Articles | Volume 37, issue 5
https://doi.org/10.5194/angeo-37-903-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-903-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-point galactic cosmic ray measurements between 1 and 4.5 AU over a full solar cycle
Thomas Honig
CORRESPONDING AUTHOR
ESTEC, European Space Agency, Noordwijk, 2200 AG, the Netherlands
Johannes Gutenberg University Mainz, Mainz, Germany
Olivier G. Witasse
ESTEC, European Space Agency, Noordwijk, 2200 AG, the Netherlands
Hugh Evans
ESTEC, European Space Agency, Noordwijk, 2200 AG, the Netherlands
Petteri Nieminen
ESTEC, European Space Agency, Noordwijk, 2200 AG, the Netherlands
Erik Kuulkers
ESTEC, European Space Agency, Noordwijk, 2200 AG, the Netherlands
Matt G. G. T. Taylor
ESTEC, European Space Agency, Noordwijk, 2200 AG, the Netherlands
Bernd Heber
Institute of Experimental and Applied Physics,
Kiel University, Kiel, Germany
Jingnan Guo
Institute of Experimental and Applied Physics,
Kiel University, Kiel, Germany
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei, China
Beatriz Sánchez-Cano
Department of Physics and Astronomy, University of Leicester,
Leicester, UK
Related authors
No articles found.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Charlotte Goetz, Herbert Gunell, Fredrik Johansson, Kristie LLera, Hans Nilsson, Karl-Heinz Glassmeier, and Matthew G. G. T. Taylor
Ann. Geophys., 39, 379–396, https://doi.org/10.5194/angeo-39-379-2021, https://doi.org/10.5194/angeo-39-379-2021, 2021
Short summary
Short summary
Boundaries in the plasma around comet 67P separate regions with different properties. Many have been identified, including a new boundary called an infant bow shock. Here, we investigate how the plasma and fields behave at this boundary and where it can be found. The main result is that the infant bow shock occurs at intermediate activity and intermediate distances to the comet. Most plasma parameters behave as expected; however, some inconsistencies indicate that the boundary is non-stationary.
Arianna Piccialli, Julie A. Rathbun, Anny-Chantal Levasseur-Regourd, Anni Määttänen, Anna Milillo, Miriam Rengel, Alessandra Rotundi, Matt Taylor, Olivier Witasse, Francesca Altieri, Pierre Drossart, and Ann Carine Vandaele
Adv. Geosci., 53, 169–182, https://doi.org/10.5194/adgeo-53-169-2020, https://doi.org/10.5194/adgeo-53-169-2020, 2020
Short summary
Short summary
As a way of measuring success in planetary science, we analyzed the participation of female scientists in ESA Solar System missions: we counted the original science team members of 10 missions over a period of 38 years and determined the percentage of women within each team. Although the number of female scientists in the field has been constantly increasing in Europe, we found that gender gaps that existed 38 years ago have persisted into the present.
Maik Riechert, Andrew P. Walsh, Alexander Gerst, and Matthew G. G. T. Taylor
Geosci. Instrum. Method. Data Syst., 5, 289–304, https://doi.org/10.5194/gi-5-289-2016, https://doi.org/10.5194/gi-5-289-2016, 2016
Short summary
Short summary
Astronauts on board the International Space Station have taken thousands of high-quality images of the northern and southern lights (aurorae). Because the images were not taken as part of a specific research project, no information about exactly where the camera was pointing was available. We have used the stars in the images to reconstruct this information. Now we can tell the latitudes and longitudes of the aurorae in the images and use them for research. The data are publicly available.
J. Köhler, R. F. Wimmer-Schweingruber, J. Appel, B. Ehresmann, C. Zeitlin, D. M. Hassler, G. Reitz, D. E. Brinza, S. Böttcher, E. Böhm, S. Burmeister, J. Guo, A.-M. Harri, H. Kahanpää, J. Krauss, H. Lohf, C. Martin, D. Matthiä, A. Posner, and S. Rafkin
Ann. Geophys., 34, 133–141, https://doi.org/10.5194/angeo-34-133-2016, https://doi.org/10.5194/angeo-34-133-2016, 2016
Short summary
Short summary
The Radiation Assessment Detector (RAD), on board the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. In this work we compare predicted electron/positron spectra with the signal measured by RAD.
We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics.
D. Koschny, F. Bettonvil, J. Licandro, C. v. d. Luijt, J. Mc Auliffe, H. Smit, H. Svedhem, F. de Wit, O. Witasse, and J. Zender
Geosci. Instrum. Method. Data Syst., 2, 339–348, https://doi.org/10.5194/gi-2-339-2013, https://doi.org/10.5194/gi-2-339-2013, 2013
Related subject area
Subject: Space weather, climate, habitability, and life in (exo-)planetary context | Keywords: High energy particles
On the radiation belt location during the 23rd and 24th solar cycles
Alexei V. Dmitriev
Ann. Geophys., 37, 719–732, https://doi.org/10.5194/angeo-37-719-2019, https://doi.org/10.5194/angeo-37-719-2019, 2019
Short summary
Short summary
The Earth’s radiation belt (ERB) is formed by energetic particles caught in the geomagnetic trap. Within the last two solar cycles (from 2001 to 2018), observations of the ERB by a fleet of low-altitude POES satellites have allowed for the discovery of an abnormal equatorward displacement of the outer part of ERB in the Siberian sector. This displacement can partially explain the increase in the occurrence rate of midlatitude aurora borealis observed in the Eastern Hemisphere.
Cited articles
Alania, M. V., Modzelewska, R., and Wawrzynczak, A.: Peculiarities of
cosmic ray modulation in the solar minimum 23/24, J. Geophys. Res.-Space, 119, 4164–4174, https://doi.org/10.1002/2013JA019500, 2014.
Altwegg, K., Balsiger, H., Bar-Nun, A., Berthelier, J. J., Bieler, A., Bochsler, P., Briois, C., Calmonte, U., Combi, M., De Keyser, J., Eberhardt, P., Fiethe, B., Fuselier, S., Gasc, S., Gombosi, T. I., Hansen, K. C., Hässig, M., Jäckel, A., Kopp, E., Korth, A., LeRoy, L., Mall, U., Marty, B., Mousis, O., Neefs, E., Owen, T., Rème, H., Rubin, M., Sémon, T., Tzou, C. -Y., Waite, H., and Wurz, P.: 67P/ Churyumov-Gerasimenko, a Jupiter family comet with
a high D/H ratio, Science, 347, 1261952, https://doi.org/10.1126/science.1261952, 2015.
Badruddin and Kumar, A.: Study of the Cosmic-Ray Modulation During the Passage of ICMEs and CIRs, Sol. Phys., 291, 559–580, https://doi.org/10.1007/s11207-015-0843-4, 2016.
Belov, A.: Large scale modulation: view from the earth, Space Sci.
Rev., 93, 79–105, 2000.
Boynton, W. V., Feldman, W. C., Mitrofanov, I. G., Evans, L. G., Reedy, R. C., Squyres, S. W., Starr, R., Trombka, J. I., D'Uston, C., Arnold, J. R.,Englert, P. A. J., Metzger, A. E., Wänke, H., Brückner, J., Drake, D. M., Shinohara, C., Fellows, C., Hamara, D. K., Harshman, K., Kerry, K., Turner, C., Ward, M., Barthe, H., Fuller, K. R., Storms, S. A., Thornton, G. W., Longmire, J. L., Litvak, M. L., and Ton'chev, A. K.: The Mars Odyssey gamma-ray spectrometer instrument suite,
Space Sci. Rev., 110, 37–83, https://doi.org/10.1007/978-0-306-48600-5, 2004.
Cane, H. V, Wibberenz, G., Richardson, I. G., and von Rosenvinge, T. T.: Cosmic ray
modulation and the Solar magnetic field, Geophys. Res. Lett., 26, 565–568, 1999.
Carslaw, K. S., Harrison, R. G., and Kirkby, J.: Cosmic Rays, Clouds, and
Climate, Science, 298, 1732–1737, 2002.
Evans, H. D. R., Bühler, P., Hajdas, W., Daly, E. J., Nieminen, P., and Mohammadzadeh, A.: Results from the ESA SREM monitors and comparison with
existing radiation belt models, Adv. Space Res., 42, 1527–1537, 2008.
Ferreira, S. E. S. and Potgieter, M. S.: Modulation over a 22-year cosmic ray
cycle: on the tilt angles of the heliospheric current sheet, Adv.
Space Res., 32, 657–662, 2003.
Frigo, E., Antonelli, F., da Silva, D. S. S., Lima, P. C. M., Pacca, I. I. G., and Bageston, J. V.: Effects of solar activity and galactic cosmic ray cycles on the modulation of the annual average temperature at two sites in southern Brazil, Ann. Geophys., 36, 555–564, https://doi.org/10.5194/angeo-36-555-2018, 2018.
Gieseler, J. and Heber, B.: Spatial gradients of GCR protons in the inner
heliosphere derived from Ulysses COSPIN/KET and PAMELA measurements, A&A,
589, A32, https://doi.org/10.1051/0004-6361/201527972, 2016.
Hansen, K. C., Altwegg, K., Berthelier, J.-J., Bieler, A., Biver, N., Bockelée-Morvan, D., Calmonte, U., Capaccioni, F., Combi, M. R.,
de Keyser, J., Fiethe, B., Fougere, N., Fuselier, S. A., Gasc, S., Gombosi, T. I., Huang, Z., Le Roy, L., Lee, S., Nilsson, H., Rubin, M., Shou, Y., Snodgrass, C., Tenishev, V., Toth, G., Tzou, C.-Y., Wedlund, C. S., and Rosina Team: Evolution of water production of 67P/
Churyumov-Gerasimenko: an empirical model and multi-instrument study, Mon. Not. R. Astron. Soc., 462, S491–S506, 2016.
Heber, B. and Potgieter, M. S.: Galactic and anomalous cosmic rays through the Solar cycle: New insights from Ulysses, in: The Heliosphere through the Solar activity cycle, Books in astronomy and space sciences, edited by: Balogh, A., Lanzerotti, L. J., and Suess, S. T., Springer-Praxis, 2008.
Hoeksema, J. T.: The Large-Scale Structure of the Heliospheric Current Sheet
During the ULYSSES Epoch, Space Sci. Rev., 72, 137–148, 1995.
Kozai, M., Munakata, K., Kato, C., Kuwabara, T., Bieber, J. W., Evenson, P., Rockenbach, M., Dal Lago, A., Schuch, N. J., Tokumaru, M., Marcus L. Duldig, Humble, J. E., Sabbah, I., Al Jassar, H. K., Sharma, M. M., and Kóta, J.: The spatial density gradient of galactic
cosmic rays and its solar cycle variation observed with the Global Muon
Detector Network, Earth Planet. Space, 66, 151 pp., 2014.
Lüdeke, S. and Wyrwol, V.: Validation of Flux Models to Characterize the
Radiation Environment in Space Based on Current Rosetta-Data, Masters
Thesis, Oldenburg, 14 September, 2017.
McComas, D. J., Bame, S. J., Barker, P., Feldman, W. C., Phillips, J. L.,
Riley, P., and Griffee, J. W.: Solar wind electron proton alpha monitor
(SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 86,
561–612, 1998.
Mewaldt, R., Davis, A., Lave, K., Leske, R., Stone, E., Wiedenbeck, M., Binns
W., Christian, E., Cummings, A., De Nolfo, G., Israel, M., Labrador, A., and Von Rosenvinge, T.: Record setting cosmic ray intensities in 2009 and 2010,
Astronphys. J. Lett., 723, L1–L6, https://doi.org/10.1088/2041-8205/723/1/L1, 2010.
Mishra, V. K. and Mishra, A. P.: Study of solar activity and cosmic ray modulation during Solar Cycle 24 in comparison to previous solar cycle, Indian J. Phys., 90, 1333–1339, 2016.
Mohammadzadeh, A., Evans, H., Nieminen, P., Daly, E.,
Vuilleumier, P., Buhler, P., Eggel, C., Hajdas, W.,
Schlumpf, N., Zehnder, A., Schneider, J., and Fear, R.: The ESA standard radiation environment monitor program: first results from
PROBA-I and INTEGRAL, IEEE Trans. Nucl. Sci., 50, 2272–2277, 2003.
Moraal, H.: Cosmic-ray modulation equations, Space Sci. Rev., 176, 299–319, https://doi.org/10.1007/s11214-011-9819-3, 2013.
Pierce, J.: Cosmic rays, aerosols, clouds, and climate: Recent findings from
the CLOUD experiment, J. Geophys. Res.-Atmos.,
122, 8051–8055, 2017.
Potgieter, M. S.: Solar Modulation of Cosmic Rays, Living Rev. Sol. Phys., 10, 3, https://doi.org/10.12942/lrsp-2013-3, 2013.
Potgieter, M. S., Burger, R. A., and Ferreira, S. E. S.: Modulation of cosmic rays in the heliosphere from Solar minimum to maximum: A theoretical perspective, Space Sci. Rev., 97, 295–307, 2001.
Rotundi, A., Della Corte, V., Fulle, M., Ferrari, M., Sordini, R., Ivanovski, Stavro, Accolla, M., Lucarelli, F., Zakharov, V., Mazzotta Epifani, E., López-Moreno, J. J., Rodríguez, J., Colangeli, L., Palumbo, P.,
Bussoletti, E. Crifo, J.-F., Esposito, F., Green, S. F., Grün, E., and
Lamy, P. L.: Dust measurements in the coma of comet
67P/Churyumov-Gerasimenko inbound to the sun, Science, 347, aaa3905, https://doi.org/10.1126/science.aaa3905, 2015.
Sánchez-Cano, B., Hall, B. E. S., Lester, M., Mays, M. L., Witasse, O., Ambrosi, R., Andrews, D., Cartacci, M., Cicchetti, A., Holmström, M., Imber, S., Kajdič, P., Milan, S. E., Noschese, R., Odstrcil, D., Opgenoorth, H., Plaut, J., Ramstad, R., and Reyes-Ayala, K. I.: Mars plasma system response to Solar wind disturbances
during Solar minimum, J. Geophys. Res.-Space, 122, 6611–6634, https://doi.org/10.1002/2016JA023587, 2017.
Sánchez-Cano, B., Witasse, O., Lester, M., Rahmati, A., Ambrosi, R., Lillis, R., Leblanc, F., Blelly, P.-L., Costa, M., Cowley, S. W. H., Espley, J. R., Milan, S. E., Plaut, J. J., Lee, C., and Larson, D.: Energetic particle showers over Mars from
comet C/2013 A1 Siding Spring, J. Geophys. Res.-Space, 123, 8778–8796, https://doi.org/10.1029/2018JA025454, 2018.
Smith, C. W., L'Heureux, J., Ness, N. F., Acuña, M. H., Burlaga, L. F.,
and Scheifele, J.: The ACE Magnetic Fields Experiment, Space Sci. Rev., 86,
613–632, 1998.
Snodgrass, C., Jehin, E., Manfroid, J., Opitom, C., Fitzsimmons, A., Tozzi, G. P., Faggi, S., Yang, B., Knight, M. M., Conn, B. C., Lister, T., Hainaut, O., Bramich, D. M., Lowry, S. C., Rozek, A., Tubiana, C., and Guilbert-Lepoutre, A.: Distant activity of 67P/Churyumov-Gerasimenko in 2014:
Ground-based results during the Rosetta pre-landing phase, A&A,
588, A80, https://doi.org/10.1051/0004-6361/201527834, 2016.
Stone, E. C., Frandsen, A. M., Mewaldt, R. A., Christian, E. R., Margolies,
D., Ormes, J. F., and Snow, F.: The Advanced Com- position Explorer, Space
Sci. Rev., 86, 1–22, 1998.
Tubiana, C., Snodgrass, C., Bertini, I., Mottola, S., Vincent, J.-B., Lara, L., Fornasier, S., Knollenberg, J., Thomas, N., Fulle, M., Agarwal, J., Bodewits, D., Ferri, F., Güttler, C., Gutierrez, P. J., La Forgia, F., Lowry, S., Magrin, S., Oklay, N., Pajola, M., Rodrigo, R., Sierks, H., A'Hearn, M. F., Angrilli, F., Barbieri, C., Barucci, M. A., Bertaux, J.-L., Cremonese, G., Da Deppo, V., Davidsson, B., De Cecco, M., Debei, S., Groussin, O., Hviid, S. F., Ip, W., Jorda, L., Keller, H. U., Koschny, D.,
Kramm, R., Kührt, E., Küppers, M., Lazzarin, M., Lamy, P. L., Lopez Moreno, J. J., Marzari, F., Michalik, H., Naletto, G., Rickman, H.,
Sabau, L., Wenzel, K. -P.: 67P/Churyumov-Gerasimenko: Activity between March and
June 2014 as observed from Rosetta/OSIRIS, A&A, 573, A62, https://doi.org/10.1051/0004-6361/201424735, 2015.
Utomo, Y. S.: Correlation analysis of Solar constant, Solar activity and
cosmic ray, J. Phys.: Conf. Ser., 817, 012045, https://doi.org/10.1088/1742-6596/817/1/012045, 2017.
Vos, E. E. and Potgieter, M. S.: Global gradients for cosmic-ray protons in
the heliosphere during the Solar minimum of cycle 23/24, Solar Physics,
291, 2181–2195, 2016.
Webber, W. R. and Lockwood, J. A.: An observation of a heliospheric magnetic
cycle dependence for the integral radial gradient of E > 60 MeV
cosmic rays, J. Geophys. Res., 96, 15899–15905, 1991.
Witasse, O., Sánchez-Cano, B., Mays, M. L., Kajdič, P., Opgenoorth, H., Elliott, H. A., Richardson, I. G., Zouganelis, I., Zender, J., Wimmer-Schweingruber, R. F., Turc, L., Taylor, M. G. G. T., Roussos, E., Rouillard, A., Richter, I., Richardson, J. D., Ramstad, R., Provan, G., Posner, A., Plaut, J. J., Odstrcil, D., Nilsson, H., Niemenen, P., Milan, S. E., Mandt, K., Lohf, H., Lester, M., Lebreton, J. -P., Kuulkers, E., Krupp, N., Koenders, C., James, M. K., Intzekara, D., Holmstrom, M., Hassler, D. M., Hall, B. E. S., Guo, J., Goldstein, R., Goetz, C., Glassmeier, K. H., Génot, V., Evans, H., Espley, J., Edberg, N. J. T., Dougherty, M., Cowley, S. W. H., Burch, J., Behar, E., Barabash, S., Andrews, D. J., and Altobelli, N.: Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en
route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU,
J. Geophys. Res.-Space, 122, 7865–7890, https://doi.org/10.1002/2017JA023884,
2017.
Zeitlin, C., Boynton, W., Mitrofanov, I., Hassler, D., Atwell, W., Cleghorn, T. F., Cucinotta, F. A., Dayeh, M., Desai, M., Guetersloh, S. B., Kozarev, K., Lee, K. T., Pinsky, L., Saganti, P., Schwadron, N. A., and Turner, R.: Mars Odyssey measurements of galactic cosmic rays and
solar particles in Mars orbit, 2002–2008, Space Weather, 8,
S00E06, https://doi.org/10.1029/2009SW000563, 2010.
Short summary
We analysed data from radiation monitors aboard different spacecraft such as Rosetta and Integral. From the data, we extracted the evolution of galactic cosmic rays as a function of time (over a full solar cycle) and position (from 1 to 4.5 AU). In the main results, we confirm the overall evolution (anti-correlation) of the fluxes with respect to the solar activity. We found a surprising result, which is a decrease in the flux of galactic cosmic rays around comet 67P.
We analysed data from radiation monitors aboard different spacecraft such as Rosetta and...