/angeo-40-327-2022, 2022
Short summary
Short summary
There is great scientific interest in extending atmospheric models, such as the Met Office’s Unified Model, upwards to include the upper atmosphere. Atmospheric tides are an important driver of circulation at these greater heights. This study provides a first in-depth analysis of the migrating and non-migrating components of these tides, examining important tidal properties. Our results show that the ExUM produces a rich spectrum of spatial components, with significant non-migrating components.
Marion Heublein, Patrick Erik Bradley, and Stefan Hinz
Ann. Geophys., 38, 179–189, https://doi.org/10.5194/angeo-38-179-2020, https://doi.org/10.5194/angeo-38-179-2020, 2020
Yuliya Kurdyaeva, Sergey Kulichkov, Sergey Kshevetskii, Olga Borchevkina, and Elena Golikova
Ann. Geophys., 37, 447–454, https://doi.org/10.5194/angeo-37-447-2019, https://doi.org/10.5194/angeo-37-447-2019, 2019
Short summary
Short summary
To simulate the vertical propagation of atmospheric waves, experimental data on pressure variations at the Earth's surface are used. These data are associated with the meteorological source. The simulation results have allowed for the first time estimates of the amplitudes of temperature wave disturbances in the upper atmosphere caused by waves from the atmospheric front. The simulations have been performed using the Lomonosov supercomputer.
Michal Kačmařík, Jan Douša, Florian Zus, Pavel Václavovic, Kyriakos Balidakis, Galina Dick, and Jens Wickert
Ann. Geophys., 37, 429–446, https://doi.org/10.5194/angeo-37-429-2019, https://doi.org/10.5194/angeo-37-429-2019, 2019
Short summary
Short summary
We provide an analysis of processing setting impacts on tropospheric gradients estimated from GNSS observation processing. These tropospheric gradients are related to water vapour distribution in the troposphere and therefore can be helpful in meteorological applications.
Zhaohui Xiong, Bao Zhang, and Yibin Yao
Ann. Geophys., 37, 25–36, https://doi.org/10.5194/angeo-37-25-2019, https://doi.org/10.5194/angeo-37-25-2019, 2019
Short summary
Short summary
A comparison between the GNSS tomography technique and WRFDA in retrieving wet refractivity (WR) is conducted in HK during a wet period and a dry period. The results show that both of them can retrieve good WR. In most of the cases, the WRFDA output outperforms the tomographic WR, but the tomographic WR is better than the WRFDA output in the lower troposphere in the dry period. By assimilating better tomographic WR in the lower troposphere into the WRFDA, we slightly improve the retrieved WR.
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018, https://doi.org/10.5194/angeo-36-1141-2018, 2018
Cited articles
Akmaev, R.:
Whole atmosphere modeling: Connecting terrestrial and space weather,
Rev. Geophys.,
49, RG4004, https://doi.org/10.1029/2011rg000364, 2011. a
Akmaev, R. A., Fuller-Rowell, T., Wu, F., Forbes, J., Zhang, X., Anghel, A., Iredell, M., Moorthi, S., and Juang, H.-M.:
Tidal variability in the lower thermosphere: Comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED,
Geophys. Res. Lett.,
35, L03810, https://doi.org/10.1029/2007gl032584, 2008. a
Baldwin, M. P., Birner, T., Brasseur, G., Burrows, J., Butchart, N., Garcia, R., Geller, M., Gray, L., Hamilton, K., Harnik, N., Hegglin, M. I., Langematz, U., Robock, A., Sato, K., and Scaife, A. A.:
100 Years of Progress in Understanding the Stratosphere and Mesosphere,
Meteor. Mon.,
59, 27.1–27.62, https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0003.1, 2019. a
Beagley, S. R., McLandress, C., Fomichev, V. I., and Ward, W. E.:
The extended Canadian middle atmosphere model,
Geophys. Res. Lett.,
27, 2529–2532, https://doi.org/10.1029/1999gl011233, 2000. a
Beard, A., Mitchell, N., Williams, P., and Kunitake, M.:
Non-linear interactions between tides and planetary waves resulting in periodic tidal variability,
J. Atmos. Sol.-Terr. Phy.,
61, 363–376, https://doi.org/10.1016/s1364-6826(99)00003-6, 1999. a, b
Becker, E. and Vadas, S. L.:
Explicit Global Simulation of Gravity Waves in the Thermosphere,
J. Geophys. Res.-Space,
125, e2020JA028 034, https://doi.org/10.1029/2020ja028034, 2020. a, b, c, d
Bessarab, F., Korenkov, Y. N., Klimenko, M., Klimenko, V., Karpov, I., Ratovsky, K., and Chernigovskaya, M.:
Modeling the effect of sudden stratospheric warming within the thermosphere–ionosphere system,
J. Atmos. Sol.-Terr. Phy.,
90, 77–85, https://doi.org/10.1016/j.jastp.2012.09.005, 2012. a
Borchert, S., Zhou, G., Baldauf, M., Schmidt, H., Zängl, G., and Reinert, D.: The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0), Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019, 2019. a
Christiansen, B., Yang, S., and Madsen, M. S.:
Do strong warm ENSO events control the phase of the stratospheric QBO?,
Geophys. Res. Lett.,
43, 10–489, https://doi.org/10.1002/2016GL070751, 2016. a
Davis, R. N., Du, J., Smith, A. K., Ward, W. E., and Mitchell, N. J.: The diurnal and semidiurnal tides over Ascension Island (8∘ S, 14∘ W) and their interaction with the stratospheric quasi-biennial oscillation: studies with meteor radar, eCMAM and WACCM, Atmos. Chem. Phys., 13, 9543–9564, https://doi.org/10.5194/acp-13-9543-2013, 2013. a, b, c, d, e, f, g, h, i
Dempsey, S., Hindley, N., Moffat-Griffin, T., Wright, C., Smith, A., Du, J., and Mitchell, N.:
Winds and Tides of the Antarctic Mesosphere and Lower Thermosphere: One Year of Meteor-Radar Observations Over Rothera (68∘ S, 68∘ W) and Comparisons with WACCM and eCMAM,
J. Atmos. Sol.-Terr. Phy.,
212, 105 510, https://doi.org/10.1016/j.jastp.2020.105510, 2021. a, b, c, d, e, f, g, h, i
England, S., Dobbin, A., Harris, M., Arnold, N., and Aylward, A.:
A study into the effects of gravity wave activity on the diurnal tide and airglow emissions in the equatorial mesosphere and lower thermosphere using the Coupled Middle Atmosphere and Thermosphere (CMAT) general circulation model,
J. Atmos. Sol.-Terr. Phy.,
68, 293–308, https://doi.org/10.1016/j.jastp.2005.05.006, 2006. a
Fiedler, J., Baumgarten, G., and von Cossart, G.: Mean diurnal variations of noctilucent clouds during 7 years of lidar observations at ALOMAR, Ann. Geophys., 23, 1175–1181, https://doi.org/10.5194/angeo-23-1175-2005, 2005. a
Fomichev, V., Ward, W. E., Beagley, S., McLandress, C., McConnell, J., McFarlane, N., and Shepherd, T.:
Extended Canadian Middle Atmosphere Model: Zonal-mean climatology and physical parameterizations,
J. Geophys. Res.-Atmos.,
107, ACL 9-1–ACL 9-14, https://doi.org/10.1029/2001jd000479, 2002. a, b
Fritts, D. C. and Alexander, M. J.:
Gravity wave dynamics and effects in the middle atmosphere,
Rev. Geophys.,
41, 1003, https://doi.org/10.1029/2001RG000106, 2003. a
Fujiwara, H. and Miyoshi, Y.: Morphological features and variations of temperature in the upper thermosphere simulated by a whole atmosphere GCM, Ann. Geophys., 28, 427–437, https://doi.org/10.5194/angeo-28-427-2010, 2010. a
Fuller‐Rowell, T. J., Akmaev, R. A., Wu, F., Anghel, A., Maruyama, N., Anderson, D. N., Codrescu, M. V., Iredell, M., Moorthi, S., Juang, H. M., and Hou, Y. T.:
Impact of terrestrial weather on the upper atmosphere,
Geophys. Res. Lett.,
35, L09808, https://doi.org/10.1029/2007gl032911, 2008. a
Garcia, R., Marsh, D., Kinnison, D., Boville, B., and Sassi, F.:
Simulation of secular trends in the middle atmosphere, 1950–2003,
J. Geophys. Res.-Atmos.,
112, D09301, https://doi.org/10.1029/2006jd007485, 2007. a
Giorgetta, M., Manzini, E., Roeckner, E., Esch, M., and Bengtsson, L.:
Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model,
J. Climate,
19, 3882–3901, https://doi.org/10.1175/jcli3830.1, 2006. a
Griffin, D. and Thuburn, J.:
Numerical effects on vertical wave propagation in deep-atmosphere models,
Q. J. Roy. Meteor. Soc.,
144, 567–580, https://doi.org/10.1002/qj.3229, 2018. a
Hickey, M., Walterscheid, R., and Schubert, G.:
Gravity wave heating and cooling of the thermosphere: Sensible heat flux and viscous flux of kinetic energy,
J. Geophys. Res.-Space,
116, A12326, https://doi.org/10.1029/2011ja016792, 2011. a
Hocking, W., Fuller, B., and Vandepeer, B.:
Real-time determination of meteor-related parameters utilizing modern digital technology,
J. Atmos. Sol.-Terr. Phy.,
63, 155–169, https://doi.org/10.1016/s1364-6826(00)00138-3, 2001. a
Jackson, D. R., Fuller-Rowell, T. J., Griffin, D. J., Griffith, M. J., Kelly, C. W., Marsh, D. R., and Walach, M.-T.:
Future Directions for Whole Atmosphere Modelling: Developments in the context of space weather,
Space Weather,
17, 1342–1350, https://doi.org/10.1029/2019sw002267, 2019. a
Jackson, D. R., Bruinsma, S., Negrin, S., Stolle, C., Budd, C. J., Gonzalez, R. D., Down, E., Griffin, D. J., Griffith, M. J., Kervalishvili, G. and Arenillas, D. L.:
The Space Weather Atmosphere Models and Indices (SWAMI) Project: Overview and first results,
J. Space Weather Spac.,
10, 18, https://doi.org/10.1051/swsc/2020019, 2020. a, b
Jin, H., Miyoshi, Y., Pancheva, D., Mukhtarov, P., Fujiwara, H., and Shinagawa, H.:
Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations,
J. Geophys. Res.-Space,
117, A10323, https://doi.org/10.1029/2012ja017650, 2012. a, b
Jones Jr., M., Forbes, J., Hagan, M., and Maute, A.:
Impacts of vertically propagating tides on the mean state of the ionosphere-thermosphere system,
J. Geophys. Res.-Space,
119, 2197–2213, https://doi.org/10.1002/2013ja019744, 2014. a
Klimenko, M. V., Klimenko, V. V., Bessarab, F. S., Sukhodolov, T. V., Vasilev, P. A., Karpov, I. V., Korenkov, Y. N., Zakharenkova, I. E., Funke, B., and Rozanov, E. V.:
Identification of the mechanisms responsible for anomalies in the tropical lower thermosphere/ionosphere caused by the January 2009 sudden stratospheric warming,
J. Space Weather Spac.,
9, A39, https://doi.org/10.1051/swsc/2019037, 2019. a, b
Korenkov, Y. N., Klimenko, V. V., Klimenko, M. V., Bessarab, F. S., Korenkova, N. A., Ratovsky, K. G., Chernigovskaya, M. A., Shcherbakov, A. A., Sahai, Y., Fagundes, P. R., and De Jesus, R.:
The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event,
J. Geophys. Res.-Space,
117, A10309, https://doi.org/10.1029/2012ja018018, 2012. a
Lieberman, R., Oberheide, J., Hagan, M., Remsberg, E., and Gordley, L.:
Variability of diurnal tides and planetary waves during November 1978–May 1979,
J. Atmos. Sol.-Terr. Phy.,
66, 517–528, https://doi.org/10.1016/j.jastp.2004.01.006, 2004. a
Lieberman, R., Akmaev, R., Fuller-Rowell, T., and Doornbos, E.:
Thermospheric zonal mean winds and tides revealed by CHAMP,
Geophys. Res. Lett.,
40, 2439–2443, https://doi.org/10.1002/grl.50481, 2013. a
Lilienthal, F., Yiğit, E., Samtleben, N., and Jacobi, C.:
Variability of Gravity Wave Effects on the Zonal Mean Circulation and Migrating Terdiurnal Tide as Studied with the Middle and Upper Atmosphere Model (MUAM2019) Using a Whole Atmosphere Nonlinear Gravity Wave Scheme,
Frontiers in Astronomy and Space Sciences,
7, 588956, https://doi.org/10.3389/fspas.2020.588956, 2020. a
Liu, H.-L.:
Variability and predictability of the space environment as related to lower atmosphere forcing,
Space Weather,
14, 634–658, https://doi.org/10.1002/2016SW001450, 2016. a, b
Liu, H. L., Foster, B. T., Hagan, M. E., McInerney, J. M., Maute, A., Qian, L., Richmond, A. D., Roble, R. G., Solomon, S. C., Garcia, R. R., and Kinnison, D.:
Thermosphere extension of the whole atmosphere community climate model,
J. Geophys. Res.-Space,
115, A12302, https://doi.org/10.1029/2010JA015586, 2010. a
Liu, H. L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., Marsh, D. R., Maute, A., McInerney, J. M., Pedatella, N. M., and Qian, L.:
Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X 2.0),
J. Adv. Model. Earth Sy.,
10, 381–402, https://doi.org/10.1002/2017ms001232, 2018a. a, b
Liu, J., Liu, H., Wang, W., Burns, A. G., Wu, Q., Gan, Q., Solomon, S. C., Marsh, D. R., Qian, L., Lu, G., and Pedatella, N. M.:
First results from the ionospheric extension of WACCM-X during the deep solar minimum year of 2008,
J. Geophys. Res.-Space,
123, 1534–1553, https://doi.org/10.1002/2017ja025010, 2018b. a
Manzini, E., Giorgetta, M., Esch, M., Kornblueh, L., and Roeckner, E.:
The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model,
J. Climate,
19, 3863–3881, https://doi.org/10.1175/jcli3826.1, 2006. a
McLandress, C.:
The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part I: The role of gravity waves and planetary waves,
J. Atmos. Sci.,
59, 893–906, https://doi.org/10.1175/1520-0469(2002)059<0893:tsvotp>2.0.co;2, 2002. a
Medvedev, A. and Klaassen, G.:
Thermal effects of saturating gravity waves in the atmosphere,
J. Geophys. Res.-Atmos.,
108, ACL 4-1–ACL 4-18, https://doi.org/10.1029/2002jd002504, 2003. a
Meraner, K. and Schmidt, H.: Transport of nitrogen oxides through the winter mesopause in HAMMONIA,
J. Geophys. Res.-Atmos.,
121, 2556–2570, https://doi.org/10.1002/2015jd024136, 2016. a
Millward, G., Moffett, R., Quegan, S., and Fuller-Rowell, T.:
A coupled thermosphere-ionosphere-plasmasphere model (CTIP), Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, edited by: Schunk, R. W., 239–279, Cent. for Atmos. and Space Sci., Utah State Univ., Logan, Utah, available at: https://www.bc.edu/content/dam/bc1/offices/ISR/SCOSTEP/Multimedia/other/ionospheric-models.pdf (last access: 8 June 2021), 1996. a
Mitchell, N. J.: University of Bath: Rothera Skiymet Meteor Radar data (2005–present), Centre for Environmental Data Analysis, available at: https://catalogue.ceda.ac.uk/uuid/aa44e02718fd4ba49cefe36d884c6e50 (last access: 8 June 2021), 2019a. a
Mitchell, N. J.: University of Bath: Ascension Island Skiymet Meteor Radar data (2001–2012), Centre for Environmental Data Analysis, available at: https://catalogue.ceda.ac.uk/uuid/0d05cf74e17f49c2b7c5cd02faa59291 (last access: 8 June 2021), 2019b. a
Mitchell, N., Pancheva, D., Middleton, H., and Hagan, M.:
Mean winds and tides in the Arctic mesosphere and lower thermosphere,
J. Geophys. Res.-Space,
107, SIA 2-1–SIA 2-14, https://doi.org/10.1029/2001ja900127, 2002. a, b
Miyahara, S. and Forbes, J. M.:
Interactions between gravity waves and the diurnal tide in the mesosphere and lower thermosphere,
J. Meteorol. Soc. Jpn. Ser. II,
69, 523–531, https://doi.org/10.2151/jmsj1965.69.5_523, 1991. a
Miyahara, S., Yoshida, Y., and Miyoshi, Y.:
Dynamic coupling between the lower and upper atmosphere by tides and gravity waves,
J. Atmos. Terr. Phys.,
55, 1039–1053, https://doi.org/10.1016/0021-9169(93)90096-h, 1993. a
Miyoshi, Y. and Fujiwara, H.:
Gravity waves in the thermosphere simulated by a general circulation model,
J. Geophys. Res.-Atmos.,
113, D01101, https://doi.org/10.1029/2007jd008874, 2008. a
Oberheide, J., Forbes, J., Häusler, K., Wu, Q., and Bruinsma, S.:
Tropospheric tides from 80 to 400 km: Propagation, interannual variability, and solar cycle effects,
J. Geophys. Res.-Atmos.,
114, D00I05, https://doi.org/10.1029/2009jd012388, 2009. a
Palo, S., Forbes, J., Zhang, X., Russell III, J., and Mlynczak, M.:
An eastward propagating two-day wave: Evidence for nonlinear planetary wave and tidal coupling in the mesosphere and lower thermosphere,
Geophys. Res. Lett.,
34, L07807, https://doi.org/10.1029/2006gl027728, 2007. a, b
Pancheva, D., Merzlyakov, E., Mitchell, N. J., Portnyagin, Y., Manson, A. H., Jacobi, C., Meek, C. E., Luo, Y., Clark, R. R., Hocking, W. K., and MacDougall, J.:
Global-scale tidal variability during the PSMOS campaign of June–August 1999: interaction with planetary waves,
J. Atmos. Sol.-Terr. Phy.,
64, 1865–1896, https://doi.org/10.1016/s1364-6826(02)00199-2, 2002. a
Pancheva, D. V. and Mitchell, N. J.:
Planetary waves and variability of the semidiurnal tide in the mesosphere and lower thermosphere over Esrange (68∘ N, 21∘ E) during winter,
J. Geophys. Res.-Space,
109, A08307, https://doi.org/10.1029/2004ja010433, 2004. a
Park, J., Lühr, H., Lee, C., Kim, Y. H., Jee, G., and Kim, J.-H.:
A climatology of medium-scale gravity wave activity in the midlatitude/low-latitude daytime upper thermosphere as observed by CHAMP,
J. Geophys. Res.-Space,
119, 2187–2196, https://doi.org/10.1002/2013ja019705, 2014. a
Pogoreltsev, A.:
Generation of normal atmospheric modes by stratospheric vacillations,
Izv. Atmos. Ocean. Phy+.,
43, 423–435, https://doi.org/10.1134/s0001433807040044, 2007. a
Pogoreltsev, A., Vlasov, A., Fröhlich, K., and Jacobi, C.:
Planetary waves in coupling the lower and upper atmosphere,
J. Atmos. Sol.-Terr. Phy.,
69, 2083–2101, https://doi.org/10.1016/j.jastp.2007.05.014, 2007. a
Riggin, D., Meyer, C., Fritts, D., Jarvis, M., Murayama, Y., Singer, W., Vincent, R., and Murphy, D.:
MF radar observations of seasonal variability of semidiurnal motions in the mesosphere at high northern and southern latitudes,
J. Atmos. Sol.-Terr. Phy.,
65, 483–493, https://doi.org/10.1016/s1364-6826(02)00340-1, 2003. a
Riggin, D. M. and Lieberman, R. S.:
Variability of the diurnal tide in the equatorial MLT,
J. Atmos. Sol.-Terr. Phy.,
102, 198–206, https://doi.org/10.1016/j.jastp.2013.05.011, 2013. a
Sandford, D. J., Beldon, C. L., Hibbins, R. E., and Mitchell, N. J.: Dynamics of the Antarctic and Arctic mesosphere and lower thermosphere – Part 1: Mean winds, Atmos. Chem. Phys., 10, 10273–10289, https://doi.org/10.5194/acp-10-10273-2010, 2010. a, b
Scaife, A., Butchart, N., Warner, C., and Swinbank, R.:
Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model,
J. Atmos. Sci.,
59, 1473–1489, https://doi.org/10.1175/1520-0469(2002)059<1473:ioasgw>2.0.co;2, 2002. a, b
Schmidt, H., Brasseur, G., Charron, M., Manzini, E., Giorgetta, M., Diehl, T., Fomichev, V., Kinnison, D., Marsh, D., and Walters, S.:
The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling,
J. Climate,
19, 3903–3931, https://doi.org/10.1175/jcli3829.1, 2006. a, b
Smith, A. K., Pancheva, D. V., Mitchell, N. J., Marsh, D. R., Russell III, J. M., and Mlynczak, M. G.:
A link between variability of the semidiurnal tide and planetary waves in the opposite hemisphere,
Geophys. Res. Lett.,
34, L07809, https://doi.org/10.1029/2006gl028929, 2007. a
Stober, G., Janches, D., Matthias, V., Fritts, D., Marino, J., Moffat-Griffin, T., Baumgarten, K., Lee, W., Murphy, D., Kim, Y. H., Mitchell, N., and Palo, S.: Seasonal evolution of winds, atmospheric tides, and Reynolds stress components in the Southern Hemisphere mesosphere–lower thermosphere in 2019, Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021, 2021. a, b
Suvorova, E. and Pogoreltsev, A.:
Modeling of nonmigrating tides in the middle atmosphere,
Geomagn. Aeronomy+.,
51, 105–115, https://doi.org/10.1134/s0016793210061039, 2011. a
Teitelbaum, H. and Vial, F.:
On tidal variability induced by nonlinear interaction with planetary waves,
J. Geophys. Res.-Space,
96, 14169–14178, https://doi.org/10.1029/91ja01019, 1991. a, b
Trinh, Q. T., Ern, M., Doornbos, E., Preusse, P., and Riese, M.: Satellite observations of middle atmosphere–thermosphere vertical coupling by gravity waves, Ann. Geophys., 36, 425–444, https://doi.org/10.5194/angeo-36-425-2018, 2018. a
Vadas, S., Liu, H.-L., and Lieberman, R.:
Numerical modeling of the global changes to the thermosphere and ionosphere from the dissipation of gravity waves from deep convection,
J. Geophys. Res.-Space,
119, 7762–7793, https://doi.org/10.1002/2014ja020280, 2014. a
Vitharana, A., Zhu, X., Du, J., Oberheide, J., and Ward, W. E.:
Statistical Modeling of Tidal Weather in the Mesosphere and Lower Thermosphere,
J. Geophys. Res.-Atmos.,
124, 9011–9027, https://doi.org/10.1029/2019jd030573, 2019. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
a, b, c, d
Warner, C. and McIntyre, M.:
An ultrasimple spectral parameterization for nonorographic gravity waves,
J. Atmos. Sci.,
58, 1837–1857, https://doi.org/10.1175/1520-0469(2001)058<1837:auspfn>2.0.co;2, 2001. a, b
Wilhelm, S., Stober, G., and Chau, J. L.: A comparison of 11-year mesospheric and lower thermospheric winds determined by meteor and MF radar at 69∘ N, Ann. Geophys., 35, 893–906, https://doi.org/10.5194/angeo-35-893-2017, 2017. a
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.:
An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations,
Q. J. Roy. Meteor. Soc.,
140, 1505–1520, https://doi.org/10.1002/qj.2235, 2014. a, b
Yiğit, E. and Medvedev, A. S.:
Heating and cooling of the thermosphere by internal gravity waves,
Geophys. Res. Lett.,
36, L14807, https://doi.org/10.1029/2009gl038507, 2009. a
Yiğit, E. and Medvedev, A. S.:
Internal wave coupling processes in Earth's atmosphere,
Adv. Space Res.,
55, 983–1003, https://doi.org/10.1016/j.asr.2014.11.020, 2015. a
Yiğit, E. and Medvedev, A. S.:
Influence of parameterized small-scale gravity waves on the migrating diurnal tide in Earth's thermosphere,
J. Geophys. Res.-Space,
122, 4846–4864, https://doi.org/10.1002/2017ja024089, 2017. a, b, c, d
Yiğit, E., Aylward, A. D., and Medvedev, A. S.:
Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study,
J. Geophys. Res.-Atmos.,
113, D19106, https://doi.org/10.1029/2008jd010135, 2008. a, b, c
Yiğit, E., Medvedev, A. S., Aylward, A. D., Hartogh, P., and Harris, M. J.:
Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause,
J. Geophys. Res.-Atmos.,
114, D07101, https://doi.org/10.1029/2008jd011132, 2009. a, b
Yiğit, E., Knížová, P. K., Georgieva, K., and Ward, W.:
A review of vertical coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity,
J. Atmos. Sol.-Terr. Phy.,
141, 1–12, https://doi.org/10.1016/j.jastp.2016.02.011, 2016. a
Yiğit, E., Medvedev, A. S., and Ern, M.:
Effects of Latitude-Dependent Gravity Wave Source Variations on the Middle and Upper Atmosphere,
Frontiers in Astronomy and Space Sciences,
7, 614018, https://doi.org/10.3389/fspas.2020.614018, 2021. a, b, c
Short summary
There is great scientific interest in extending atmospheric models upwards to include the upper atmosphere. The Met Office’s Unified Model has recently been successfully extended to include this region. Atmospheric tides are an important driver of atmospheric motion at these greater heights. This paper provides a first comparison of winds and tides produced by the new extended model with meteor radar observations, comparing key tidal properties and discussing their similarities and differences.
There is great scientific interest in extending atmospheric models upwards to include the upper...