Articles | Volume 38, issue 6
https://doi.org/10.5194/angeo-38-1139-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-1139-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An early mid-latitude aurora observed by Rozier (Béziers, 1780)
Department of Mechanical and Industrial Engineering, Norwegian
University of Science and Technology, Trondeim, 7491, Norway
Fernando Domínguez-Castro
ARAID Foundation, 50018, Zaragoza, Spain
Departamento de Geografía y Ordenación del Territorio,
Universidad de Zaragoza, 50009, Zaragoza, Spain
Lavinia de Ferri
Department of Mechanical and Industrial Engineering, Norwegian
University of Science and Technology, Trondeim, 7491, Norway
Related authors
G. Boccacci, F. Frasca, B. Bartolucci, L. Vergelli, C. Bertolin, and A. M. Siani
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 227–234, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-227-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-227-2023, 2023
G. Boccacci, F. Frasca, B. Bartolucci, L. Vergelli, C. Bertolin, and A. M. Siani
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 227–234, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-227-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-227-2023, 2023
Marina Peña-Gallardo, Sergio Martín Vicente-Serrano, Fernando Domínguez-Castro, and Santiago Beguería
Nat. Hazards Earth Syst. Sci., 19, 1215–1234, https://doi.org/10.5194/nhess-19-1215-2019, https://doi.org/10.5194/nhess-19-1215-2019, 2019
Short summary
Short summary
Drought events are of great importance in most Mediterranean climate regions, and the impacts caused on rainfed crops are particularly evident. In this study the impacts of drought on two representative rainfed crops in Spain (wheat and barley) are assessed by testing various worldwide drought indices and two datasets at different spatial resolution.
Sergio M. Vicente-Serrano, Cesar Azorin-Molina, Marina Peña-Gallardo, Miquel Tomas-Burguera, Fernando Domínguez-Castro, Natalia Martín-Hernández, Santiago Beguería, Ahmed El Kenawy, Iván Noguera, and Mónica García
Nat. Hazards Earth Syst. Sci., 19, 1189–1213, https://doi.org/10.5194/nhess-19-1189-2019, https://doi.org/10.5194/nhess-19-1189-2019, 2019
Short summary
Short summary
Drought is a major driver of vegetation activity in Spain. Here we used a high-resolution remote-sensing dataset spanning the period from 1981 to 2015 to assess the sensitivity of 23 vegetation types to drought across Spain. Results demonstrate that vegetation activity is controlled largely by the interannual variability of drought. Nevertheless, there are some considerable spatio-temporal variations, which can be linked to differences in land cover and aridity conditions.
Fernando Domínguez-Castro, Sergio M. Vicente-Serrano, Miquel Tomás-Burguera, Marina Peña-Gallardo, Santiago Beguería, Ahmed El Kenawy, Yolanda Luna, and Ana Morata
Nat. Hazards Earth Syst. Sci., 19, 611–628, https://doi.org/10.5194/nhess-19-611-2019, https://doi.org/10.5194/nhess-19-611-2019, 2019
Short summary
Short summary
We mapped – for the first time – the probability of occurrence of drought over Spain, with the overriding aim of improving current drought assessment, management and mitigation measures, and strategies across the region. Spatially, our estimations suggest a higher probability of extreme drought events in southern and central areas of Spain compared to northern and eastern regions. Nevertheless, there are strong differences among drought indices and drought timescales.
Sergio M. Vicente-Serrano, Raquel Nieto, Luis Gimeno, Cesar Azorin-Molina, Anita Drumond, Ahmed El Kenawy, Fernando Dominguez-Castro, Miquel Tomas-Burguera, and Marina Peña-Gallardo
Earth Syst. Dynam., 9, 915–937, https://doi.org/10.5194/esd-9-915-2018, https://doi.org/10.5194/esd-9-915-2018, 2018
Short summary
Short summary
We analyzed changes in surface relative humidity (RH) at the global scale from 1979 to 2014 and compared the variability and trends in RH with those in land evapotranspiration and ocean evaporation in moisture source areas across a range of selected regions worldwide. Our results stress that the different hypotheses that may explain the decrease in RH under a global warming scenario could act together to explain recent RH trends.
Fernando Domínguez-Castro
Hist. Geo Space. Sci., 9, 79–83, https://doi.org/10.5194/hgss-9-79-2018, https://doi.org/10.5194/hgss-9-79-2018, 2018
Short summary
Short summary
We found an early record of ball lightning, which was observed in the monastery of Pi (Oliva, southeastern Spain) on 18 October 1619. The ball lightning was observed by at least three people and was described as a “rolling burning vessel” and a “ball of fire”. The ball lightning appeared following a lightning flash, showed a mainly horizontal motion, crossed a wall, smudged an image of the Lady of Rebollet (then known as Lady of Pi) and burnt her ruff, and overturned a cross.
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Solar-induced atmospheric variability
A note on the statistical evidence for an influence of geomagnetic activity on Northern Hemisphere seasonal-mean stratospheric temperatures using the Japanese 55-year Reanalysis
Nazario Tartaglione, Thomas Toniazzo, Yvan Orsolini, and Odd Helge Otterå
Ann. Geophys., 38, 545–555, https://doi.org/10.5194/angeo-38-545-2020, https://doi.org/10.5194/angeo-38-545-2020, 2020
Short summary
Short summary
It is often claimed that a relationship between atmospheric temperature and geomagnetic activity exists. The aim of this paper is to highlight how the use of statistical tests, used to establish such a relationship, can be prone to misinterpretation when temporal and spatial autocorrelations are not taken into account. When these autocorrelations are considered, the relationship between temperature and geomagnetic activity no longer exists.
Cited articles
Angot, A.: The Aurora Borealis, D. Appleton & Co., New York, 326 pp., 1897.
Allen, J., Frank, L., Sauer, H., and Reiff, P.: Effects of the March 1989
Solar Activity, EOS, 70, 1479–1488, 1989.
Akasofu, S. I.: The development of the auroral substorm, Planet. Space Sci., 12, 273–282,
https://doi.org/10.1016/0032-0633(64)90151-5, 1964.
Akasofu, S. I., Kimball, D. S., and Meng, C. I.: The dynamics of the aurora-II
Westward traveling surges, J. Atmos. Terr. Phys., 27, 173–187,
https://doi.org/10.1016/0021-9169(65)90114-5, 1965.
Baker, D. N., Balstad, R., Bodeau, M., Cameron, E., Fennell, J. F., Fisher, G. M., Forbes, K. F., Kintner, P. M., Leffler, L. G., Lewis, W. S., Reagan, J. B., Small, A., Stansell, T. A., and Strachan, L.: Severe space weather events Understanding
societal and economic impacts: A Workshop Report,
National Academies Press, Washington, D.C., USA,
https://doi.org/10.17226/12507, 2008.
Barnard, E. E.: Observations of the aurora, made at the Yerkes Observatory,
1902–1909, Astrophys. J., 31, 208==233, 1910.
Bekli, M. R. and Chadou, I.: Analysis of pre-telescopic sunspots and auroras
from 8th to 16th century, Adv. Space Res., 64, 1011–1018, 2019.
Brekke, A.: Physics of the Upper Polar Atmosphere, 2nd Edn., Springer-Verlag, Berlin Heidelberg, 2013.
Cliver, E. W. and Dietrich, W. F.: The 1859 space weather event revisited:
limits of extreme activity, J. Space Weather Spac., 3, A31, https://doi.org/10.1051/swsc/2013053, 2013.
de Mairan, J. J. D.: Traité physique et historique de l'aurore boréale, Suite des Mémoires de l'Académie royale des sciences, année M. DCCXXI, Paris, reprint, 1733.
Domínguez-Castro, F., Vaquero, J. M., Bertolin, C., Gallego, M. C., De
la Guia, C., and Camuffo, D.: Aurorae observed by Giuseppe Toaldo in Padua
(1766–1797), J. Space Weather Spac., 6, A21, https://doi.org/10.1051/swsc/2016016, 2016.
Ebihara, Y., Hayakawa, H., Iwahashi, K., Tamazawa, H., Kawamura, A. D., and
Isobe, H.: Possible Cause of Extremely Bright Aurora Witnessed in East Asia
on 17 September 1770, Space Weather, 15, 1373–1382, https://doi.org/10.1002/2017SW001693, 2017.
Fritz, H.: Verzeichniss Beobachteter Polarlichter, C. Gerold's Sohn, Wien,
1873.
Garcia, H. A. and Dryer, M.: The Solar Flares of February 1986 and the
Ensuing Intense Geomagnetic Storm, Solar Phys., 109, 119–137,
https://doi.org/10.1007/BF00167403, 1987.
Giles, H.: Aurora diaries, Astron. Geophys., 46, 4.31–4.34, https://doi.org/10.1111/j.1468-4004.2005.46431.x, 2005.
Glaisher, J. E.: On the aurora borealis, as it was seen on Sunday evening,
October 24, 1847, at Blackheath,
Lond. Edinb. Dublin Philos. Mag. J. Sci., 31, 369–372, https://doi.org/10.1080/14786444708645871, 1847.
Gonzalez, W. D., Joselyn, J. A, Kamide, Y., Kroehl, H. W., Rosoker, G.,
Tsuruani, B. T., and Vasyliuna, V. M.: What is a geomagnetic storm?, J. Geophys. Res., 99, 5771–5792, https://doi.org/10.1029/93JA02867, 1994.
Green, J. L. and Boardsen, S. A.: Duration and extent of the great auroral
storm of 1859, Adv. Space Res., 38, 130–135, https://doi.org/10.1016/j.asr.2005.08.054, 2006.
Green, J. L., Boardsen, S. A, Odenwald, S., Humble, J., and Pazamickas, K. A.:
Eyewitness reports of the great auroral storm of 1859, Adv. Space Res., 38, 145–154,
https://doi.org/10.1016/j.asr.2005.12.021, 2006.
Gutton, J. P. and Bonnet, J. C. (Eds.): Les Lyonnaises dans
l'Histoire, Privat, Toulouse, 1991.
Hapgood, M.: The Great Storm of May 1921: An Exemplar of a Dangerous Space
Weather Event, Adv. Space Res., 17, 950–975, https://doi.org/10.1029/2019SW002195, 2019.
Hattori, K., Hayakawa, H., and Ebihara, Y.: Occurrence of Great Magnetic
Storms on 6–8 March 1582, Mon. Not. R. Astron. Soc., 487, 3550–3559,
https://doi.org/10.1093/mnras/stz1401, 2019.
Hayakawa, H., Mitsuma, Y., Ebihara, Y., Kawamura, A. D., Miyahara, H., Tamazawa,
H., and Isobe, H.: Earliest datable records of aurora-like phenomena in the
astronomical diaries from Babylonia, Earth Planet. Space, 68, 195, doi10.1186/s40623-016-0571-5,
2016.
Hayakawa, H., Tamazawa, H., Ebihara, Y., Miyahara, H., Kawamura, A. D., Aoyama, T.,
and Isobe H.: Records of sunspots and aurora candidates in the Chinese
official histories of the Yuán and Míng dynasties during
1261–1644, Publ. Astron. Soc. Jpn., 69, 65, https://doi.org/10.1093/pasj/psx045, 2017a.
Hayakawa, H., Iwahashi, K., Ebihara, Y., Tamazawa, H., Shibata, K., Knipp,
D. J., Kawamura, A. D., Hattori, K., Mase, K., Nakanishi, I., and Isobe, H.:
Long-lasting extreme magnetic storm activities in 1770 found in historical
documents, Astrophys. J., 850, L31, https://doi.org/10.3847/2041-8213/aa9661, 2017b.
Hayakawa, H., Ebihara, Y., Willis, D. M., Hattori, K., Giunta, A. S., Wild,
M. N., Hayakawa, S., and Toriumi, S.: The Great Space Weather Event during 1872
February Recorded in East Asia, Astrophys. J., 862, 15, https://doi.org/10.3847/1538-4357/aaca40,
2018.
Hayakawa, H., Ebihara, Y., Willis, D. M., Toriumi, S., Iju, T., Hattori, K.,
Wild, M. N., Oliveira, D. M., Ermolli, I., Ribeiro, J. R., Correia, A. P.,
Ribeiro, A. I., and Knipp, D. J.: Temporal and Spatial Evolutions of a Large
Sunspot Group and Great Auroral Storms Around the Carrington Event in 1859,
Adv. Space Res., 17, 1553–1569, https://doi.org/10.1029/2019SW002269, 2019a.
Hayakawa, H., Ebihara, Y., Cliver, E. W., Hattori, K., Toriumi, S., Love, J.
J., Umemura, N., Namekata, K., Sakaue, T., Takahashi, T., and Shibata, K.:
The extreme space weather event in September 1909, Mon. Not. R. Astron. Soc., 484, 4083–4099, https://doi.org/10.1093/mnras/sty3196, 2019b.
Hayakawa, H., Mitsuma, Y., Ebihara, Y., and Miyake, F.: The Earliest Candidates of
Auroral Observations in Assyrian Astrological Reports: Insights on Solar
Activity around 660 BCE, Astrophys. J. Lett., 884, L18, https://doi.org/10.3847/2041-8213/ab42e4, 2019c.
Hayakawa, H., Ribeiro, P., Vaquero, J. M., Gallego, M. C., Knipp, D. J.,
Mekhaldi, F., Bhaskar, A., Oliveira, D. M., Notsu, Y., Carrasco, V. M. S.,
Caccavari, A., Veenadhari, B., Mukherjee, S., and Ebihara, Y.: The Extreme
Space Weather Event in 1903 October/November: An Outburst from the Quiet
Sun, Astrophys. J. Lett., 897, L10, https://doi.org/10.3847/2041-8213/ab6a18, 2020.
Humble, J.: The solar events of August/September 1859 – Surviving
Australian observations, Adv. Space Res., 38, 155–158, https://doi.org/10.1016/j.asr.2005.08.053, 2006.
Jakson, A., Jonkers, A. R. T., and Walker, M. R.: Four centuries of
geomagnetic secular variation from historical records, Philos. T. R. Soc., A358, 957–990,
https://doi.org/10.1098/rsta.2000.0569, 2000.
Jeaurat, E. S.: Connoissance des Temps pour l`Année bissextile 1780,
Publiée Par l'ordre de l'Académie Royale des Sciences, et
calculée par M. Jeaurat, de la meme Académie, De l'Imprimerie
Royale, Paris, 1780.
Kawamura, A. D., Hayakawa, H., Tamazawa, H., Miyahara, H., and Isobe, H.: Aurora
candidates from the chronicle of Qíng dynasty in several degrees of
relevance, Publ. Astron. Soc. Jpn., 68, 79, https://doi.org/10.1093/pasj/psw074, 2016.
Krivsky, L.: Long-term fluctuations of solar activity during the last
thousand years, Sol. Phys., 93, 189–194, 1984.
Krivsky, L. and Pejml, K.: Solar activity, aurorae and climate in Central
Europe in the last 1000 years, Publications of the Astronomical Institute of
the Czechoslovak Academy of Sciences, Czech Republic, 1988.
Lefèvre, L., Vennerstrøm, S., Dumbovic, M., Vrsnak, B., Sudar, D., Arlt, R., Clette, F., and Crosby, N.: Detailed Analysis of Solar Data Related to Historical
Extreme Geomagnetic Storms: 1868–2010, Sol. Phys., 291,
1483–1531, https://doi.org/10.1007/s11207-016-0892-3, 2016.
Legrand, J. P. and Simon, P. A.: Two Hundred Years of Auroral Activity
(1780–1979), Ann. Geophys., 3, 161–168, 1987.
Link, F.: Observations et catalogue des aurores boréales apparues en
Occident de 626 à 1600, Geofysica Sbornik, 10, 297–392, 1962.
Link, F.: Observations et catalogue des aurores boréales apparues en
Occident de 1601 à 1700, Geofysica Sbornik, 12, 501–550, 1964.
Lockwood, M. and Barnard, L.: An arch in the UK, Astron. Geophys., 56, 4.25–4.30,
https://doi.org/10.1093/astrogeo/atv132, 2015.
Lockwood, M., Owens, M. J., Barnard, L., Scott, C. J., Usoskin, I. G., and
Nevanlinna, H.: Tests of Sunspot Number Sequences: 2. Using Geomagnetic and
Auroral Data, Sol. Phys., 291, 2811–2828, https://doi.org/10.1007/s11207-016-0913-2, 2016.
Love, J. J., Hayakawa, H., and Clive, E. W.: Intensity and Impact of the New
York Railroad Superstorm of May 1921, Adv. Space Res., 17, 1281–1292, https://doi.org/10.1029/2019SW002250, 2019.
Lovering, J.: On the periodicity of the Aurora Borealis, Mem. Am. Acad. Arts Sci., 10, 9–351, 1866.
Loysha, V. A., Krakovetsky, Y. K., and Popov, L. N.: Aurorae: Catalogue from IV
to XVIII centuries, Acad. Sci. USSR Sov. Geophys. Comm., 1, 1–10, 1989.
Mayaud, P. N. (Ed.): A Historical Review of Past Indices, in:
Derivation, Meaning, and Use of Geomagnetic Indices, American Geophysical
Union, Washington, D.C. USA, 4–16, 1980.
Martin, K. B.: Aurora Borealis, Royal Harbour of Ramsgate, Nautical Mag., 642–644, 1847.
McKie, D.: “The “Observations” of the
Abbé François Rozier (1734–93)”, Ann. Sci., 13, 73–89, https://doi.org/10.1080/00033795700200071, 1957.
Nevanlinna, H. and Kataja, E.: An extension of the geomagnetic activity
index series aa for two solar cycles (1844–1868), Geophys. Res. Lett., 20, 2703–2706,
https://doi.org/10.1029/93GL03001, 1993.
Olmsted, D.: Observations on the aurora borealis on Jan. 25, 1837, Am. J.
Sci. Arts, 32, 176–181, 1837.
Ordaz, J.: Auroras boreales observadas en la Península Ibérica,
Baleares y Canarias durante el siglo XVIII, Treb. Mus. Geol. Barcelona, 17, 45–110, 2010.
Rozier, J. B. F.: Sur une Nuée rendue phosphorique par une surabondance de
l'electricitè, vuede Beausejour près de Beziers, le 15 Août,
Observations sur la physique, sur l'Histoire naturelle er sur les arts, avec
des planches en taille-douce, Paris, tome XVIII, 276–277, 1781.
SILSO: World Data Center – Sunspot Number and Long-term Solar Observations,
Royal Observatory of Belgium, on-line Sunspot Number catalogue, available at:
http://www.sidc.be/silso/, last access: 28 October 2020.
Silverman, S. M.: Secular variation of the aurora for the past 500 years,
Rev. Geophys., 30, 333–351, https://doi.org/10.1029/92RG01571, 1992.
Silverman, S. M.: Sporadic auroras, J. Geophys. Res., 108, 8011, https://doi.org/10.1029/2002JA009335,
2003.
Silverman, S. M.: Low-latitude auroras: The great aurora of 4 February 1872,
J. Atmos. Sol.-Terr. Phy., 70, 1301–1308, https://doi.org/10.1016/j.jastp.2008.03.012, 2008.
Silverman, S. M. and Cliver, E. W.: Low-latitude auroras: the magnetic storm
of 14–15 May 1921, J. Atmos. Sol-Terr. Phy., 63, 523–535, https://doi.org/10.1016/S1364-6826(00)00174-7,
2001.
Silverman, S. M. and Tuan, T. F.: Auroral Audibility, Adv. Geophys., 16, 155–266,
https://doi.org/10.1016/S0065-2687(08)60352-0, 1973.
Snow, R.: Observations of the Aurora Borealis. From September 1834 to
September 1839, Moyes & Barclay, London, 1842.
Stephenson, F. R., Willis, D. M., and Hallinan, T. J.: The earliest datable
observation of the aurora borealis, Astron. Geophys., 45, 15–17,
https://doi.org/10.1046/j.1468-4004.2003.45615.x, 2004.
Stephenson, F. R., Willis D. M., Hayakawa, H., Ebihara, Y., Scott, C. J.,
Wilkinson, J., and Wild, M. N.: Do the Chinese Astronomical Records Dated AD 776
January 12/13 Describe an Auroral Display or a Lunar Halo? A Critical
Re-examination, Sol. Phys., 294, 36, https://doi.org/10.1007/s11207-019-1425-7, 2019.
Störmer, C.: The Polar Aurora, Oxford University Press, Oxford, 1955.
Svalgaard, L. and Cliver, E. W.: Heliospheric magnetic field 1835–2009, J. Geophys. Res.,
115, A0911, https://doi.org/10.1029/2009JA015069, 2010.
Tromholt, S.: Catalog der in Norwegen bis Juni 1878 beobachteten
Nordlichter, Dybwad, Christiana, 452 pp., 1902.
Tsurutani, B. T., Gonzalez, W. D., Lakhina, G. S., and Alex, S.: The extreme
magnetic storm of 1–2 September 1859, J. Geophys. Res., 108, 1268,
https://doi.org/10.1029/2002JA009504, 2003.
Usoskin, I. G., Kovaltsov, G. A., Mishina, L. N., Sokoloff, D. D., and Vaquero,
J.: An Optical Atmospheric Phenomenon Observed in 1670 over the City of
Astrakhan Was Not a Mid-Latitude Aurora, Sol. Phys., 292, 15, https://doi.org/10.1007/s11207-016-1035-6, 2017.
Vaquero, J. M., Trigo, R. M., and Gallego, M. C.: Sporadic aurora from Spain,
Earth Planet. Space, 59, 49–51, https://doi.org/10.1186/BF03352061, 2007.
Vaquero, J. M., Gallego, M. C., Barriendos, M., Rama, E., and
Sanchez-Lorenzo, A.: Francisco Salva's auroral observations from Barcelona
during 1780–1825, Adv. Space Res., 45, 1388–1392, https://doi.org/10.1016/j.asr.2010.02.009,
2010.
Vaquero, J. M., Gallego, M. C., and Domínguez-Castro, F.: A possible case
of Sporadic Aurora in 1843 from Mexico, Geofis. Int., 52, 87–92, 2013.
Vaquero, J. M., Svalgaard, L., Carrasco, V. M. S., Clette, F., Lefèvre, L.,
Gallego, M. C., Arlt, R., Aparicio, A. J. P., Richard, J.-G., and Howe, R.: A
revised collection of sunspot group numbers, Sol. Phys., 291, 3061–3074,
https://doi.org/10.1007/s11207-016-0982-2, 2016.
Vázquez, M., Vaquero, J. M., and Curto, J. J.: On the Connection between Solar
Activity and Low-Latitude Aurorae in the Period 1715–1860, Sol. Phys., 238,
405–420, 2006.
Verbanac, G., Vrsnak, B., Veronig, A. M., and Temmer, M. B.: Equatorial
coronal holes, solar wind high speed strams, and their geoeffectiveness,
Astron. Astrophys., 526, A20, https://doi.org/10.1051/0004-6361/201014617, 2011.
Willis, D. M., Stephenson, F. R., and Singh, J. R.: Auroral observations on AD
1770 September 16: The earliest known conjugate sightings, Q. J. Roy. Astron. Soc., 37, 733–742, 1996.
Willis, D. M., Stephenson, F. R., and Huiping Fang: Sporadic aurorae observed in East Asia, Ann. Geophys., 25, 417–436, https://doi.org/10.5194/angeo-25-417-2007, 2007.
Short summary
Low-latitude aurorae (LLA) were an uncommon phenomenon not well known or understood in 1780. During our historical manuscript research of high atmospheric phenomena, we came across a document reporting an observation made by the abbot Rozier in Beausejour, France, on 15/08/1780. Thanks to the accuracy of his report, we were able to confirm it was a white, two-band structure LLA. Due to the few existing geomagnetic and solar observations, this is useful new geomagnetic activity proxy data.
Low-latitude aurorae (LLA) were an uncommon phenomenon not well known or understood in 1780....