Articles | Volume 39, issue 1
https://doi.org/10.5194/angeo-39-181-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-181-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal dependence of the Earth's radiation belt – new insights
Indian Institute of Technology Indore, Simrol, Indore 453552, India
Related authors
Bruce T. Tsurutani, Gurbax S. Lakhina, Rajkumar Hajra, Richard B. Horne, Masatomi Iizawa, Yasuhito Narita, Ingo von Borstel, Karl-Heinz Glassmeier, Volker Bothmer, Klaus Reinsch, Philipp Schulz, and Sami Solanki
EGUsphere, https://doi.org/10.5194/egusphere-2025-5536, https://doi.org/10.5194/egusphere-2025-5536, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
During the 10–11 May 2024 geomagnetic storm, the red auroral rays appear at higher altitudes and connect to green rays lower down. The effect is linked to energetic electrons precipitating into the atmosphere during the storm. As the electrons continue downward, they hit oxygen below 200 km altitude and produce green light (5577 Å), named Stable Auroral Green (SAG) arcs. These observations mark the first reported sightings of such detailed, combined features.
Fernando L. Guarnieri, Bruce T. Tsurutani, Rajkumar Hajra, Ezequiel Echer, and Gurbax S. Lakhina
Nonlin. Processes Geophys., 32, 75–88, https://doi.org/10.5194/npg-32-75-2025, https://doi.org/10.5194/npg-32-75-2025, 2025
Short summary
Short summary
On February 03 2022, SpaceX launched a new group of satellites for its Starlink constellation. This launch simultaneously released 49 satellites into orbits between 200 km and 250 km height. The launches occurred during a geomagnetic storm that was followed by a second storm. There was an immediate loss of 32 satellites. The satellite losses may have been caused by an unusually high level of atmospheric drag (unexplained by current theory or modeling) or a high level of satellite collisions.
Adriane Marques de Souza Franco, Rajkumar Hajra, Ezequiel Echer, and Mauricio José Alves Bolzan
Ann. Geophys., 39, 929–943, https://doi.org/10.5194/angeo-39-929-2021, https://doi.org/10.5194/angeo-39-929-2021, 2021
Short summary
Short summary
We used up-to-date substorms, HILDCAAs and geomagnetic storms of varying intensity along with all available geomagnetic indices during the space exploration era to explore the seasonal features of the geomagnetic activity and their drivers. As substorms, HILDCAAs and magnetic storms of varying intensity have varying solar/interplanetary drivers, such a study is important for acomplete understanding of the seasonal features of the geomagnetic response to the solar/interplanetary events.
Bruce T. Tsurutani, Gurbax S. Lakhina, Rajkumar Hajra, Richard B. Horne, Masatomi Iizawa, Yasuhito Narita, Ingo von Borstel, Karl-Heinz Glassmeier, Volker Bothmer, Klaus Reinsch, Philipp Schulz, and Sami Solanki
EGUsphere, https://doi.org/10.5194/egusphere-2025-5536, https://doi.org/10.5194/egusphere-2025-5536, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
During the 10–11 May 2024 geomagnetic storm, the red auroral rays appear at higher altitudes and connect to green rays lower down. The effect is linked to energetic electrons precipitating into the atmosphere during the storm. As the electrons continue downward, they hit oxygen below 200 km altitude and produce green light (5577 Å), named Stable Auroral Green (SAG) arcs. These observations mark the first reported sightings of such detailed, combined features.
Fernando L. Guarnieri, Bruce T. Tsurutani, Rajkumar Hajra, Ezequiel Echer, and Gurbax S. Lakhina
Nonlin. Processes Geophys., 32, 75–88, https://doi.org/10.5194/npg-32-75-2025, https://doi.org/10.5194/npg-32-75-2025, 2025
Short summary
Short summary
On February 03 2022, SpaceX launched a new group of satellites for its Starlink constellation. This launch simultaneously released 49 satellites into orbits between 200 km and 250 km height. The launches occurred during a geomagnetic storm that was followed by a second storm. There was an immediate loss of 32 satellites. The satellite losses may have been caused by an unusually high level of atmospheric drag (unexplained by current theory or modeling) or a high level of satellite collisions.
Adriane Marques de Souza Franco, Rajkumar Hajra, Ezequiel Echer, and Mauricio José Alves Bolzan
Ann. Geophys., 39, 929–943, https://doi.org/10.5194/angeo-39-929-2021, https://doi.org/10.5194/angeo-39-929-2021, 2021
Short summary
Short summary
We used up-to-date substorms, HILDCAAs and geomagnetic storms of varying intensity along with all available geomagnetic indices during the space exploration era to explore the seasonal features of the geomagnetic activity and their drivers. As substorms, HILDCAAs and magnetic storms of varying intensity have varying solar/interplanetary drivers, such a study is important for acomplete understanding of the seasonal features of the geomagnetic response to the solar/interplanetary events.
Cited articles
Baker, D. N., Blake, J. B., Klebesadel, R. W., and Higbie, P. R.: Highly
relativistic electrons in the Earth's outer magnetosphere: 1. Lifetimes and
temporal history 1979–1984, J. Geophys. Res.-Space, 91, 4265–4276,
https://doi.org/10.1029/JA091iA04p04265, 1986. a
Baker, D. N., Mason, G. M., Figueroa, O., Colon, G., Watzin, J. G., and Aleman, R. M.: An overview of the Solar Anomalous, and Magnetospheric Particle
Explorer (SAMPEX) mission, IEEE T. Geosci Remote, 31, 531–541,
1993. a
Baker, D. N., Kanekal, S. G., Pulkkinen, T. I., and Blake, J. B.: Equinoctial
and solstitial averages of magnetospheric relativistic electrons: A strong
semiannual modulation, Geophys. Res. Lett., 26, 3193–3196,
https://doi.org/10.1029/1999GL003638, 1999. a, b
Baker, D. N., Erickson, P. J., Fennell, J. F., Foster, J. C., Jaynes, A. N.,
and Verronen, P. T.: Space Weather Effects in the Earth's Radiation Belts,
Space Sci. Rev., 214, https://doi.org/10.1007/s11214-017-0452-7, 2018. a
Boller, B. R. and Stolov, H. L.: Kelvin–Helmholtz instability and the
semiannual variation of geomagnetic activity, J. Geophys. Res.-Space, 75,
6073–6084, https://doi.org/10.1029/JA075i031p06073, 1970. a
Burton, R. K., McPherron, R. L., and Russell, C. T.: An empirical relationship
between interplanetary conditions and Dst, J. Geophys. Res.-Space, 80,
4204–4214, https://doi.org/10.1029/JA080i031p04204, 1975. a
Cliver, E. W., Kamide, Y., and Ling, A. G.: Mountains versus valleys:
Semiannual variation of geomagnetic activity, J. Geophys. Res.-Space, 105,
2413–2424, https://doi.org/10.1029/1999JA900439, 2000. a
Cliver, E. W., Svalgaard, L., and Ling, A. G.: Origins of the semiannual variation of geomagnetic activity in 1954 and 1996, Ann. Geophys., 22, 93–100, https://doi.org/10.5194/angeo-22-93-2004, 2004. a
Cnossen, I. and Richmond, A. D.: How changes in the tilt angle of the
geomagnetic dipole affect the coupled magnetosphere-ionosphere-thermosphere
system, J. Geophys. Res.-Space, 117, A10317, https://doi.org/10.1029/2012JA018056, 2012. a
Cortie, A. L.: Sun-spots and Terrestrial Magnetic Phenomena, 1898–1911:
the Cause of the Annual Variation in Magnetic Disturbances, Mon. Not. R.
Astron. Soc., 73, 52–60, https://doi.org/10.1093/mnras/73.1.52, 1912. a
DeForest, S. E. and McIlwain, C. E.: Plasma clouds in the magnetosphere, J.
Geophys. Res.-Space, 76, 3587–3611, https://doi.org/10.1029/JA076i016p03587, 1971. a
Fennell, J. F., Claudepierre, S. G., Blake, J. B., O'Brien, T. P., Clemmons, J. H., Baker, D. N., Spence, H. E., and Reeves, G. D.: Van Allen Probes show
that the inner radiation zone contains no MeV electrons: ECT/MagEIS data,
Geophys. Res. Lett., 42, 1283–1289, https://doi.org/10.1002/2014GL062874, 2015. a
Finch, I. D., Lockwood, M. L., and Rouillard, A. P.: Effects of solar wind
magnetosphere coupling recorded at different geomagnetic latitudes:
Separation of directly-driven and storage/release systems, Geophys. Res.
Lett., 35, L21105, https://doi.org/10.1029/2008GL035399, 2008. a
Foster, J. C., Erickson, P. J., Omura, Y., Baker, D. N., Kletzing, C. A., and
Claudepierre, S. G.: Van Allen Probes observations of prompt MeV radiation
belt electron acceleration in nonlinear interactions with VLF chorus, J.
Geophys. Res.-Space, 122, 324–339, https://doi.org/10.1002/2016JA023429, 2017. a
Hajra, R. and Tsurutani, B. T.: Chapter 14 – Magnetospheric “Killer” Relativistic Electron Dropouts (REDs) and Repopulation: A Cyclical Process,
in: Extreme Events in Geospace: Origins, Predictability, and Consequences,
edited by: Buzulukova, N., Elsevier, the Netherlands, 373–400,
https://doi.org/10.1016/B978-0-12-812700-1.00014-5, 2018. a
Hajra, R., Echer, E., Tsurutani, B. T., and Gonzalez, W. D.: Solar cycle
dependence of High-Intensity Long-Duration Continuous AE Activity (HILDCAA)
events, relativistic electron predictors?, J. Geophys. Res.-Space, 118,
5626–5638, https://doi.org/10.1002/jgra.50530, 2013. a
Hajra, R., Echer, E., Tsurutani, B. T., and Gonzalez, W. D.: Superposed epoch
analyses of HILDCAAs and their interplanetary drivers: Solar cycle and
seasonal dependences, J. Atmos. Sol.-Terr. Phy., 121, 24–31,
https://doi.org/10.1016/j.jastp.2014.09.012, 2014a. a
Hajra, R., Tsurutani, B. T., Echer, E., and Gonzalez, W. D.: Relativistic
electron acceleration during high-intensity, long-duration, continuous AE
activity (HILDCAA) events: Solar cycle phase dependences, Geophys. Res.
Lett., 41, 1876–1881, https://doi.org/10.1002/2014GL059383, 2014b. a
Hajra, R., Tsurutani, B. T., Echer, E., Gonzalez, W. D., Brum, C. G. M.,
Vieira, L. E. A., and Santolik, O.: Relativistic electron acceleration during
HILDCAA events: are precursor CIR magnetic storms important?, Earth Planets
Space, 67, 109, https://doi.org/10.1186/s40623-015-0280-5, 2015a. a
Hajra, R., Tsurutani, B. T., Echer, E., Gonzalez, W. D., and Santolik, O.:
Relativistic (E > 0.6, >2.0, and >4.0 MeV) electron acceleration at
geosynchronous orbit during high-intensity, long-duration, continuous AE
activity (HILDCAA) events, Astrophys. J., 799, 39,
https://doi.org/10.1088/0004-637x/799/1/39, 2015b. a
Hajra, R., Tsurutani, B. T., and Lakhina, G. S.: The Complex Space Weather
Events of 2017 September, Astrophys. J., 899, 3,
https://doi.org/10.3847/1538-4357/aba2c5, 2020. a
Horne, R. B. and Thorne, R. M.: Potential waves for relativistic electron
scattering and stochastic acceleration during magnetic storms, Geophys. Res.
Lett., 25, 3011–3014, https://doi.org/10.1029/98GL01002, 1998. a
Horne, R. B. and Thorne, R. M.: Relativistic electron acceleration and
precipitation during resonant interactions with whistler-mode chorus,
Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL016973, 2003. a
Horne, R. B., Glauert, S. A., Meredith, N. P., Boscher, D., Maget, V.,
Heynderickx, D., and Pitchford, D.: Space weather impacts on satellites and
forecasting the Earth's electron radiation belts with SPACECAST, Space
Weather, 11, 169–186, https://doi.org/10.1002/swe.20023, 2013. a
Inan, U. S., Bell, T. F., and Helliwell, R. A.: Nonlinear pitch angle
scattering of energetic electrons by coherent VLF waves in the magnetosphere, J. Geophys. Res.-Space, 83, 3235–3253, https://doi.org/10.1029/JA083iA07p03235, 1978. a
Iucci, N., Levitin, A. E., Belov, A. V., Eroshenko, E. A., Ptitsyna, N. G.,
Villoresi, G., Chizhenkov, G. V., Dorman, L. I., Gromova, L. I., Parisi, M.,
Tyasto, M. I., and Yanke, V. G.: Space weather conditions and spacecraft
anomalies in different orbits, Space Weather, 3, S01001, https://doi.org/10.1029/2003SW000056,
2005. a
Kanekal, S. G., Baker, D. N., and McPherron, R. L.: On the seasonal dependence of relativistic electron fluxes, Ann. Geophys., 28, 1101–1106, https://doi.org/10.5194/angeo-28-1101-2010, 2010. a, b
Kennel, C. F. and Petschek, H. E.: Limit on stably trapped particle fluxes, J.
Geophys. Res.-Space, 71, 1–28, https://doi.org/10.1029/JZ071i001p00001, 1966. a
Li, W., Thorne, R. M., Bortnik, J., Baker, D. N., Reeves, G. D., Kanekal, S. G., Spence, H. E., and Green, J. C.: Solar wind conditions leading to
efficient radiation belt electron acceleration: A superposed epoch analysis,
Geophys. Res. Lett., 42, 6906–6915, https://doi.org/10.1002/2015GL065342, 2015. a
Li, X., Baker, D. N., Kanekal, S. G., Looper, M., and Temerin, M.: Long term
measurements of radiation belts by SAMPEX and their variations, Geophys. Res.
Lett., 28, 3827–3830, https://doi.org/10.1029/2001GL013586, 2001. a, b
Li, X., Temerin, M., Baker, D. N., and Reeves, G. D.: Behavior of MeV electrons
at geosynchronous orbit during last two solar cycles, J. Geophys. Res.-Space,
116, A11207, https://doi.org/10.1029/2011JA016934, 2011. a
Lockwood, M., Owens, M. J., Barnard, L. A., Haines, C., Scott, C. J.,
McWilliams, K. A., and Coxon, J. C.: Semi-annual, annual and Universal Time
variations in the magnetosphere and in geomagnetic activity: 1. Geomagnetic
data, J. Space Weather Spac., 10, 23, https://doi.org/10.1051/swsc/2020023, 2020. a
Lomb, N. R.: Least-squares frequency analysis of unequally spaced data,
Astrophys. Space Sci., 39, 447–462, https://doi.org/10.1007/BF00648343, 1976. a
Matsui, H., Torbert, R. B., Spence, H. E., Argall, M. R., Alm, L., Farrugia, C. J., Kurth, W. S., Baker, D. N., Blake, J. B., Funsten, H. O., Reeves, G. D., Ergun, R. E., Khotyaintsev, Y. V., and Lindqvist, P.-A.: Relativistic
Electron Increase During Chorus Wave Activities on the 6–8 March 2016
Geomagnetic Storm, J. Geophys. Res.-Space, 122, 11302–11319,
https://doi.org/10.1002/2017JA024540, 2017. a
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and
Ukhorskiy, A.: Science Objectives and Rationale for the Radiation Belt Storm
Probes Mission, Space Sci. Rev., 179, 3–27, https://doi.org/10.1007/s11214-012-9908-y,
2013. a
McIlwain, C. E.: Coordinates for mapping the distribution of magnetically
trapped particles, J. Geophys. Res.-Space, 66, 3681–3691,
https://doi.org/10.1029/JZ066i011p03681, 1961. a
Miyoshi, Y. and Kataoka, R.: Solar cycle variations of outer radiation belt and
its relationship to solar wind structure dependences, J. Atmos. Sol.-Terr.
Phy., 73, 77–87, https://doi.org/10.1016/j.jastp.2010.09.031, 2011. a
Mursula, K., Tanskanen, E., and Love, J. J.: Spring-fall asymmetry of substorm
strength, geomagnetic activity and solar wind: Implications for semiannual
variation and solar hemispheric asymmetry, Geophys. Res. Lett., 38, L06104, https://doi.org/10.1029/2011GL046751, 2011. a
NASA: CDAWeb Selector Error, CDAWeb, available at: https://cdaweb.gsfc.nasa.gov/cgi-bin/eval1.cgi (last access: 7 September 2020), 2020a.
NASA: Paths to Magnetic field, Plasma, Energetic particle data relevant to heliospheric studies and resident at Goddard's Space Physics Data Facility, available at: https://omniweb.gsfc.nasa.gov/ (last access: 7 September 2020), 2020b.
Nowada, M., Shue, J. H., and Russell, C. T.: Effects of dipole tilt angle on
geomagnetic activity, Planet. Space Sci., 57, 1254–1259,
https://doi.org/10.1016/j.pss.2009.04.007, 2009. a
Omura, Y., Hsieh, Y.-K., Foster, J. C., Erickson, P. J., Kletzing, C. A., and
Baker, D. N.: Cyclotron Acceleration of Relativistic Electrons Through Landau
Resonance With Obliquely Propagating Whistler-Mode Chorus Emissions, J.
Geophys. Res.-Space, 124, 2795–2810, https://doi.org/10.1029/2018JA026374, 2019. a
Roederer, J. G.: Dynamics of Geomagnetically Trapped Radiation, Vol. 2,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-49300-3, 1970. a
Russell, C. T. and McPherron, R. L.: Semiannual variation of geomagnetic
activity, J. Geophys. Res.-Space, 78, 92–108, https://doi.org/10.1029/JA078i001p00092,
1973. a
Scargle, J. D.: Studies in astronomical time series analysis. II. Statistical
aspects of spectral analysis of unevenly spaced data, Astrophys. J., 263,
835–853, 1982. a
Selesnick, R. S., Su, Y.-J., and Blake, J. B.: Control of the innermost
electron radiation belt by large-scale electric fields, J. Geophys. Res.-Space, 121, 8417–8427, https://doi.org/10.1002/2016JA022973, 2016. a
Singer, S. F.: Trapped Albedo Theory of the Radiation Belt, Phys. Rev. Lett.,
1, 181–183, https://doi.org/10.1103/PhysRevLett.1.181, 1958. a
Summers, D., Ni, B., and Meredith, N. P.: Timescales for radiation belt
electron acceleration and loss due to resonant wave-particle interactions: 2.
Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves, J. Geophys. Res.-Space, 112, A04207, https://doi.org/10.1029/2006JA011993, 2007. a
Tsurutani, B. T. and Smith, E. J.: Postmidnight chorus: A substorm phenomenon, J. Geophys. Res.-Space, 79, 118–127, https://doi.org/10.1029/JA079i001p00118, 1974. a
Tsurutani, B. T., Gonzalez, W. D., Tang, F., and Lee, Y. T.: Great magnetic
storms, Geophys. Res. Lett., 19, 73–76, https://doi.org/10.1029/91GL02783, 1992. a
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., and Okada, M.: Interplanetary origin of geomagnetic activity in the
declining phase of the solar cycle, J. Geophys. Res.-Space, 100,
21717–21733, https://doi.org/10.1029/95JA01476, 1995. a
Tsurutani, B. T., Gonzalez, W. D., Guarnieri, F., Kamide, Y., Zhou, X., and
Arballo, J. K.: Are high-intensity long-duration continuous AE activity
(HILDCAA) events substorm expansion events?, J. Atmos. Sol.-Terr. Phy., 66,
167–176, https://doi.org/10.1016/j.jastp.2003.08.015, 2004. a
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L.,
Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I.,
McPherron, R., Soraas, F., and Vasyliunas, V.: Corotating solar wind streams
and recurrent geomagnetic activity: A review, J. Geophys. Res.-Space, 111, A07S01, https://doi.org/10.1029/2005JA011273, 2006. a
Tsurutani, B. T., Lakhina, G. S., and Verkhoglyadova, O. P.: Energetic electron
(>10 keV) microburst precipitation, ∼5–15 s X-ray pulsations, chorus,
and wave-particle interactions: A review, J. Geophys. Res.-Space, 118,
2296–2312, https://doi.org/10.1002/jgra.50264, 2013. a, b
Tsurutani, B. T., Hajra, R., Tanimori, T., Takada, A., Remya, B., Mannucci, A. J., Lakhina, G. S., Kozyra, J. U., Shiokawa, K., Lee, L. C., Echer, E.,
Reddy, R. V., and Gonzalez, W. D.: Heliospheric plasma sheet (HPS)
impingement onto the magnetosphere as a cause of relativistic electron
dropouts (REDs) via coherent EMIC wave scattering with possible consequences
for climate change mechanisms, J. Geophys. Res.-Space, 121, 10130–10156,
https://doi.org/10.1002/2016JA022499, 2016. a
Tsurutani, B. T., Lakhina, G. S., and Hajra, R.: The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are, Nonlin. Processes Geophys., 27, 75–119, https://doi.org/10.5194/npg-27-75-2020, 2020. a
Van Allen, J. A., Ludwig, G. H., Ray, E. C., and McIlwain, C. E.: Observation
of High Intensity Radiation by Satellites 1958 Alpha and Gamma, Jet
Propulsion, 28, 588–592, https://doi.org/10.2514/8.7396, 1958.
a
Wrenn, G. L.: Conclusive evidence for internal dielectric charging anomalies on
geosynchronous communications spacecraft, J. Spacecraft Rockets, 32, 514–520,
https://doi.org/10.2514/3.26645, 1995. a
Xiao, F., Yang, C., He, Z., Su, Z., Zhou, Q., He, Y., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D., Funsten, H. O.,
Blake, J. B., Baker, D. N., and Wygant, J. R.: Chorus acceleration of
radiation belt relativistic electrons during March 2013 geomagnetic storm, J.
Geophys. Res.-Space, 119, 3325–3332, https://doi.org/10.1002/2014JA019822, 2014. a
Zhang, Z., Chen, L., Liu, S., Xiong, Y., Li, X., Wang, Y., Chu, W., Zeren, Z.,
and Shen, X.: Chorus Acceleration of Relativistic Electrons in Extremely Low
L-Shell During Geomagnetic Storm of August 2018, Geophys. Res. Lett., 47,
e2019GL086226, https://doi.org/10.1029/2019GL086226, 2020. a
Short summary
Geomagnetic activity is known to exhibit semi-annual variation with larger occurrences during equinoxes. A similar seasonal feature was reported for relativistic (∼ MeV) electrons throughout the entire outer zone radiation belt. Present work, for the first time reveals that electron fluxes increase with an ∼ 6-month periodicity in a limited L-shell only with large dependence in solar activity cycle. In addition, flux enhancements are not essentially equinoctial.
Geomagnetic activity is known to exhibit semi-annual variation with larger occurrences during...