Articles | Volume 37, issue 1
https://doi.org/10.5194/angeo-37-101-2019
https://doi.org/10.5194/angeo-37-101-2019
Regular paper
 | 
05 Feb 2019
Regular paper |  | 05 Feb 2019

Magnetodisc modelling in Jupiter's magnetosphere using Juno magnetic field data and the paraboloid magnetic field model

Ivan A. Pensionerov, Elena S. Belenkaya, Stanley W. H. Cowley, Igor I. Alexeev, Vladimir V. Kalegaev, and David A. Parunakian

Related authors

Open and partially closed models of the solar wind interaction with outer planet magnetospheres: the case of Saturn
Elena S. Belenkaya, Stanley W. H. Cowley, Igor I. Alexeev, Vladimir V. Kalegaev, Ivan A. Pensionerov, Marina S. Blokhina, and David A. Parunakian
Ann. Geophys., 35, 1293–1308, https://doi.org/10.5194/angeo-35-1293-2017,https://doi.org/10.5194/angeo-35-1293-2017, 2017
Short summary

Related subject area

Subject: Magnetosphere & space plasma physics | Keywords: Magnetospheric configuration and dynamics
Unsupervised classification of simulated magnetospheric regions
Maria Elena Innocenti, Jorge Amaya, Joachim Raeder, Romain Dupuis, Banafsheh Ferdousi, and Giovanni Lapenta
Ann. Geophys., 39, 861–881, https://doi.org/10.5194/angeo-39-861-2021,https://doi.org/10.5194/angeo-39-861-2021, 2021
Short summary
The fate of O+ ions observed in the plasma mantle: particle tracing modelling and cluster observations
Audrey Schillings, Herbert Gunell, Hans Nilsson, Alexandre De Spiegeleer, Yusuke Ebihara, Lars G. Westerberg, Masatoshi Yamauchi, and Rikard Slapak
Ann. Geophys., 38, 645–656, https://doi.org/10.5194/angeo-38-645-2020,https://doi.org/10.5194/angeo-38-645-2020, 2020
Short summary
The increase in the curvature radius of geomagnetic field lines preceding a classical dipolarization
Osuke Saka
Ann. Geophys., 38, 467–479, https://doi.org/10.5194/angeo-38-467-2020,https://doi.org/10.5194/angeo-38-467-2020, 2020
Short summary
A multi-fluid model of the magnetopause
Roberto Manuzzo, Francesco Califano, Gerard Belmont, and Laurence Rezeau
Ann. Geophys., 38, 275–286, https://doi.org/10.5194/angeo-38-275-2020,https://doi.org/10.5194/angeo-38-275-2020, 2020
Short summary

Cited articles

Alexeev, I. I.: The penetration of interplanetary magnetic and electric fields into the magnetosphere, J. Geomagn. Geoelectr., 38, 1199–1221, https://doi.org/10.5636/jgg.38.1199, 1986. a
Alexeev, I. I. and Belenkaya, E. S.: Modeling of the Jovian Magnetosphere, Ann. Geophys., 23, 809–826, https://doi.org/10.5194/angeo-23-809-2005, 2005. a, b, c, d, e, f, g, h, i, j
Alexeev, I. I., Belenkaya, E. S., Kalegaev, V. V., and Lyutov, Y. G.: Electric fields and field-aligned current generation in the magnetosphere, J. Geophys. Res.-Space, 98, 4041–4051, https://doi.org/10.1029/92ja01520, 1993. a
Barbosa, D. D., Gurnett, D. A., Kurth, W. S., and Scarf, F. L.: Structure and properties of Jupiter's magnetoplasmadisc, Geophys. Res. Lett., 6, 785–788, https://doi.org/10.1029/gl006i010p00785, 1979. a
Belenkaya, E. S.: The Jovian magnetospheric magnetic and electric fields: Effects of the interplanetary magnetic field, Planet. Space Sci., 52, 499–511, https://doi.org/10.1016/j.pss.2003.06.008, 2004. a, b, c
Download
Short summary
In the present work we used unique data on the magnetic field in the Jovian magnetosphere measured by the Juno spacecraft. The data allowed us to determine optimal parameters of the magnetodisc in the paraboloid magnetospheric model and find the ways to qualitatively improve the model.