Articles | Volume 37, issue 6
https://doi.org/10.5194/angeo-37-1121-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-1121-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter
Department of Physics and Technology, UiT The Arctic University of
Norway, 9037, Tromsø, Norway
Libor Nouzák
Department of Surface and Plasma Science, Charles University Prague,
180 00 Prague, Czech Republic
Jakub Vaverka
Department of Surface and Plasma Science, Charles University Prague,
180 00 Prague, Czech Republic
Tarjei Antonsen
Department of Physics and Technology, UiT The Arctic University of
Norway, 9037, Tromsø, Norway
Åshild Fredriksen
Department of Physics and Technology, UiT The Arctic University of
Norway, 9037, Tromsø, Norway
Karine Issautier
LESIA – Observatoire de Paris, Université PSL, CNRS, Sorbonne
Université, Université de Paris, 5 place Jules Janssen, 92195
Meudon, France
David Malaspina
Laboratory for Atmospheric and Space Physics, University of Colorado,
Boulder, CO 80303, USA
Nicole Meyer-Vernet
LESIA – Observatoire de Paris, Université PSL, CNRS, Sorbonne
Université, Université de Paris, 5 place Jules Janssen, 92195
Meudon, France
Jiří Pavlů
Department of Surface and Plasma Science, Charles University Prague,
180 00 Prague, Czech Republic
Zoltan Sternovsky
Laboratory for Atmospheric and Space Physics, University of Colorado,
Boulder, CO 80303, USA
Joan Stude
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik
der Atmosphäre, Oberpfaffenhofen, Germany
Shengyi Ye
Department of Physics and Astronomy, University of Iowa, Iowa City,
52242-1479, Iowa, USA
Department of Earth and Space Sciences, Southern University of Science
and Technology, Shenzhen, China
Arnaud Zaslavsky
LESIA – Observatoire de Paris, Université PSL, CNRS, Sorbonne
Université, Université de Paris, 5 place Jules Janssen, 92195
Meudon, France
Related authors
Dorota Jozwicki, Puneet Sharma, Devin Huyghebaert, and Ingrid Mann
Ann. Geophys., 42, 431–453, https://doi.org/10.5194/angeo-42-431-2024, https://doi.org/10.5194/angeo-42-431-2024, 2024
Short summary
Short summary
We investigated the relationship between polar mesospheric summer echo (PMSE) layers and the solar cycle. Our results indicate that the average altitude of PMSEs, the echo power in the PMSEs and the thickness of the layers are, on average, higher during the solar maximum than during the solar minimum. We infer that higher electron densities at ionospheric altitudes might be necessary to observe multilayered PMSEs. We observe that the thickness decreases as the number of multilayers increases.
Adrien Pineau, Henriette Trollvik, Herman Greaker, Sveinung Olsen, Yngve Eilertsen, and Ingrid Mann
Atmos. Meas. Tech., 17, 3843–3861, https://doi.org/10.5194/amt-17-3843-2024, https://doi.org/10.5194/amt-17-3843-2024, 2024
Short summary
Short summary
The mesosphere, part of the upper atmosphere, contains small solid dust particles, mostly made up of material from interplanetary space. We are preparing an experiment to collect such particles during a rocket flight. A new instrument has been designed and numerical simulations have been performed to investigate the airflow nearby as well as its dust collection efficiency. The collected dust particles will be further analyzed in the laboratory in order to study their chemical composition.
Tinna L. Gunnarsdottir, Ingrid Mann, Wuhu Feng, Devin R. Huyghebaert, Ingemar Haeggstroem, Yasunobu Ogawa, Norihito Saito, Satonori Nozawa, and Takuya D. Kawahara
Ann. Geophys., 42, 213–228, https://doi.org/10.5194/angeo-42-213-2024, https://doi.org/10.5194/angeo-42-213-2024, 2024
Short summary
Short summary
Several tons of meteoric particles burn up in our atmosphere each day. This deposits a great deal of material that binds with other atmospheric particles and forms so-called meteoric smoke particles. These particles are assumed to influence radar measurements. Here, we have compared radar measurements with simulations of a radar spectrum with and without dust particles and found that dust influences the radar spectrum in the altitude range of 75–85 km.
Samuel Kočiščák, Andreas Kvammen, Ingrid Mann, Nicole Meyer-Vernet, David Píša, Jan Souček, Audun Theodorsen, Jakub Vaverka, and Arnaud Zaslavsky
Ann. Geophys., 42, 191–212, https://doi.org/10.5194/angeo-42-191-2024, https://doi.org/10.5194/angeo-42-191-2024, 2024
Short summary
Short summary
In situ observations are crucial for understanding interplanetary dust, yet not every spacecraft has a dedicated dust detector. Dust encounters happen at great speeds, leading to high energy density at impact, which leads to ionization and charge release, which is detected with electrical antennas. Our work looks at how the transient charge plume interacts with Solar Orbiter spacecraft. Our findings are relevant for the design of future experiments and the understanding of present data.
Florian Günzkofer, Dimitry Pokhotelov, Gunter Stober, Ingrid Mann, Sharon L. Vadas, Erich Becker, Anders Tjulin, Alexander Kozlovsky, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Nicholas J. Mitchell, and Claudia Borries
Ann. Geophys., 41, 409–428, https://doi.org/10.5194/angeo-41-409-2023, https://doi.org/10.5194/angeo-41-409-2023, 2023
Short summary
Short summary
Gravity waves (GWs) are waves in Earth's atmosphere and can be observed as cloud ripples. Under certain conditions, these waves can propagate up into the ionosphere. Here, they can cause ripples in the ionosphere plasma, observable as oscillations of the plasma density. Therefore, GWs contribute to the ionospheric variability, making them relevant for space weather prediction. Additionally, the behavior of these waves allows us to draw conclusions about the atmosphere at these altitudes.
Tinna L. Gunnarsdottir, Arne Poggenpohl, Ingrid Mann, Alireza Mahmoudian, Peter Dalin, Ingemar Haeggstroem, and Michael Rietveld
Ann. Geophys., 41, 93–114, https://doi.org/10.5194/angeo-41-93-2023, https://doi.org/10.5194/angeo-41-93-2023, 2023
Short summary
Short summary
Temperatures at 85 km around Earth's poles in summer can be so cold that small ice particles form. These can become charged, and, combined with turbulence at these altitudes, they can influence the many electrons present. This can cause large radar echoes called polar mesospheric summer echoes. We use radio waves to heat these echoes on and off when the sun is close to or below the horizon. This allows us to gain some insight into these ice particles and how the sun influences the echoes.
Andreas Kvammen, Kristoffer Wickstrøm, Samuel Kociscak, Jakub Vaverka, Libor Nouzak, Arnaud Zaslavsky, Kristina Rackovic Babic, Amalie Gjelsvik, David Pisa, Jan Soucek, and Ingrid Mann
Ann. Geophys., 41, 69–86, https://doi.org/10.5194/angeo-41-69-2023, https://doi.org/10.5194/angeo-41-69-2023, 2023
Short summary
Short summary
Collisional fragmentation of asteroids, comets and meteoroids is the main source of dust in the solar system. The dust distribution is however uncharted and the role of dust in the solar system is largely unknown. At present, the interplanetary medium is explored by the Solar Orbiter spacecraft. We present a novel method, based on artificial intelligence, that can be used for detecting dust impacts in Solar Orbiter observations with high accuracy, advancing the study of dust in the solar system.
Kyoko K. Tanaka, Ingrid Mann, and Yuki Kimura
Atmos. Chem. Phys., 22, 5639–5650, https://doi.org/10.5194/acp-22-5639-2022, https://doi.org/10.5194/acp-22-5639-2022, 2022
Short summary
Short summary
We have investigated the nucleation process of noctilucent clouds observed in the mesosphere using a theoretical approach, where we adopt a more accurate model called the semi-phenomenological model for the nucleation process. We obtained an important result that rejects one of the two dominant nucleation mechanisms that have been proposed. Our results show it is extremely difficult for homogeneous nucleation of water to occur in the mesosphere, while heterogeneous nucleation occurs effectively.
Margaretha Myrvang, Carsten Baumann, and Ingrid Mann
Ann. Geophys., 39, 1055–1068, https://doi.org/10.5194/angeo-39-1055-2021, https://doi.org/10.5194/angeo-39-1055-2021, 2021
Short summary
Short summary
Our model calculations indicate that meteoric smoke particles (MSPs) influence both the magnitude and shape of the electron temperature during artificial heating. Others have found that current theoretical models most likely overestimate heating in the D-region compared to observations. In a future study, we will compare our results to observations of the electron temperature during heating to investigate if the presence of MSPs can explain the discrepancy between model and observations.
Tarjei Antonsen, Ingrid Mann, Jakub Vaverka, Libor Nouzak, and Åshild Fredriksen
Ann. Geophys., 39, 533–548, https://doi.org/10.5194/angeo-39-533-2021, https://doi.org/10.5194/angeo-39-533-2021, 2021
Short summary
Short summary
This paper discusses the charge generation for impacts of nano- to micro-scale dust on metal surfaces at speeds below a few kilometres per second. By introducing a model of capacitive coupling between the dust and the impact surface, we find that at such low speeds, the charge can be dominated by contact charging as opposed to plasma generation.
Joshua Baptiste, Connor Williamson, John Fox, Anthony J. Stace, Muhammad Hassan, Stefanie Braun, Benjamin Stamm, Ingrid Mann, and Elena Besley
Atmos. Chem. Phys., 21, 8735–8745, https://doi.org/10.5194/acp-21-8735-2021, https://doi.org/10.5194/acp-21-8735-2021, 2021
Short summary
Short summary
Agglomeration of ice and dust particles in the mesosphere are studied, using classical electrostatic approaches which are extended to capture the induced polarisation of surface charge. The instances of strong attraction between particles of the same sign of charge are predicted, which take place at small separation distances and also lead to the formation of stable aggregates.
Viswanathan Lakshmi Narayanan, Satonori Nozawa, Shin-Ichiro Oyama, Ingrid Mann, Kazuo Shiokawa, Yuichi Otsuka, Norihito Saito, Satoshi Wada, Takuya D. Kawahara, and Toru Takahashi
Atmos. Chem. Phys., 21, 2343–2361, https://doi.org/10.5194/acp-21-2343-2021, https://doi.org/10.5194/acp-21-2343-2021, 2021
Short summary
Short summary
In the past, additional sodium peaks occurring above the main sodium layer of the upper mesosphere were discussed. Here, formation of an additional sodium peak below the main sodium layer peak is discussed in detail. The event coincided with passage of multiple mesospheric bores, which are step-like disturbances occurring in the upper mesosphere. Hence, this work highlights the importance of such mesospheric bores in causing significant changes to the minor species concentration in a short time.
Carsten Baumann, Margaretha Myrvang, and Ingrid Mann
Ann. Geophys., 38, 919–930, https://doi.org/10.5194/angeo-38-919-2020, https://doi.org/10.5194/angeo-38-919-2020, 2020
Short summary
Short summary
Dust grains exist throughout our solar system. This dust is subject to destruction processes like sublimation and sputtering. Sputtering is the erosion of dust through the impact solar wind and can be very effective near the Sun. We performed calculations to find out how important the sputtering process is compared to the sublimation of dust. Recently launched spacecraft will probe the proximity of the Sun and measure the dust population. Our work will help to understand these measurements.
Henriette Trollvik, Ingrid Mann, Sveinung Olsen, and Yngve Eilertsen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-278, https://doi.org/10.5194/amt-2020-278, 2020
Preprint withdrawn
Short summary
Short summary
We discuss the design of a rocket instrument to collect mesospheric dust consisting of ice with embedded non-volatile meteoric smoke particles. The instrument consists of a collection device and an attached conic funnel. We consider the dust trajectories in the airflow and fragmentation at the funnel. For summer atmospheric conditions at 85 km and assuming that the ice components vaporize we estimate that up to 1014 to 1015 amu of non-volatile dust material can be collected.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 1331–1342, https://doi.org/10.5194/angeo-33-1331-2015, https://doi.org/10.5194/angeo-33-1331-2015, 2015
Short summary
Short summary
In a simulation study of the downward current region of the aurora, i.e. where electrons are accelerated upward, double layers are seen to form at low altitude and move upward until they are disrupted at altitudes of ten thousand kilometres or thereabouts. When one double layer is disrupted a new one forms below, and the process repeats itself. The repeated demise and reformation allows ions to flow upward without passing through the double layers that otherwise would have kept them down.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 279–293, https://doi.org/10.5194/angeo-33-279-2015, https://doi.org/10.5194/angeo-33-279-2015, 2015
Short summary
Short summary
In this paper, we simulate the plasma on a magnetic field line above the aurora. Initially, about half of the acceleration voltage is concentrated in a thin double layer at a few thousand km altitude. When the voltage is lowered, electrons trapped between the double layer and the magnetic mirror are released. In the process we see formation of electron beams and phase space holes. A temporary reversal of the polarity of the double layer is also seen as well as hysteresis effects in its position.
H. Gunell, J. De Keyser, E. Gamby, and I. Mann
Ann. Geophys., 31, 1227–1240, https://doi.org/10.5194/angeo-31-1227-2013, https://doi.org/10.5194/angeo-31-1227-2013, 2013
I. Mann and M. Hamrin
Ann. Geophys., 31, 39–44, https://doi.org/10.5194/angeo-31-39-2013, https://doi.org/10.5194/angeo-31-39-2013, 2013
Dorota Jozwicki, Puneet Sharma, Devin Huyghebaert, and Ingrid Mann
Ann. Geophys., 42, 431–453, https://doi.org/10.5194/angeo-42-431-2024, https://doi.org/10.5194/angeo-42-431-2024, 2024
Short summary
Short summary
We investigated the relationship between polar mesospheric summer echo (PMSE) layers and the solar cycle. Our results indicate that the average altitude of PMSEs, the echo power in the PMSEs and the thickness of the layers are, on average, higher during the solar maximum than during the solar minimum. We infer that higher electron densities at ionospheric altitudes might be necessary to observe multilayered PMSEs. We observe that the thickness decreases as the number of multilayers increases.
Adrien Pineau, Henriette Trollvik, Herman Greaker, Sveinung Olsen, Yngve Eilertsen, and Ingrid Mann
Atmos. Meas. Tech., 17, 3843–3861, https://doi.org/10.5194/amt-17-3843-2024, https://doi.org/10.5194/amt-17-3843-2024, 2024
Short summary
Short summary
The mesosphere, part of the upper atmosphere, contains small solid dust particles, mostly made up of material from interplanetary space. We are preparing an experiment to collect such particles during a rocket flight. A new instrument has been designed and numerical simulations have been performed to investigate the airflow nearby as well as its dust collection efficiency. The collected dust particles will be further analyzed in the laboratory in order to study their chemical composition.
Joan Stude, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Carsten Baumann, Frank Arnold, and Boris Strelnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1631, https://doi.org/10.5194/egusphere-2024-1631, 2024
Short summary
Short summary
We used a mass spectrometer on a rocket to analyze natural ions at altitudes between 60 and 120 km. Our instrument was launched in 2018 and 2021 from Norway. The heaviest particles were detected around 80 km, while medium particles could be found even above 100 km. Our measurements show that different particles are formed and not just one predominating compound. The most likely compounds that form meteor smoke particles in our measurements are made up from oxides of iron, magnesium and silicon.
Tinna L. Gunnarsdottir, Ingrid Mann, Wuhu Feng, Devin R. Huyghebaert, Ingemar Haeggstroem, Yasunobu Ogawa, Norihito Saito, Satonori Nozawa, and Takuya D. Kawahara
Ann. Geophys., 42, 213–228, https://doi.org/10.5194/angeo-42-213-2024, https://doi.org/10.5194/angeo-42-213-2024, 2024
Short summary
Short summary
Several tons of meteoric particles burn up in our atmosphere each day. This deposits a great deal of material that binds with other atmospheric particles and forms so-called meteoric smoke particles. These particles are assumed to influence radar measurements. Here, we have compared radar measurements with simulations of a radar spectrum with and without dust particles and found that dust influences the radar spectrum in the altitude range of 75–85 km.
Samuel Kočiščák, Andreas Kvammen, Ingrid Mann, Nicole Meyer-Vernet, David Píša, Jan Souček, Audun Theodorsen, Jakub Vaverka, and Arnaud Zaslavsky
Ann. Geophys., 42, 191–212, https://doi.org/10.5194/angeo-42-191-2024, https://doi.org/10.5194/angeo-42-191-2024, 2024
Short summary
Short summary
In situ observations are crucial for understanding interplanetary dust, yet not every spacecraft has a dedicated dust detector. Dust encounters happen at great speeds, leading to high energy density at impact, which leads to ionization and charge release, which is detected with electrical antennas. Our work looks at how the transient charge plume interacts with Solar Orbiter spacecraft. Our findings are relevant for the design of future experiments and the understanding of present data.
Alexandra Ruth Fogg, Caitríona M. Jackman, Sandra C. Chapman, James E. Waters, Aisling Bergin, Laurent Lamy, Karine Issautier, Baptiste Cecconi, and Xavier Bonnin
Nonlin. Processes Geophys., 31, 195–206, https://doi.org/10.5194/npg-31-195-2024, https://doi.org/10.5194/npg-31-195-2024, 2024
Short summary
Short summary
Auroral kilometric radiation (AKR) is a radio emission emitted by Earth. Due to the complex mixture of phenomena in the magnetosphere, it is tricky to estimate the time difference between the excitation of two systems. In this study, AKR is compared with indices describing Earth's system. Time differences between the excitation of AKR and the indices are estimated using mutual information. AKR feels an enhancement before the aurora but after more polar latitude features.
Florian Günzkofer, Dimitry Pokhotelov, Gunter Stober, Ingrid Mann, Sharon L. Vadas, Erich Becker, Anders Tjulin, Alexander Kozlovsky, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Nicholas J. Mitchell, and Claudia Borries
Ann. Geophys., 41, 409–428, https://doi.org/10.5194/angeo-41-409-2023, https://doi.org/10.5194/angeo-41-409-2023, 2023
Short summary
Short summary
Gravity waves (GWs) are waves in Earth's atmosphere and can be observed as cloud ripples. Under certain conditions, these waves can propagate up into the ionosphere. Here, they can cause ripples in the ionosphere plasma, observable as oscillations of the plasma density. Therefore, GWs contribute to the ionospheric variability, making them relevant for space weather prediction. Additionally, the behavior of these waves allows us to draw conclusions about the atmosphere at these altitudes.
Tinna L. Gunnarsdottir, Arne Poggenpohl, Ingrid Mann, Alireza Mahmoudian, Peter Dalin, Ingemar Haeggstroem, and Michael Rietveld
Ann. Geophys., 41, 93–114, https://doi.org/10.5194/angeo-41-93-2023, https://doi.org/10.5194/angeo-41-93-2023, 2023
Short summary
Short summary
Temperatures at 85 km around Earth's poles in summer can be so cold that small ice particles form. These can become charged, and, combined with turbulence at these altitudes, they can influence the many electrons present. This can cause large radar echoes called polar mesospheric summer echoes. We use radio waves to heat these echoes on and off when the sun is close to or below the horizon. This allows us to gain some insight into these ice particles and how the sun influences the echoes.
Andreas Kvammen, Kristoffer Wickstrøm, Samuel Kociscak, Jakub Vaverka, Libor Nouzak, Arnaud Zaslavsky, Kristina Rackovic Babic, Amalie Gjelsvik, David Pisa, Jan Soucek, and Ingrid Mann
Ann. Geophys., 41, 69–86, https://doi.org/10.5194/angeo-41-69-2023, https://doi.org/10.5194/angeo-41-69-2023, 2023
Short summary
Short summary
Collisional fragmentation of asteroids, comets and meteoroids is the main source of dust in the solar system. The dust distribution is however uncharted and the role of dust in the solar system is largely unknown. At present, the interplanetary medium is explored by the Solar Orbiter spacecraft. We present a novel method, based on artificial intelligence, that can be used for detecting dust impacts in Solar Orbiter observations with high accuracy, advancing the study of dust in the solar system.
Kyoko K. Tanaka, Ingrid Mann, and Yuki Kimura
Atmos. Chem. Phys., 22, 5639–5650, https://doi.org/10.5194/acp-22-5639-2022, https://doi.org/10.5194/acp-22-5639-2022, 2022
Short summary
Short summary
We have investigated the nucleation process of noctilucent clouds observed in the mesosphere using a theoretical approach, where we adopt a more accurate model called the semi-phenomenological model for the nucleation process. We obtained an important result that rejects one of the two dominant nucleation mechanisms that have been proposed. Our results show it is extremely difficult for homogeneous nucleation of water to occur in the mesosphere, while heterogeneous nucleation occurs effectively.
Margaretha Myrvang, Carsten Baumann, and Ingrid Mann
Ann. Geophys., 39, 1055–1068, https://doi.org/10.5194/angeo-39-1055-2021, https://doi.org/10.5194/angeo-39-1055-2021, 2021
Short summary
Short summary
Our model calculations indicate that meteoric smoke particles (MSPs) influence both the magnitude and shape of the electron temperature during artificial heating. Others have found that current theoretical models most likely overestimate heating in the D-region compared to observations. In a future study, we will compare our results to observations of the electron temperature during heating to investigate if the presence of MSPs can explain the discrepancy between model and observations.
Tarjei Antonsen, Ingrid Mann, Jakub Vaverka, Libor Nouzak, and Åshild Fredriksen
Ann. Geophys., 39, 533–548, https://doi.org/10.5194/angeo-39-533-2021, https://doi.org/10.5194/angeo-39-533-2021, 2021
Short summary
Short summary
This paper discusses the charge generation for impacts of nano- to micro-scale dust on metal surfaces at speeds below a few kilometres per second. By introducing a model of capacitive coupling between the dust and the impact surface, we find that at such low speeds, the charge can be dominated by contact charging as opposed to plasma generation.
Joshua Baptiste, Connor Williamson, John Fox, Anthony J. Stace, Muhammad Hassan, Stefanie Braun, Benjamin Stamm, Ingrid Mann, and Elena Besley
Atmos. Chem. Phys., 21, 8735–8745, https://doi.org/10.5194/acp-21-8735-2021, https://doi.org/10.5194/acp-21-8735-2021, 2021
Short summary
Short summary
Agglomeration of ice and dust particles in the mesosphere are studied, using classical electrostatic approaches which are extended to capture the induced polarisation of surface charge. The instances of strong attraction between particles of the same sign of charge are predicted, which take place at small separation distances and also lead to the formation of stable aggregates.
Viswanathan Lakshmi Narayanan, Satonori Nozawa, Shin-Ichiro Oyama, Ingrid Mann, Kazuo Shiokawa, Yuichi Otsuka, Norihito Saito, Satoshi Wada, Takuya D. Kawahara, and Toru Takahashi
Atmos. Chem. Phys., 21, 2343–2361, https://doi.org/10.5194/acp-21-2343-2021, https://doi.org/10.5194/acp-21-2343-2021, 2021
Short summary
Short summary
In the past, additional sodium peaks occurring above the main sodium layer of the upper mesosphere were discussed. Here, formation of an additional sodium peak below the main sodium layer peak is discussed in detail. The event coincided with passage of multiple mesospheric bores, which are step-like disturbances occurring in the upper mesosphere. Hence, this work highlights the importance of such mesospheric bores in causing significant changes to the minor species concentration in a short time.
Joan Stude, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Frank Arnold, and Boris Strelnikov
Atmos. Meas. Tech., 14, 983–993, https://doi.org/10.5194/amt-14-983-2021, https://doi.org/10.5194/amt-14-983-2021, 2021
Short summary
Short summary
In this paper we describe the instrument ROMARA and show data from the first flight on a research rocket.
On the way through the atmosphere, the instrument detects positive and negative, natural occurring ions before returning back to ground.
ROMARA was successfully launched together with other instruments into a special radar echo.
We detected typical, light ions of positive and negative charge and heavy negative ions, but no heavy positive ions.
Carsten Baumann, Margaretha Myrvang, and Ingrid Mann
Ann. Geophys., 38, 919–930, https://doi.org/10.5194/angeo-38-919-2020, https://doi.org/10.5194/angeo-38-919-2020, 2020
Short summary
Short summary
Dust grains exist throughout our solar system. This dust is subject to destruction processes like sublimation and sputtering. Sputtering is the erosion of dust through the impact solar wind and can be very effective near the Sun. We performed calculations to find out how important the sputtering process is compared to the sublimation of dust. Recently launched spacecraft will probe the proximity of the Sun and measure the dust population. Our work will help to understand these measurements.
Henriette Trollvik, Ingrid Mann, Sveinung Olsen, and Yngve Eilertsen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-278, https://doi.org/10.5194/amt-2020-278, 2020
Preprint withdrawn
Short summary
Short summary
We discuss the design of a rocket instrument to collect mesospheric dust consisting of ice with embedded non-volatile meteoric smoke particles. The instrument consists of a collection device and an attached conic funnel. We consider the dust trajectories in the airflow and fragmentation at the funnel. For summer atmospheric conditions at 85 km and assuming that the ice components vaporize we estimate that up to 1014 to 1015 amu of non-volatile dust material can be collected.
Tarjei Antonsen, Ove Havnes, and Andres Spicher
Atmos. Meas. Tech., 12, 2139–2153, https://doi.org/10.5194/amt-12-2139-2019, https://doi.org/10.5194/amt-12-2139-2019, 2019
Short summary
Short summary
This paper presents measurements of changes in mesospheric aerosol populations on different length scales, as detected by the DUSTY and MUDD probes on the MAXIDUSTY-1B rocket on 8 July 2016. Identical probes recorded very different currents, which we attribute to adverse flow effects. We find a general anti-correlation for charged aerosols and electrons, but not consistently on all length scales. We conclude that there is no simple relationship between aerosols and PMSE (radar echoes).
Ove Havnes, Tarjei Antonsen, Gerd Baumgarten, Thomas W. Hartquist, Alexander Biebricher, Åshild Fredriksen, Martin Friedrich, and Jonas Hedin
Atmos. Meas. Tech., 12, 1673–1683, https://doi.org/10.5194/amt-12-1673-2019, https://doi.org/10.5194/amt-12-1673-2019, 2019
Short summary
Short summary
We present a new method of analyzing data from rocket-borne aerosol detectors of the Faraday cup type (DUSTY). By using models for how aerosols are charged in the mesosphere and how they interact in a collision with the probes, fundamental parameters like aerosol radius, charge, and number density can be derived. The resolution can be down to ~ 10 cm, which is much lower than other available methods. The theory is furthermore used to analyze DUSTY data from the 2016 rocket campaign MAXIDUSTY.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 1331–1342, https://doi.org/10.5194/angeo-33-1331-2015, https://doi.org/10.5194/angeo-33-1331-2015, 2015
Short summary
Short summary
In a simulation study of the downward current region of the aurora, i.e. where electrons are accelerated upward, double layers are seen to form at low altitude and move upward until they are disrupted at altitudes of ten thousand kilometres or thereabouts. When one double layer is disrupted a new one forms below, and the process repeats itself. The repeated demise and reformation allows ions to flow upward without passing through the double layers that otherwise would have kept them down.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 279–293, https://doi.org/10.5194/angeo-33-279-2015, https://doi.org/10.5194/angeo-33-279-2015, 2015
Short summary
Short summary
In this paper, we simulate the plasma on a magnetic field line above the aurora. Initially, about half of the acceleration voltage is concentrated in a thin double layer at a few thousand km altitude. When the voltage is lowered, electrons trapped between the double layer and the magnetic mirror are released. In the process we see formation of electron beams and phase space holes. A temporary reversal of the polarity of the double layer is also seen as well as hysteresis effects in its position.
G. Fischer, S.-Y. Ye, J. B. Groene, A. P. Ingersoll, K. M. Sayanagi, J. D. Menietti, W. S. Kurth, and D. A. Gurnett
Ann. Geophys., 32, 1463–1476, https://doi.org/10.5194/angeo-32-1463-2014, https://doi.org/10.5194/angeo-32-1463-2014, 2014
Short summary
Short summary
In this paper we show that the large thunderstorm called the "Great White Spot", which raged for about 9 months in Saturn's troposphere in 2010/2011, was accompanied by changes in the periodicity and phasing of auroral radio emissions. We suggest that the thunderstorm was a source of intense gravity waves causing a global change in Saturn’s ionospheric winds via energy and momentum deposition. This supports the theory that Saturn’s magnetospheric periodicities are driven by the upper atmosphere.
H. Gunell, J. De Keyser, E. Gamby, and I. Mann
Ann. Geophys., 31, 1227–1240, https://doi.org/10.5194/angeo-31-1227-2013, https://doi.org/10.5194/angeo-31-1227-2013, 2013
I. Mann and M. Hamrin
Ann. Geophys., 31, 39–44, https://doi.org/10.5194/angeo-31-39-2013, https://doi.org/10.5194/angeo-31-39-2013, 2013
Related subject area
Subject: Small bodies (dwarf planets, asteroids, comets) to dust | Keywords: Interplanetary dust
Impact ionization double peaks analyzed in high temporal resolution on Solar Orbiter
Machine learning detection of dust impact signals observed by the Solar Orbiter
Dust sputtering within the inner heliosphere: a modelling study
Samuel Kočiščák, Andreas Kvammen, Ingrid Mann, Nicole Meyer-Vernet, David Píša, Jan Souček, Audun Theodorsen, Jakub Vaverka, and Arnaud Zaslavsky
Ann. Geophys., 42, 191–212, https://doi.org/10.5194/angeo-42-191-2024, https://doi.org/10.5194/angeo-42-191-2024, 2024
Short summary
Short summary
In situ observations are crucial for understanding interplanetary dust, yet not every spacecraft has a dedicated dust detector. Dust encounters happen at great speeds, leading to high energy density at impact, which leads to ionization and charge release, which is detected with electrical antennas. Our work looks at how the transient charge plume interacts with Solar Orbiter spacecraft. Our findings are relevant for the design of future experiments and the understanding of present data.
Andreas Kvammen, Kristoffer Wickstrøm, Samuel Kociscak, Jakub Vaverka, Libor Nouzak, Arnaud Zaslavsky, Kristina Rackovic Babic, Amalie Gjelsvik, David Pisa, Jan Soucek, and Ingrid Mann
Ann. Geophys., 41, 69–86, https://doi.org/10.5194/angeo-41-69-2023, https://doi.org/10.5194/angeo-41-69-2023, 2023
Short summary
Short summary
Collisional fragmentation of asteroids, comets and meteoroids is the main source of dust in the solar system. The dust distribution is however uncharted and the role of dust in the solar system is largely unknown. At present, the interplanetary medium is explored by the Solar Orbiter spacecraft. We present a novel method, based on artificial intelligence, that can be used for detecting dust impacts in Solar Orbiter observations with high accuracy, advancing the study of dust in the solar system.
Carsten Baumann, Margaretha Myrvang, and Ingrid Mann
Ann. Geophys., 38, 919–930, https://doi.org/10.5194/angeo-38-919-2020, https://doi.org/10.5194/angeo-38-919-2020, 2020
Short summary
Short summary
Dust grains exist throughout our solar system. This dust is subject to destruction processes like sublimation and sputtering. Sputtering is the erosion of dust through the impact solar wind and can be very effective near the Sun. We performed calculations to find out how important the sputtering process is compared to the sublimation of dust. Recently launched spacecraft will probe the proximity of the Sun and measure the dust population. Our work will help to understand these measurements.
Cited articles
Andersson, L., Ergun, R. E., Delory, G. T., Eriksson, A., Westfall, J.,
Reed, H., and Meyers, D.: The Langmuir probe and waves (LPW) instrument
for MAVEN, Space Sci. Rev., 195, 173–198, 2015a.
Andersson, L., Weber, T. D., Malaspina, D., Crary, F., Ergun, R. E., Delory,
G. T., Andrews, D. J., Horanyi, M., Collette, A., Yelle, R., and Jakosky, B. M.: Dust observations at orbital altitudes
surrounding Mars, Science, 350, aad0398, https://doi.org/10.1126/science.aad0398, 2015b.
Andrews, D. J., Andersson, L., Delory, G. T., Ergun, R. E., Eriksson, A. I., Fowler, C. M., McEnulty, T., Morooka, M. W., Weber, T., and Jakosky, B. M.: Ionospheric plasma density variations
observed at Mars by MAVEN/LPW, Geophys. Res. Lett., 42,
8862–8869, 2015.
Auer, S.: Instrumentation, in: Interplanetary Dust, edited by: Grün, E.,
Springer, New York, 385–444, 2001
Bale, S. D., Goetz, K., Harvey, P. R., Turin, P,Bonnell, J. W., Dudok de Wit, T., Ergun ,R. E., MacDowall, R. J., Pulupa, M., Andre, M., Bolton, M., Bougeret, J.-L.,Bowen, T. A., Burgess, D., Cattell, C. A., Chandran, B. D. G., Chaston, C. C., Chen, C. H. K., Choi, M. K., Connerney, J. E., Cranmer, S., Diaz-Aguado, M., Donakowski, W., Drake, J. F., Farrell, W. M., Fergeau, P., Fermin, J., Fischer, J., Fox, N., Glaser, D., Goldstein, M., Gordon, D., Hanson, E., Harris, S. E., Hayes, L. M., Hinze, J. J., Hollweg, J. V., Horbury, T. S., Howard, R. A., Hoxie, V., Jannet, G., Karlsson, M., Kasper, J. C., Kellogg, P. J., Kien, M., Klimchuk, J. A., Krasnoselskikh, V. V., Krucker, S., Lynch, J. J., Maksimovic, M. ,Malaspina, D. M. ,Marker, S., Martin, P., Martinez-Oliveros, J., McCauley, J., McComas, D. J. T., McDonald, N., Meyer-Vernet, M., Moncuquet, S. J., Monson, F. S., Mozer, S. D., Murphy, J., Odom, R., Oliverson, J., Olson, E. N., Parker, D., Pankow, T., Phan, E., Quataert, T., Quinn, S. W., Ruplin, C., Salem, D., Seitz, D. A., Sheppard, A., Siy, S. D., Summers, D., Szabo, A., Timofeeva, M., Vaivads, A., Velli, M., Yehle, A., Werthimer, D., and Wygant, J. R.: The FIELDS Instrument Suite for
Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma
Waves and Turbulence, and Radio Signatures of Solar Transients, Space Sci.
Rev., 204, 49–82, https://doi.org/10.1007/s11214-016-0244-5, 2016.
Belheouane, S., Zaslavsky, A., Meyer-Vernet, N., Issautier, K., Mann, I., and Maksimovic, M.: Detection of
Interstellar Dust with STEREO/WAVES at 1 AU, Sol. Phys., 281, 501–506,
https://doi.org/10.1007/s11207-012-9995-7, 2012.
Burch, J., Moore, T., Torbert, R., and Giles, B.: Magnetospheric multiscale
overview and science objectives, Space Sci. Rev., 199, 5–21,
2016.
Bougeret, J.-L., Kaiser, M. L., Kellogg, P. J., Manning, R., Goetz, K., Monson, S. J., Monge, N., Friel, L., Meetre, C. A., Perche, C., Sitruk, L., and Hoang, S.: WAVES: The radio and
plasma wave investigation on the wind spacecraft, Space Sci Rev., 71, 231–263,
https://doi.org/10.1007/BF00751331, 1995.
Calvinhac, L.: Dust fluxes in the inner heliosphere – Simulations of the conditions on the spacecraft Parker Solar Probe, Student project University Toulouse III, Sabatier, 2019.
Campanell, M. D.: Negative plasma potential relative to electron-emitting
surfaces, Phys. Rev. E, 88, 033103-1-10, https://doi.org/10.1103/PhysRevE.88.033103,
2013.
Ceplecha, Z., Borovička, J., Elford, W. Gr., Revelle, D. O., Hawkes, R. L., Porubčan, V., and Šimek, M.: Meteor phenomena and
bodies, Space Sci. Rev., 84, 327–471,
https://doi.org/10.1023/A:1005069928850, 1998.
Collette, A., Gruün, E., Malaspina, D., and Sternovsky, Z.:
Micrometeoroid impact charge yield for common spacecraft materials, J.
Geophys. Res.-Space, 119, 6019–6026,
https://doi.org/10.1002/2014JA020042, 2014.
Collette, A., Meyer, G., Malaspina, D., and Sternovsky, Z.: impact investigation
of antenna signals from dust impacts on spacecraft, J. Geophys. Res., 120, 5298–5305, https://doi.org/10.1002/2015JA021198, 2015.
Collette, A., Malaspina, D. M., and Sternovsky, Z.: Characteristic temperatures
of hypervelocity dust impact plasmas, J. Geophys. Res.-Space, 121,
2169–9402, https://doi.org/10.1002/2015JA022220, 2016.
Connors, M., Russell, C. T., and Lai, H. R.: A temporary earth co-orbital linked
to interplanetary field enhancements, Mon. Notices Royal Astron. Soc.,
443, L109–L113, https://doi.org/10.1093/mnrasl/slu092, 2014.
Czechowski, A. and Mann, I.: Collisional vaporization of dust and production of
gas in the beta Pictoris dust disk, Astrophys. J., 660, 1541–1555,
https://doi.org/10.1086/512965, 2007.
Czechowski, A. and Mann, I.: Formation and acceleration of nano dust in the
inner heliosphere, Astrophys. J., 714, 89–99,
https://doi.org/10.1088/0004-637X/714/1/89, 2010.
Czechowski, A. and Mann, I.:
Nanodust in the Solar System: Discoveries and Interpretations, edited by: Mann, I., Meyer-Vernet, N., and Czechowski, A., Astrophysics
and Space Science Library, Springer, New York, Vol. 385, 47–75, 2012.
Dietzel, H., Eichhorn, G., Fechtig, H., Grun, E., Hoffmann, H.-J., and Kissel, J.: The HEOS 2 and HELIOS micrometeoroid
experiments, J. Phys. E, 6, 209–217, https://doi.org/10.1088/0022-3735/6/3/008, 1973.
Drapatz, S. and Michel, K. W.: Theory of shock-wave ionization upon
high-velocity impact of micrometeorites. Zeitschrift für Naturforschung
A, 29, 870–879, https://doi.org/10.1515/zna-1974-0606, 1974.
Ergun, R. E., Malaspina, D. M., Bale, S. D., McFadden, J. P., Larson, D. E.,
Mozer, F. S., Meyer-Vernet, N., Maksimovic, M., Kellogg, P. J., and Wygant, J.
R.: Spacecraft charging and ion wake formation in the near-Sun environment,
Phys. Plasmas, 17, 072903, https://doi.org/10.1063/1.3457484, 2010.
Fox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A., Kasper, J. C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M. K., McComas, D. J., Raouafi, N. E., and Szabo, A.: The Solar Probe Plus mission: humanity's first visit to
our star, Space Sci. Rev., 204, 7–48, https://doi.org/10.1007/s11214-015-0211-6, 2015.
Göller, J. R. and Grün, E.: Calibration of the Galileo/Ulysses dust
detectors with different projectile materials and at varying impact
angles, Planet. Space Sci., 37, 1197–1206,
https://doi.org/10.1016/0032-0633(89)90014-7, 1989.
Gurnett, D. A.: Principles of Space Plasma Wave Instrument Design,
Measurement Techniques for Space Plasmas, AGU Monograph 103, edited by:
Pfaff, R., Borovsky, J., and Young, D., American Geophysical Union, Washington,
DC, 121–136, 1998.
Gurnett, D. A., Huff, R. L., and Kirchner, D. L.: The wide-band plasma wave
investigation, Space Sci. Rev., 79, 195–208, 1997a.
Gurnett, D. A., Ansher, J. A., Kurth, W. S., and Granroth, L. J.: Micron-sized dust
particles detected in the outer solar system by the Voyager 1 and 2 plasma
wave instruments, Geophys. Res. Lett., 24, 3125–3128,
https://doi.org/10.1029/97GL03228, 1997b.
Gurnett, D. A., Kurth, W. S., Kirchner, D. L., Hospodarsky, G. B., Averkamp,
T. F., Zarka, P., Lecacheux, A., Manning, R., Roux, A., Canu, P.,
Cornilleau-Wehrlin, N., Galopeau, P., Meyer, A., Bostrom, R., Gustafsson,
G., Wahlund, J.-E., Aahlen, L., Rucker, H. O., Ladreiter, H.-P., Macher,
W., Woolliscroft, L. J. C., Alleyne, H., Kaiser, M. L., Desch, M. D.,
Farrell, W. M., Harvey, C. C., Louarn, P., Kellogg, P. J., Goetz, K., and
Pedersen, A.: The Cassini radio and plasma wave science investigation, Space
Sci. Rev., 114, 395–463, https://doi.org/10.1007/s11214-004-1434-0,
2004.
Gustafsson, G., André, M., Carozzi, T., Eriksson, A. I., Fälthammar, C.-G., Grard, R., Holmgren, G., Holtet, J. A., Ivchenko, N., Karlsson, T., Khotyaintsev, Y., Klimov, S., Laakso, H., Lindqvist, P.-A., Lybekk, B., Marklund, G., Mozer, F., Mursula, K., Pedersen, A., Popielawska, B., Savin, S., Stasiewicz, K., Tanskanen, P., Vaivads, A., and Wahlund, J.-E.: First results of electric field and density
observations by Cluster EFW based on initial months of operation, Ann.
Geophys., 19, 1219–1240, 2001.
Grün, E., Pailer, N., Fechtig, H., and Kissel, J.: Orbital and
physical characteristics of micrometeoroids in the inner solar system as
observed by Helios 1, Planet. Space Sci., 28, 333–349,
https://doi.org/10.1016/0032-0633(80)90022-7, 1980.
Grün, E., Zook, H. A., Fechtig, H., and Giese, R. H.: Collisional balance of
the meteoritic complex, Icarus, 62, 244–272,
https://doi.org/10.1016/0019-1035(85)90121-6, 1985.
Hornung, K. and Kissel, J.: On shock wave impact ionization of dust
particles, Astron. Astrophys., 291, 324–336, 1994.
Ishimoto, H. and Mann, I.: Modeling the particle mass distribution within 1 AU
of the Sun, Planet. Space Sci. 47, 225–232,
https://doi.org/10.1016/S0032-0633(98)00083-X, 1999.
John, W., Reischl, G., and Devor, W.: Charge transfer to metal surfaces
from bouncing aerosol particles, J. Aerosol Sci., 11, 115–138,
https://doi.org/10.1016/0021-8502(80)90029-4 1980.
Jones, A. P., Tielens, A. G. G. M., and Hollenbach, D. J.: Grain shattering in shocks:
the interstellar grain size distribution, Astrophys. J., 469, 740–764, 1996.
Jones, G. H., Knight, M., Battams, K., Boice, D., Brown, J., Giordano, S., Raymond, J., Snodgrass, C., Steckloff, J., Weissman, P., Fitzsimmons, Al., Lisse, C., Opitom, C., Birkett, K., Bzowski, M., Decock, A., Mann, I., Ramanjooloo, Y., and McCauley, P.: The Science of Sungrazers,
Sunskirters, and Other Near-Sun Comets, Space Sci. Rev., 214, 86 pp., 2018.
Juhasz, A. and Horanyi, M.: Dynamics and distribution of nano-dust particles in
the inner solar system, Geophys. Res. Lett., 40, 2500–2504,
https://doi.org/10.1002/grl.50535, 2013.
Kasaba, Y., Bougeret, J.-L., Blomberg, L. G., Kojima, H., Yagitani, S., Moncuquet, M., Trotignon, J.-G., Chanteur, G., Kumamoto, A., Kasahara, Y., Lichtenberger, J., Omura, Y., Ishisaka, K., and Matsumoto, H.: The Plasma Wave Investigation (PWI) onboard
the BepiColombo/ MMO: First measurement of electric fields, electromagnetic
waves, and radio waves around Mercury, Planet. Space Sci., 58,
238–278, 2010.
Kellogg, P. J., Goetz, K., and Monson, S. J.: Dust impact signals on the
wind spacecraft, J. Geophys. Res.-Space, 121,
966–991, https://doi.org/10.1002/2015JA021124, 2016.
Kellogg, P. J., Goetz, K., and Monson, S. J.: Are STEREO single hits dust
impacts?, J. Geophys.
Res.-Space, 123, 7211–7219, https://doi.org/10.1029/2018JA025554, 2018.
Kimura, H. Ishimoto, H., and Mukai, T.: A study on solar dust ring formation
based on fractal dust models, Astron. Astrophys., 326, 263–270, 1997.
Lai, H. R., Wei, H. Y., and Russell, C. T.: Solar Wind Plasma Profiles
During Interplanetary Field Enhancements (IFEs): Consistent with
Charged-Dust Pickup, SOLAR WIND 13: AIP CP 1539, 402–405,
https://doi.org/10.1063/1.4811070, 2013.
Lai, H. R., Russell, C. T., Jia, Y. D., Wei, H. Y., and Angelopoulos, V.:
Momentum transfer from solarwind to interplanetary field enhancements
inferred from magnetic field draping signatures, Geophys. Res. Lett., 42,
1640–1645, https://doi.org/10.1002/2015GL063302, 2015.
Le Chat, G., Zaslavsky, A., Meyer-Vernet, N., Issautier, K., Belheouane, S., Pantellini, F., Maksimovic, M., Zouganelis, I., Bale, S. D., and Kasper, J. C.: Effect
of the Interplanetary Medium on Nanodust Observations by the Solar
Terrestrial Relations Observatory, Sol. Phys., 286, 549–559, 2013.
Le Chat, G., Zaslavsky, A., Meyer-Vernet, N., Issautier, K., Belheouane, S., Pantellini, F., Maksimovic, M., Zouganelis, I., Bale, S. D., and Kasper, J. C.: Interplanetary nanodust
detection by the Solar Terrestrial Relations Observatory/WAVES low frequency
receiver, Sol. Phys., 290, 933–942,
https://doi.org/10.1007/s11207-015-0651-x, 2015.
MacQueen, R. M.: Infrared observations of outer solar corona, Astrophys. J.,
154, 1059, https://doi.org/10.1086/149825, 1968.
Maksimovic, M., Soucek, J., Bale, S. D., Bonnin, X., Chust, T., Khotyaintsev, Y., Plettermeier, D., Kretzschmar, M., Steller, M., and Štverák, Š.: The Radio and Plasma Waves (RPW) instrument on the
Solar Orbiter Mission, Astron. Astrophys., submitted, 2019.
Malaspina, D. M. and Wilson, L. B.: A database of interplanetary and
interstellar dust detected by the Wind spacecraft, J. Geophys.
Res.-Space, 121, 9369–9377, https://doi.org/10.1002/2016JA023209, 2016.
Malaspina, D. M., Horányi, M., Zaslavsky, A., Goetz, K., Wilson, L. B., and Kersten, K.: Interplanetary and
interstellar dust observed by the Wind WAVES electric field instrument,
Geophys. Res. Lett., 41, 266–272, https://doi.org/10.1002/2013GL058786,
2014.
Malaspina, D. M., O'Brien, L. E., Thayer, F., Sternovsky, Z., and Collette,
A.: Revisiting STEREO interplanetary and interstellar dust flux and mass
estimates, J. Geophys. Res.-Space, 120,
6085–6100, https://doi.org/10.1002/2015JA021352, 2015.
Mann, I.: The solar F-corona-Calculations of the optical and infrared
brightness of circumsolar dust, Astron. Astrophys., 261, 329–335, 1992.
Mann, I.: Interstellar dust in the solar system, Ann. Rev. Astron.
Astrophys. 48, 173–203,
https://doi.org/10.1146/annurev-astro-081309-130846, 2010.
Mann, I. and Czechowski, A.: Dust destruction and ion formation in the inner
solar system, Astrophys. J., 621, L73–L76, https://doi.org/10.1086/429129,
2005.
Mann, I. and Murad, E.: On the existence of silicon nanodust near the Sun,
Astrophys. J., 624, L125–L128, https://doi.org/10.1086/430701, 2005.
Mann, I., Kimura, H., Biesecker, D., Tsurutani, B., Grün, E., McKibben, R. B., Liou, J-C., MacQueen, R., Mukai, T., Guhathakurta, M., and Lamy, P.: Dust near the Sun, Space Sci.
Rev., 110, 269–305, https://doi.org/10.1023/B:SPAC.0000023440.82735.ba, 2004.
Mann, I., Czechowski, A., and Meyer-Vernet, N.: Dust in the interplanetary
medium – interactions with the solar wind, Solar Wind 12, AIP CP 1216,
491–496, https://doi.org/10.1063/1.3395911, 2010.
Mann, I., Pellinen-Wannberg, A., Murad, E., Popova, O., Meyer-Vernet, N.,Rosenberg, M., Mukai, T., Czechowski, A., Mukai, S., Safrankova, J., and Nemecek, Z.: Dusty Plasma Effects in
Near Earth Space and Interplanetary Medium, Space Sci. Rev., 161, 1–47,
https://doi.org/10.1007/s11214-011-9762-3, 2011.
Mann, I., Meyer–Vernet, N., and Czechowski, A.: Dust in the planetary system:
Dust interactions in space plasmas of the solar system, Phys. Rep.,
536, 1–39, https://doi.org/10.1016/j.physrep.2013.11.001, 2014.
Mann, I., Antonsen, T., Nouzak, L., and Vaverka, J.: Replication Data for: Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter, DataverseNO, https://doi.org/10.18710/LURI1R, last access: 4 December 2019.
McBride, N. and McDonnell, J. A. M.: Meteoroid impacts on spacecraft:
Sporadics, streams, and the 1999 Leonids, Planet. Space Sci., 47,
1005–1013, https://doi.org/10.1016/S0032-0633(99)00023-9, 1999.
McCrea, I., Aikio, A., Alfonsi, L., Belova, E., Buchert, S., Clilverd, M., Engler, N., Gustavsson, B., Heinselman, Cr., Kero, J., Kosch, M., Lamy, H., Leyser, T., Ogawa, Y., Oksavik, K., Pellinen-Wannberg, A., Pitout, F., Rapp, M., Stanislawska, I., and Vierinen, J.: The science case for the
EISCAT_3D radar, Prog. Earth Planet. Sci., 2, 1–63,
https://doi.org/10.1186/s40645-015-0051-8, 2015.
McDonnell, J. A. M. and Gardner, D. J.: Meteoroid morphology and densities:
Decoding satellite impact data, Icarus, 133, 25–35,
https://doi.org/10.1006/icar.1998.5912, 1998.
Meyer-Vernet, N.: Comet Giacobini-Zinner diagnosis from radio measurements,
Adv. Space Res., 5, 37–46, 1985.
Meyer-Vernet, N.: Detecting dust with electric sensors in planetary rings,
comets and interplanetary space, ESA SP-476, 635–639, 2001.
Meyer-Vernet, N., Maksimovic, M., Czechowski, A., Mann, I., Zouganelis, I., Goetz, K., Kaiser, M. L., St. Cyr, O. C., Bougeret, J.-L., and Bale, S. D.: Dust Detection by
the Wave Instrument on STEREO: Nanoparticles Picked up by the Solar Wind,
Sol. Phys., 256, 463–474, https://doi.org/10.1007/s11207-009-9349-2,
2009.
Meyer-Vernet, N., Moncuquet, M., Issautier, K., and Lecacheux, A.: The
importance of monopole antennas for dust observations: why Wind/WAVES does
not detect nanodust, Geophys. Res. Lett., 41, 2716–2720,
https://doi.org/10.1002/2014GL059988, 2014.
Meyer-Vernet, N., Moncuquet, M., Issautier, K., and Schippers, P.: Frequency
range of dust detection in space with radio and plasma wave receivers:
theory and application to interplanetary nanodust impacts on Cassini, J.
Geophys. Res., 121, 8–22, https://doi.org/10.1002/2016JA023081, 2017.
Minato, T., Köhler, M., Kimura, H., Mann, I., and Yamamoto, T.: Momentum
transfer to interplanetary dust from the solar wind, Astron. Astrophys.,
424, L13–L16, https://doi.org/10.1051/0004-6361:200400037, 2004.
Miyachi, T., Fujii, M., Hasebe, N., Miyajima, M., Okudaira, O., Takechi, S.,
Onishi, T., Minami, S., Shibata, H., Ohashi, H., and Iwai, T.: Measurement of
temperature after hypervelocity collision of microparticles in the range
from 10 to 40 km s−1, Appl. Phys. Lett., 93, 174107, https://doi.org/10.1063/1.3013313, 2008.
Mocker, A., Bugiel, S., Auer, S.,Baust, G., Colette, A., Drake, K., Fiege, K., Grün, E., Heckmann, F., Helfert, S.,Hillier, J., Kempf, S, Matt, G, Mellert, T., Munsat, T, Otto, K., Postberg, F., Shu, A., Sternovsky, Z., and Srama, R.: A 2 MV Van de Graaff accelerator as a tool for planetary and
impact physics research, Rev. Sci. Instrum., 82, 095111,
https://doi.org/10.1063/1.3637461, 2011.
Mueller, M.: The SOlar Orbiter Mission, Astron. Astrophys.,
submitted, 2019.
Mukai, T. and Mukai, S.: Temperature and motion of grains in interplanetary
space, Publ. Astronom. Soc. Jpn., 25, 481–488, 1973.
Mukai, T. and Yamamoto, T.: Model of the circumsolar dust, Publ. Astronom. Soc.
Jpn., 31, 585–596, 1979.
Němeček, Z., Pavlů, J., Šafránková, J., Beránek, M., Richterová, I., Vaverka, J., and Mann, I.: Lunar
Dust Grain Charging by Electron Impact: Dependence of the Surface Potential
on the Grain Size, Astrophys. J., 738, 1–7,
https://doi.org/10.1088/0004-637X/738/1/14, 2011.
Nesvorný, D., Janches, D., Vokrouhlický, D., Pokorny, P., Bottke, W. F.,
and Jenniskens, P.: Dynamical Model for the Zodiacal Cloud and Sporadic Meteors, Astrophys. J., 743, 1–16, 2011.
Nogami, K., Fujii, M., Ohashi, H., Miyachi, T., Sasaki, S., Hasegawa, S., Yano, H., Shibata, H., Iwai, T., Minami, S., Takechi, S., Grün, E., and Srama, R.: Development of the Mercury dust
monitor (MDM) onboard the BepiColombo mission, Planet. Space Sci., 58,
108–115, 2010.
Nouzák, L., Hsu, S., Malaspina, D., Thayer, F. M., Ye, S. Y., Pavlů,
J., Němeček, Z., Šafránková, J., and Sternovsky, Z.: Laboratory modeling of dust impact detection by the Cassini
spacecraft, Planet. Space Sci., 156, 85–91,
https://doi.org/10.1016/j.pss.2017.11.014, 2018.
Ohgaito, R., Mann, I., Kuhn, J. R., MacQueen, R. M., and Kimura, H.: The J- and
K-band brightness of the solar F corona observed during the solar eclipse on
1998 February 26, Astrophys. J., 578, 610–620,
https://doi.org/10.1086/342426, 2002.
Pantellini, F., Belheouane, S., Meyer-Vernet, N., and Zaslavsky, A.: Nano dust
impacts on spacecraft and boom antenna charging, Astrophys. Space Sci.,
341, 309–314, https://doi.org/10.1007/s10509-012-1108-4, 2012.
Pellinen-Wannberg, A., Kero, J., Häggström, I., Mann, I., and Tjulin,
A.: The forthcoming EISCAT_3D as an extra-terrestrial matter
monitor, Planet. Space Sci., 123, 33–40,
https://doi.org/10.1016/j.pss.2015.10.009, 2016.
Plane, J. M. C.: Cosmic dust in the earth's atmosphere, Chem. Soc. Rev.,
41, 6507–6518, https://doi.org/10.1039/c2cs35132c, 2012.
Ragot, B. R. and Kahler, S. W.: Interactions of dust grains with coronal mass
ejections and solar cycle variations of the F-coronal brightness, Astrophys.
J., 594, 1049–1059, https://doi.org/10.1086/377076, 2003.
Russell, C. T., Luhmann, J., Barnes, A., Mihalov, J. D., and Elphic, R. C.: An
unusual interplanetary event – encounter with a comet, Nature, 305,
612–615, https://doi.org/10.1038/305612a0, 1983.
Sánchez-Lavega, A., García Muñoz, A., García-Melendo, E., Pérez-Hoyos, S., Gómez-Forrellad, J. M., Pellier, C., Delcroix, M., López-Valverde, M. A., González-Galindo, F., Jaeschke, W., Parker, D., Phillips, J., and Peach, D.: An extremely
high-altitude plume seen at Mars' morning terminator, Nature, 518,
525–528, https://doi.org/10.1038/nature14162, 2015.
Schippers, P., Meyer-Vernet, N., Lecacheux, A., Kurth, W. S., Mitchell, D.
G., and André, N.: Nanodust detection near 1 AU from spectral analysis of
Cassini/Radio and Plasma Wave Science data, Geophys. Res. Lett., 41,
5382–5388, https://doi.org/10.1002/2014GL060566, 2014.
Schippers, P., Meyer-Vernet, N., Lecacheux, A., Belheouane, S., Moncuquet,
M., Kurth, W. S., and Mann, I.: Nanodust detection between 1 and 5 AU using
Cassini wave measurements, Astrophys. J., 806, 1–7,
https://doi.org/10.1088/0004-637X/806/1/77, 2015.
Schultz, P. H., Sugita, S., Eberhardy, C. A., and Ernst, C. M.: The role of
ricochet impacts on impact vaporization. International journal of impact
engineering, 33, 771–780,
https://doi.org/10.1016/j.ijimpeng.2006.09.005, 2006.
Shu, A., Collette, A., Drake, K., Grün, E., Horanyi, M.,
Kempf, S., Mocker, A., Munsat, T., Northway, P., Srama, R., Sternovsky, Z.,
and Thomas, E.: 3 MV hypervelocity dust accelerator at the Colorado center for
lunar dust and atmospheric studies, Rev. Sci. Instrum., 83, 5108,
https://doi.org/10.1063/1.4732820, 2012.
Srama, R., Ahrens, T. J., Altobelli, N., Auer, S., Bradley, J. G., Burton, M., Dikarev, V. V., Economou, T., Fechtig, H., Görlich, M., Grande, M., Graps, A., Grün, E., Havnes, O., Helfert, S., Horanyi, M., Igenbergs, E., Jessberger, E. K., Johnson, T. V., Kempf, S. Krivov, A. V., Krüger, H., Mocker-Ahlreep, A., Moragas-Klostermeyer, G., Lamy, P., Landgraf, M., Linkert, D., Linkert, G., Lura, F., McDonnell, J. A. M., Möhlmann, D., Morfill, G. E., Müller, M., Roy, M., Schäfer, G., Schlotzhauer, G., Schwehm, G. H., Spahn, F., Stübig, M., Svestka, J., Tschernjawski, V., Tuzzolino, A. J., Wäsch, R., and Zook, H. A.: The Cassini cosmic dust analyzer, in: The
Cassini-Huygens Mission, Springer, Dordrecht, 465–518,
https://doi.org/10.1007/978-1-4020-2774-1_7, 2004.
Stauffer, J. R., Stenborg, G., and Howard, R. A.: Measuring the Flattening
of the Outer F-corona Using STEREO-A/HI-1 Images, Astrophys.
J., 864, 1–10, https://doi.org/10.3847/1538-4357/aad689, 2018.
Stenborg, G. and Howard, R. A.: A Heuristic Approach to Remove the
Background Intensity on White-light Solar Images, I. STEREO/HI-1
Heliospheric Images, Astrophys. J., 839, 1–16,
https://doi.org/10.3847/1538-4357/aa6a12, 2017a.
Stenborg, G. and Howard, R. A.: The Evolution of the Surface of Symmetry
of the Interplanetary Dust from 24∘ to 5∘ Elongation,
Astrophys. J., 848, 1–13, https://doi.org/10.3847/1538-4357/aa8ef0, 2017b.
Stenborg, G., Howard, R. A., and Stauffer, J. R.: Characterization of the
White-light Brightness of the F-corona between 5∘ and
24∘ Elongation, Astrophys. J., 862, 1–21,
https://doi.org/10.3847/1538-4357/aacea3, 2018.
Thayer, F. M., Malaspina, D. M., Collette, A., and Sternovsky, Z.: Variation in
relative dust impact charge recollection with antenna to spacecraft
potential on STEREO, J. Geophys. Res.-Space, 121, 4998–5004,
https://doi.org/10.1002/2015JA021983, 2016.
Torbert, R. B., Russell, C. T., Magnes, W., Ergun, R. E., Lindqvist, P.-A., Le Contel, O., Vaith, H., Macri, J., Myers, S., Rau, D., Needell, J., King, B., Granoff, M., Chutter, M., Dors, I., Olsson, G., Khotyaintsev, Y. V., Eriksson, A., Kletzing, C. A., Bounds, S. Anderson, B., Baumjohann, W., Steller, M., Bromund, K., Le, Guan, Nakamura, R., Strangeway, R. J., Leinweber, H. K., Tucker, S., Westfall, J., Fischer, D., Plaschke, F., Porter, J., and Lappalainen, K.: The FIELDS instrument
suite on MMS: Scientific objectives, measurements, and data products, Space
Sci. Rev., 199, 105–135, 2016.
Tsintikidis, D., Gurnett, D. A., Granroth, L. J., Allendorf, S. C., and Kurth,
W. S.: A revised analysis of micron-sized particle detected near Saturn by
the Voyager 2 plasma wave instrument, J. Geophys. Res., 99, 2261,
https://doi.org/10.1029/93JA02906, 1994.
Vaverka, J., Pellinen-Wannberg, A., Kero, J., Mann, I., De Spiegeleer, A.,
Hamrin, M., Norberg, C., and Pitkänen, T.: Detection of meteoroid
hypervelocity impacts on the Cluster spacecraft: First results, J. Geophys.
Res.-Space, 122, 6485–6494, https://doi.org/10.1002/2016JA023755,
2017a.
Vaverka, J., Pellinen-Wannberg, A., Kero, J; Mann, I., De Spiegeleer, A.,
Hamrin, M., Norberg, C., and Pitkänen, T.: Potential of Earth Orbiting
Spacecraft Influenced by Meteoroid Hypervelocity Impacts, IEEE Trans. Plasma
Sci., 45, 2048–2055, https://doi.org/10.1109/TPS.2017.2676984, 2017b.
Vaverka, J., Nakamura, T., Kero, J., Mann, I., De Spiegeleer, A., Hamrin,
M., Norberg, C., Lindqvist, P-A., and Pellinen-Wannberg, A.: Comparison of Dust
Impact and Solitary Wave Signatures Detected by Multiple Electric Field
Antennas Onboard the MMS Spacecraft, J. Geophys. Res.-Space, 123,
6119–6129, https://doi.org/10.1029/2018JA025380, 2018.
Wehry, A. and Mann, I.: Identification of beta-meteoroids from measurements of
the dust detector onboard the Ulysses spacecraft, Astron. Astrophys., 341,
296–303, 1999.
Wood, S. R., Malaspina, D. M., Andersson, L., and Horanyi, M.:
Hypervelocity dust impacts on the Wind spacecraft: Correlations between
Ulysses and Wind interstellar dust detections, J. Geophys.
Res.-Space, 120, 7121–7129, https://doi.org/10.1002/2015JA021463, 2015.
Ye, S. Y., Gurnett, D. A., Kurth, W. S., Averkamp, T. F., Morooka, M., Sakai, S.,
and Wahlund, J. E.: Electron density inside Enceladus plume inferred
from plasma oscillations excited by dust impacts, J. Geophys.
Res.-Space, 119, 3373–3380,
https://doi.org/10.1002/2014JA019861, 2014.
Ye, S. Y., Gurnett, D. A., and Kurth, W. S.: In-situ measurements of
Saturn's dusty rings based on dust impact signals detected by Cassini
RPWS, Icarus, 279, 51–61, https://doi.org/10.1016/j.icarus.2016.05.006, 2016a.
Ye, S.-Y., Kurth, W. S., Hospodarsky, G. B., Averkamp, T. F., and Gurnett, D.
A.: Dust detection in space using the monopole and dipole electric field
antennas, J. Geophys. Res.-Space, 121, 11964–11972,
https://doi.org/10.1002/2016JA023266, 2016b.
Ye, S.-Y., Kurth, W. S., Hospodarsky, G. B., Persoon, A. M., Gurnett, D. A.,
Morooka, M., Wahlund, J.-E., Hsu, H.-W., Seiss, M., and Srama, R.: Cassini RPWS dust
observation near Janus and Epimetheus orbits, J. Geophys. Res., 123, 4952–4960,
https://doi.org/10.1029/2017JA025112, 2018a.
Ye, S. Y., Kurth, W. S., Hospodarsky, G. B., Persoon, A. M., Sulaiman, A. H.,
Gurnett, D. A., Morooka, M., Wahlund, J. E., Hsu, H. W., Sternovsky, Z., and
Wang, X.: Dust Observations by the Radio and Plasma Wave Science
Instrument During Cassini's Grand Finale, Geophys. Res. Lett.,
45, 10–101, 2018b.
Ye, S.-Y., Vaverka, J., Nouzak, L., Sternovsky, Z., Zaslavsky, A., Pavlu, J., Mann, I., Hsu, H.-W., Averkamp, T. F., Sulaiman, A. H., Pisa, D., Hospodarsky, G. B., Kurth, W. S., and Horanyi, M.: Understanding Cassini RPWS Antenna Signals Triggered by
Dust Impacts (supporting information), Geophys. Res. Lett., 46, 10941–10950,
https://doi.org/10.1029/2019GL084150, 2019.
Zaslavsky, A.: Floating potential perturbations due to micrometeoroid
impacts: Theory and application to S/WAVES data, J. Geophys. Res., 120,
855–867, https://doi.org/10.1002/2014JA020635, 2015.
Zaslavsky, A., Meyer-Vernet, N., Mann, I., Czechowski, A., Issautier, K., Le Chat, G., Pantellini, F., Goetz, K., Maksimovic, M., Bale, S. D., and Kasper, J. C.: Interplanetary dust
detection by radio antennas: Mass calibration and fluxes measured by
STEREO/WAVES, J. Geophys. Res., 117, A05102,
https://doi.org/10.1029/2011JA017480, 2012.
Short summary
This work presents a review of dust measurements from spacecraft Cassini, STEREO, MMS, Cluster, Maven and WIND. We also consider the details of dust impacts and charge generation, and how different antenna signals can be generated. We compare observational data to laboratory experiments and simulations and discuss the consequences for dust observation with the new NASA Parker Solar Probe and ESA Solar Orbiter spacecraft.
This work presents a review of dust measurements from spacecraft Cassini, STEREO, MMS, Cluster,...