Articles | Volume 36, issue 4
https://doi.org/10.5194/angeo-36-987-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-987-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ionospheric and thermospheric response to the 27–28 February 2014 geomagnetic storm over north Africa
Khalifa Malki
CORRESPONDING AUTHOR
Oukaïmeden Observatory, High Energy Physics and Astrophysics Laboratory, FSSM, Cadi Ayyad University,
Marrakesh, BP 2390, Morocco
Aziza Bounhir
Oukaïmeden Observatory, High Energy Physics and Astrophysics Laboratory, FSSM, Cadi Ayyad University,
Marrakesh, BP 2390, Morocco
Zouhair Benkhaldoun
Oukaïmeden Observatory, High Energy Physics and Astrophysics Laboratory, FSSM, Cadi Ayyad University,
Marrakesh, BP 2390, Morocco
Jonathan J. Makela
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
Nicole Vilmer
LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités,
UPMC Univ. Paris 06, Univ. Paris Diderot, 5 place Jules Janssen, 92195 Meudon,
France
Daniel J. Fisher
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
Mohamed Kaab
Oukaïmeden Observatory, High Energy Physics and Astrophysics Laboratory, FSSM, Cadi Ayyad University,
Marrakesh, BP 2390, Morocco
Khaoula Elbouyahyaoui
Oukaïmeden Observatory, High Energy Physics and Astrophysics Laboratory, FSSM, Cadi Ayyad University,
Marrakesh, BP 2390, Morocco
Brian J. Harding
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
Amine Laghriyeb
Oukaïmeden Observatory, High Energy Physics and Astrophysics Laboratory, FSSM, Cadi Ayyad University,
Marrakesh, BP 2390, Morocco
Ahmed Daassou
Oukaïmeden Observatory, High Energy Physics and Astrophysics Laboratory, FSSM, Cadi Ayyad University,
Marrakesh, BP 2390, Morocco
Mohamed Lazrek
Oukaïmeden Observatory, High Energy Physics and Astrophysics Laboratory, FSSM, Cadi Ayyad University,
Marrakesh, BP 2390, Morocco
Related authors
Mohamed Kaab, Zouhair Benkhaldoun, Daniel J. Fisher, Brian Harding, Aziza Bounhir, Jonathan J. Makela, Amine Laghriyeb, Khalifa Malki, Ahmed Daassou, and Mohamed Lazrek
Ann. Geophys., 35, 161–170, https://doi.org/10.5194/angeo-35-161-2017, https://doi.org/10.5194/angeo-35-161-2017, 2017
Short summary
Short summary
we present the first multi-year results of the climatology of horizontal winds obtained during a period of 26 months. We compare the observed climatologies of neutral winds to that provided by the recently updated Horizontal Wind Model (HWM14) in order to validate that model's predictions of the thermospheric wind patterns over the eastern portion of Africa. HWM14 generally compares well with the horizontal winds, but significant magnitude and phase differences remain in certain seasons.
Daniel D. Billett, Kathryn A. McWilliams, Robert B. Kerr, Jonathan J. Makela, Alex T. Chartier, J. Michael Ruohoniemi, Sudha Kapali, Mike A. Migliozzi, and Juanita Riccobono
Ann. Geophys., 40, 571–583, https://doi.org/10.5194/angeo-40-571-2022, https://doi.org/10.5194/angeo-40-571-2022, 2022
Short summary
Short summary
Sub-auroral polarisation streams (SAPSs) are very fast plasma flows that occur at mid-latitudes, which can affect the atmosphere. In this paper, we use four ground-based radars to obtain a wide coverage of SAPSs that occurred over the USA, along with interferometer cameras in Virginia and Massachusetts to measure winds. The winds are strongly affected but in different ways, implying that the balance forces on the atmosphere is strongly dependent on proximity to the disturbance.
Claudia M. N. Candido, Jiankui Shi, Inez S. Batista, Fabio Becker-Guedes, Emília Correia, Mangalathayil A. Abdu, Jonathan Makela, Nanan Balan, Narayan Chapagain, Chi Wang, and Zhengkuan Liu
Ann. Geophys., 37, 657–672, https://doi.org/10.5194/angeo-37-657-2019, https://doi.org/10.5194/angeo-37-657-2019, 2019
Short summary
Short summary
This study concerns postmidnight ionospheric irregularities observed during low solar activity conditions. We analyze data from digisondes and optical imaging systems located in an equatorial region over Brazil. The results show that they occur under unfavorable and unexpected conditions. This work can be useful for space weather forecasting during low solar activity.
Rafael L. A. Mesquita, John W. Meriwether, Jonathan J. Makela, Daniel J. Fisher, Brian J. Harding, Samuel C. Sanders, Fasil Tesema, and Aaron J. Ridley
Ann. Geophys., 36, 541–553, https://doi.org/10.5194/angeo-36-541-2018, https://doi.org/10.5194/angeo-36-541-2018, 2018
Short summary
Short summary
The midnight temperature maximum (MTM) is a phenomenon resulting from the constructive interference of the atmospheric tides. This paper brings the analysis of a long data set (846 nights) from the NATION network along with new analysis techniques (harmonic background removal and 2-D temperature interpolation) to detect the MTM in the mid-latitude range.
Igo Paulino, Joyrles F. Moraes, Gleuson L. Maranhão, Cristiano M. Wrasse, Ricardo Arlen Buriti, Amauri F. Medeiros, Ana Roberta Paulino, Hisao Takahashi, Jonathan J. Makela, John W. Meriwether, and José André V. Campos
Ann. Geophys., 36, 265–273, https://doi.org/10.5194/angeo-36-265-2018, https://doi.org/10.5194/angeo-36-265-2018, 2018
Short summary
Short summary
This article presents characteristics of periodic waves observed in the thermosphere from airglow images collected in the Northeast of Brazil. Using simultaneous measurements of the background wind in the airglow emission altitudes, it was possible to estimate the intrinsic parameters and the role of the wind in the propagation of the waves into the thermosphere. An anisotropy in the propagation direction of the waves was observed and it could be explained by the wind filtering process.
Cosme Alexandre O. B. Figueiredo, Ricardo A. Buriti, Igo Paulino, John W. Meriwether, Jonathan J. Makela, Inez S. Batista, Diego Barros, and Amauri F. Medeiros
Ann. Geophys., 35, 953–963, https://doi.org/10.5194/angeo-35-953-2017, https://doi.org/10.5194/angeo-35-953-2017, 2017
Fasil Tesema, Rafael Mesquita, John Meriwether, Baylie Damtie, Melessew Nigussie, Jonathan Makela, Daniel Fisher, Brian Harding, Endawoke Yizengaw, and Samuel Sanders
Ann. Geophys., 35, 333–344, https://doi.org/10.5194/angeo-35-333-2017, https://doi.org/10.5194/angeo-35-333-2017, 2017
Short summary
Short summary
Measurements of equatorial thermospheric winds obtained from an optical instrument called a Fabry–Perot interferometer in Ethiopia show a significance difference as compared with other longitudinal sectors. The zonal wind in this sector is small and shows a gradual decrease through out the night. Application of climatological wind and temperature models shows good agreement with the observations over Ethiopia.
Mohamed Kaab, Zouhair Benkhaldoun, Daniel J. Fisher, Brian Harding, Aziza Bounhir, Jonathan J. Makela, Amine Laghriyeb, Khalifa Malki, Ahmed Daassou, and Mohamed Lazrek
Ann. Geophys., 35, 161–170, https://doi.org/10.5194/angeo-35-161-2017, https://doi.org/10.5194/angeo-35-161-2017, 2017
Short summary
Short summary
we present the first multi-year results of the climatology of horizontal winds obtained during a period of 26 months. We compare the observed climatologies of neutral winds to that provided by the recently updated Horizontal Wind Model (HWM14) in order to validate that model's predictions of the thermospheric wind patterns over the eastern portion of Africa. HWM14 generally compares well with the horizontal winds, but significant magnitude and phase differences remain in certain seasons.
E. S. Miller, H. Kil, J. J. Makela, R. A. Heelis, E. R. Talaat, and A. Gross
Ann. Geophys., 32, 959–965, https://doi.org/10.5194/angeo-32-959-2014, https://doi.org/10.5194/angeo-32-959-2014, 2014
T. M. Duly, N. P. Chapagain, and J. J. Makela
Ann. Geophys., 31, 2229–2237, https://doi.org/10.5194/angeo-31-2229-2013, https://doi.org/10.5194/angeo-31-2229-2013, 2013
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Thermospheric dynamics
Lower-thermosphere response to solar activity: an empirical-mode-decomposition analysis of GOCE 2009–2012 data
Alberto Bigazzi, Carlo Cauli, and Francesco Berrilli
Ann. Geophys., 38, 789–800, https://doi.org/10.5194/angeo-38-789-2020, https://doi.org/10.5194/angeo-38-789-2020, 2020
Short summary
Short summary
Forecasting the thermosphere (atmosphere's uppermost layer from 90 to 800 km altitude) is crucial to space mission design, spacecraft operations and space surveillance. The thermosphere is controlled by the Sun through variable solar extreme-ultraviolet radiation and the solar wind. We show how the solar indices Mg II and Ap may be used in forecasting thermospheric density at 260 km, a very low altitude, where the GOCE satellite operated from 2009 to 2013, during the full rise of solar cycle 24.
Cited articles
Bauske, R. and Prölss, G.: Modeling the ionospheric response to traveling atmospheric disturbances, J. Geophys. Res.-Space, 102, 14555–14562, 1997.
Blanc, M. and Richmond, A. D.: The ionospheric disturbance dynamo, J. Geophys. Res.-Space, 85, 1669–1686, https://doi.org/10.1029/JA085iA04p01669, 1980.
Boutiouta, S. and Belbachir, A. H.: Magnetic Storms Effects on the Ionosphere TEC through GPS data, Information Technology Journal, 5, 908–915, 2006.
Buonsanto, M. J.: Comparison of incoherent scatter observations of electron density, and electron and ion temperature at Millstone Hill with the International Reference Ionosphere, J. Atmos. Terr. Phys., 51, 441–468, 1989.
Buonsanto, M. J.: Observed and calculated F2 peak heights and derived meridional winds at mid-latitudes over a full solar cycle, J. Atmos. Terr. Phys., 52, 223–240, 1990.
Buonsanto, M. J.: Ionospheric storms A review, Space Scie. Rev., 88, 563–601, 1999.
Chauhan, V. and Singh, O.: A morphological study of GPS-TEC data at Agra and their comparison with the IRI model, Adv. Space Res., 46, 280–290, 2010.
Christian, Z., Ouattara, F., Emmanuel, N., Rolland, F., and Francois, Z.: CODG TEC variation during solar maximum and minimum over Niamey, European Scientific Journal, 9, 74–80, 2013.
Duly, T. M., Chapagain, N. P., and Makela, J. J.: Climatology of nighttime medium-scale traveling ionospheric disturbances (MSTIDs) in the Central Pacific and South American sectors, Ann. Geophys., 31, 2229–2237, https://doi.org/10.5194/angeo-31-2229-2013, 2013.
Emmert, J., Picone, J., Lean, J., and Knowles, S.: Global change in the thermosphere: Compelling evidence of a secular decrease in density, J. Geophys. Res.-Space, 109, A02301, https://doi.org/10.1029/2003JA010176, 2004.
Emmert, J., Picone, J., and Meier, R.: Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near-Earth objects, Geophys. Res. Lett., 35, L05101, https://doi.org/10.1029/2007GL032809, 2008.
Emmert, J. T., Fejer, B. G., Shepherd, G. G., and Solheim, B. H.: Average nighttime F region disturbance neutral winds measured by UARS WINDII: Initial results, Geophys. Res. Lett., 31, L22807, https://doi.org/10.1029/2004GL021611, 2004.
Fejer, B., Blanc, M., and Richmond, A.: Post-Storm Middle and Low-Latitude Ionospheric Electric Fields Effects, Space Sci. Rev., 206, 407–429, 2017.
Fejer, B. G. and Emmert, J.: Low-latitude ionospheric disturbance electric field effects during the recovery phase of the 19–21 October 1998 magnetic storm, J. Geophys. Res.-Space, 108, 1454, https://doi.org/10.1029/2003JA010190, 2003.
Fuller-Rowell, T., Codrescu, M., Moffett, R., and Quegan, S.: Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res.-Space, 99, 3893–3914, 1994.
Fuller-Rowell, T. J., Codrescu, M. V., Moffett, R. J., and Quegan, S.: Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99, 3893–3914, https://doi.org/10.1029/93JA02015, 1994.
Fuller-Rowell, T. J., Codrescu, M. V., Araujo-Pradere, E., and Kutiev, I.: Progress in developing a storm-time ionospheric correction model, Adv. Space Res., 22, 821–827, https://doi.org/10.1016/S0273-1177(98)00105-7, 1998.
Harding, B. J., Gehrels, T. W., and Makela, J. J.: Nonlinear regression method for estimating neutral wind and temperature from Fabry–Perot interferometer data, Appl. Opt., 53, 666–673, 2014.
International GPS Geodynamics Service (IGS): GPS data, available at: (ftp://data-out.unavco.org/pub/rinex/obs/, last access: 6 July 2018.
Kaab, M., Benkhaldoun, Z., Fisher, D. J., Harding, B., Bounhir, A., Makela, J. J., Laghriyeb, A., Malki, K., Daassou, A., and Lazrek, M.: Climatology of thermospheric neutral winds over Ouka”imeden Observatory in Morocco, Ann. Geophys., 35, 161–170, https://doi.org/10.5194/angeo-35-161-2017, 2017.
Klobuchar, J. A.: Ionospheric effects on GPS, Global Positioning System: Theory and applications, 1, 485–515, 1996.
Lario, D., Kwon, R.-Y., Vourlidas, A., Raouafi, N. E., Haggerty, D. K., Ho, G. C., Anderson, B. J., Papaioannou, A., Gómez-Herrero, R., Dresing, N., and Riley, P.: Longitudinal Properties of a Widespread Solar Energetic Particle Event on 2014 February 25: Evolution of the Associated CME Shock, Astrophys. J., 819, 1–23, https://doi.org/10.3847/0004-637X/819/1/72, 2016.
Lee, C.-C., Liu, J.-Y., Reinisch, B. W., Lee, Y.-P., and Liu, L.: The propagation of traveling atmospheric disturbances observed during the April 6–7, 2000 ionospheric storm, Geophys. Res. Lett., 29, 1068, https://doi.org/10.1029/2001GL013516, 2002.
Lee, C.-C., Liu, J.-Y., Chen, M.-Q., Su, S.-Y., Yeh, H.-C., and Nozaki, K.: Observation and model comparisons of the traveling atmospheric disturbances over the Western Pacific region during the 6–7 April 2000 magnetic storm, J. Geophys. Res.-Space, 109, A09309, https://doi.org/10.1029/2003JA010267, 2004.
Makela, J. and Miller, E.: Optical observations of the growth and day-to-day variability of equatorial plasma bubbles, J. Geophys. Res.-Space, 113, A03307, https://doi.org/10.1029/2007JA012661, 2008.
Makela, J. J., Meriwether, J. W., Huang, Y., and Sherwood, P. J.: Simulation and analysis of a multi-order imaging Fabry–Perot interferometer for the study of thermospheric winds and temperatures, Appl. Opt., 50, 4403–4416, 2011.
Makela, J. J., Ridley, A., Hampton, D., Gerrard, A., Meriwether, J., Harding, B., Mesquita, R., Sanders, S., Castellez, M., Ciocca, M., Earle, G., and Frissell, N.: Observations of the storm time response of the mid-latitude thermosphere made by a network of Fabry–Perot interferometers, in: 40th COSPAR Scientific Assembly, 2–10 August 2014, Moscow, Russia, vol. 40 of COSPAR Meeting, 2014.
Mendillo, M.: Storms in the ionosphere: Patterns and processes for total electron content, Rev. Geophys., 44, RG4001, https://doi.org/10.1029/2005RG000193, 2006.
Meriwether, J.: Thermospheric Dynamics at Low and Mid-Latitudes During Magnetic Storm Activity, Midlatitude Ionospheric Dynamics and Disturbances, Geophys. Monogr. Ser., 181, Copyright 2008 by the American Geophysical Union. 201–219, https://doi.org/10.1029/181GM19, 2008.
Ouattara, F. et al.: Variability of CODG TEC and IRI 2001 total electron content (TEC) during IHY campaign period (21 March to 16 April 2008) at Niamey under different geomagnetic activity conditions, Sci. Res. Essays, 6, 3609–3622, 2011.
Richmond, A.: Large-amplitude gravity wave energy production and dissipation in the thermosphere, J. Geophys. Res.-Space, 84, 1880–1890, 1979.
Richmond, A. and Matsushita, S.: Thermospheric response to a magnetic substorm, J. Geophys. Res., 80, 2839–2850, 1975.
Rishbeth, H. and Edwards, R.: The isobaric F2-layer, J. Atmos. Terr. Phys., 51, 321–338, 1989.
Sardon, E., Rius, A., and Zarraoa, N.: Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations, Radio Sci., 29, 577–586, 1994.
Schaer, S.: Mapping and predicting the Earth's ionosphere using the Global Positioning System., Geod.-Geophys. Arb. Schweiz, Zürich, Switzerland, 59, 1999.
Sethi, N., Pandey, V., and Mahajan, K.: Comparative study of TEC with IRI model for solar minimum period at low latitude, Advances in Space Research, 27, 45–48, 2001.
Singh, A., Rathore, V., Singh, R., and Singh, A.: Source identification of moderate (−100 nT < Dst < −50 nT) and intense geomagnetic storms (Dst < −100 nT) during ascending phase of solar cycle 24, Adv. Space Res., 59, 1209–1222, 2017.
Xiong, C., Lühr, H., and Fejer, B. G.: Global features of the disturbance winds during storm time deduced from CHAMP observations, J. Geophys. Res.-Space, 120, 5137–5150, https://doi.org/10.1002/2015JA021302, 2015.
Yashiro, S., Gopalswamy, N., Michalek, G., St Cyr, O., Plunkett, S., Rich, N., and Howard, R.: A catalog of white light coronal mass ejections observed by the SOHO spacecraft, J. Geophys. Res.-Space, 109, A07105, https://doi.org/10.1029/2003JA010282, 2004.
Zhang, S.-R., Erickson, P. J., Foster, J. C., Holt, J. M., Coster, A. J., Makela, J. J., Noto, J., Meriwether, J. W., Harding, B. J., Riccobono, J., and Kerr, R. B.: Thermospheric poleward wind surge at midlatitudes during great storm intervals, Geophys. Res. Lett., 42, 5132–5140, 2015.
Zoundi, C., Ouattara, F., Fleury, R., Amory-Mazaudier, C., and Lassudrie-Duchesne, P.: Seasonal TEC variability in West Africa equatorial anomaly region, Eur. J. Sci. Res., 77, 309–319, 2012.
Short summary
The novelty of this paper lies in the fact that it addresses the thermosphere–ionosphere coupling in a midlatitude site in north Africa. We have used Fabry–Perot measurements of thermospheric winds and wide-angle camera detection of ionospheric structures at an altitude of about 250 km. We have also used GPS data to extract the TEC over the studied area. We have focused our study on the 27 February geomagnetic storm.
The novelty of this paper lies in the fact that it addresses the thermosphere–ionosphere...