Articles | Volume 36, issue 3
https://doi.org/10.5194/angeo-36-809-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-809-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An investigation of the ionospheric F region near the EIA crest in India using OI 777.4 and 630.0 nm nightglow observations
Equatorial Geophysical Research Laboratory, Indian Institute of Geomagnetism, Tirunelveli 627 011, India
Sandro Maria Radicella
The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
Bruno Nava
The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
Yenca Olivia Migoya-Orue
The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
Prabhakar Tiwari
Dr. K. S. Krishnan Geomagnetic Research Laboratory, Indian Institute of Geomagnetism, Allahabad 221 505, India
Rajesh Singh
Dr. K. S. Krishnan Geomagnetic Research Laboratory, Indian Institute of Geomagnetism, Allahabad 221 505, India
Related authors
Navin Parihar, Saranya Padincharapad, Anand Kumar Singh, Prasanna Mahavarkar, and Ashok Priyadarshan Dimri
Ann. Geophys., 42, 131–143, https://doi.org/10.5194/angeo-42-131-2024, https://doi.org/10.5194/angeo-42-131-2024, 2024
Short summary
Short summary
Gravity waves are well known for deforming the bottom-side plasma of the F region into the wavelike ionization structures which then act as a seed for Rayleigh–Taylor instability, which in turn generates irregularities. The present study features midnight fossil airglow depletions that revived due to ongoing gravity wave (GW) activity and turned into an active depletion.
Navin Parihar, Dupinder Singh, and Subramanian Gurubaran
Ann. Geophys., 35, 353–363, https://doi.org/10.5194/angeo-35-353-2017, https://doi.org/10.5194/angeo-35-353-2017, 2017
Short summary
Short summary
Using an all-sky imager, near-mesopause OH temperatures were derived from OH(6, 2) Meinel band intensity measurements. A limited comparison of OH temperatures with SABER/TIMED measurements performed by defining almost-coincident criteria of ±1.5° latitude–longitude and ±3 min indicated fair agreement between ground-based and SABER measurements in general. The difference of two measurements increased when the peak of the OH emission layer lay in the vicinity of large temperature inversions.
N. Parihar and A. Taori
Ann. Geophys., 33, 547–560, https://doi.org/10.5194/angeo-33-547-2015, https://doi.org/10.5194/angeo-33-547-2015, 2015
Short summary
Short summary
This study investigates the long-distance propagation (~ 1200–2000km) of gravity waves in the Indian subcontinent using coordinated nightglow measurements at Allahabad and Gadanki (separated by ~ 12º latitude). On few occasions, an identical wave (period in range ~ 2.2–4.5h) was seen at both sites that shared a common source. Waves had large horizontal wavelength (~ 1194–2746km) and phase speed (77–331m/s). The m2 profile analysis suggests the ducted propagation of the common waves.
N. Parihar, A. Taori, S. Gurubaran, and G. K. Mukherjee
Ann. Geophys., 31, 197–208, https://doi.org/10.5194/angeo-31-197-2013, https://doi.org/10.5194/angeo-31-197-2013, 2013
Navin Parihar, Saranya Padincharapad, Anand Kumar Singh, Prasanna Mahavarkar, and Ashok Priyadarshan Dimri
Ann. Geophys., 42, 131–143, https://doi.org/10.5194/angeo-42-131-2024, https://doi.org/10.5194/angeo-42-131-2024, 2024
Short summary
Short summary
Gravity waves are well known for deforming the bottom-side plasma of the F region into the wavelike ionization structures which then act as a seed for Rayleigh–Taylor instability, which in turn generates irregularities. The present study features midnight fossil airglow depletions that revived due to ongoing gravity wave (GW) activity and turned into an active depletion.
Patrick Mungufeni, Sripathi Samireddipalle, Yenca Migoya-Orué, and Yong Ha Kim
Ann. Geophys., 38, 1203–1215, https://doi.org/10.5194/angeo-38-1203-2020, https://doi.org/10.5194/angeo-38-1203-2020, 2020
Short summary
Short summary
This study developed a model of total electron content (TEC) over the African region. The TEC data were derived from radio occultation measurements done by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. Data during geomagnetically quiet time for the years 2008–2011 and 2013–2017 were binned according to local time, seasons, solar flux level, geographic longitude, and dip latitude. Cubic B splines were used to fit the data for the model.
Yang Liu and Sandro Radicella
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-147, https://doi.org/10.5194/angeo-2019-147, 2019
Publication in ANGEO not foreseen
Short summary
Short summary
In this work, the correlation between ROTI and S4 is investigated based on a derived mathematical model under the assumption of single screening model for trans-ionospheric signal propagation. The correlation between ROTI and S4 is strongly affected by the variability of the effective velocity, and the correlation coefficient is degraded when the variability increases.The scintillation index S4 depends on the ionospheric irregularities, the effective velocity and the radio propagation path.
Patrick Mungufeni, John Bosco Habarulema, Yenca Migoya-Orué, and Edward Jurua
Ann. Geophys., 36, 841–853, https://doi.org/10.5194/angeo-36-841-2018, https://doi.org/10.5194/angeo-36-841-2018, 2018
Short summary
Short summary
We have established that, over the East African region, the trough of the equatorial ionisation anomaly (EIA) during high solar activity and quiet geomagnetic conditions lies slightly south of the magnetic equator. During the equinox and December solstice seasons, and a local time interval of 13:00–15:00, the probability of observing the EIA on days with daytime equatorial electrojet (EEJ) strength ≥ 40 nT was mostly > 80 %.
Yannick Béniguel, Iurii Cherniak, Alberto Garcia-Rigo, Pierrick Hamel, Manuel Hernández-Pajares, Roland Kameni, Anton Kashcheyev, Andrzej Krankowski, Michel Monnerat, Bruno Nava, Herbert Ngaya, Raül Orus-Perez, Hughes Secrétan, Damien Sérant, Stefan Schlüter, and Volker Wilken
Ann. Geophys., 35, 377–391, https://doi.org/10.5194/angeo-35-377-2017, https://doi.org/10.5194/angeo-35-377-2017, 2017
Short summary
Short summary
The work presented in this paper was done in the frame of an ESA activity. The aim of this project was to study ionosphere disturbances liable to impact navigation systems. This project has been running over several years, allowing enough data acquisition to gain sufficient knowledge of ionosphere variability. It was launched to support the European Satellite-Based Augmented System (EGNOS), also considering a possible extension of the system over Africa.
Navin Parihar, Dupinder Singh, and Subramanian Gurubaran
Ann. Geophys., 35, 353–363, https://doi.org/10.5194/angeo-35-353-2017, https://doi.org/10.5194/angeo-35-353-2017, 2017
Short summary
Short summary
Using an all-sky imager, near-mesopause OH temperatures were derived from OH(6, 2) Meinel band intensity measurements. A limited comparison of OH temperatures with SABER/TIMED measurements performed by defining almost-coincident criteria of ±1.5° latitude–longitude and ±3 min indicated fair agreement between ground-based and SABER measurements in general. The difference of two measurements increased when the peak of the OH emission layer lay in the vicinity of large temperature inversions.
Oladipo Emmanuel Abe, Xurxo Otero Villamide, Claudia Paparini, Rodrigue Herbert Ngaya, Sandro M. Radicella, and Bruno Nava
Ann. Geophys., 35, 1–9, https://doi.org/10.5194/angeo-35-1-2017, https://doi.org/10.5194/angeo-35-1-2017, 2017
N. Parihar and A. Taori
Ann. Geophys., 33, 547–560, https://doi.org/10.5194/angeo-33-547-2015, https://doi.org/10.5194/angeo-33-547-2015, 2015
Short summary
Short summary
This study investigates the long-distance propagation (~ 1200–2000km) of gravity waves in the Indian subcontinent using coordinated nightglow measurements at Allahabad and Gadanki (separated by ~ 12º latitude). On few occasions, an identical wave (period in range ~ 2.2–4.5h) was seen at both sites that shared a common source. Waves had large horizontal wavelength (~ 1194–2746km) and phase speed (77–331m/s). The m2 profile analysis suggests the ducted propagation of the common waves.
N. Parihar, A. Taori, S. Gurubaran, and G. K. Mukherjee
Ann. Geophys., 31, 197–208, https://doi.org/10.5194/angeo-31-197-2013, https://doi.org/10.5194/angeo-31-197-2013, 2013
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Active experiments
Modelling the influence of meteoric smoke particles on artificial heating in the D-region
Ducting of incoherent scatter radar waves by field-aligned irregularities
Comparison of CSES ionospheric RO data with COSMIC measurements
Margaretha Myrvang, Carsten Baumann, and Ingrid Mann
Ann. Geophys., 39, 1055–1068, https://doi.org/10.5194/angeo-39-1055-2021, https://doi.org/10.5194/angeo-39-1055-2021, 2021
Short summary
Short summary
Our model calculations indicate that meteoric smoke particles (MSPs) influence both the magnitude and shape of the electron temperature during artificial heating. Others have found that current theoretical models most likely overestimate heating in the D-region compared to observations. In a future study, we will compare our results to observations of the electron temperature during heating to investigate if the presence of MSPs can explain the discrepancy between model and observations.
Michael T. Rietveld and Andrew Senior
Ann. Geophys., 38, 1101–1113, https://doi.org/10.5194/angeo-38-1101-2020, https://doi.org/10.5194/angeo-38-1101-2020, 2020
Short summary
Short summary
We provide an explanation for mysterious radar echoes that look like increases in electron density during incoherent scatter radar measurements made when a high-power high-frequency (4–8 MHz) radio wave is transmitted up into the ionosphere. These echoes are seen at heights from about 200 to 650 km. We suggest that radar echoes at 930 MHz are guided along the earth's magnetic field by electron density irregularities created by the powerful radio wave, similar to light in an optical fibre.
Xiuying Wang, Wanli Cheng, Zihan Zhou, Song Xu, Dehe Yang, and Jing Cui
Ann. Geophys., 37, 1025–1038, https://doi.org/10.5194/angeo-37-1025-2019, https://doi.org/10.5194/angeo-37-1025-2019, 2019
Short summary
Short summary
In order to validate the CSES ionospheric RO data, ionospheric peak values, peak heights and electron density profiles observed by CSES are compared with the corresponding COSMIC RO measurements obtained from 12 February 2018, to 31 March 2019. The results show the two sets are in good agreement, and CSES ionospheric RO data are available for ionosphere-related studies considering the extensive validation and application of COSMIC RO data.
Cited articles
Abalde, J. R., Fagundes, P. R., Sahai, Y., Pillat, V. G., Pimenta, A. A., and Bittencourt, J. A.: Height-resolved ionospheric drifts at low latitudes from simultaneous OI 777.4 nm and OI 630.0 nm imaging observations, J. Geophys. Res., 109, A11308, https://doi.org/10.1029/2004JA010560, 2004.
Anthes, R. A., Ector, D., Hunt, D. C., Kuo, Y-H., Rocken, C., Schreiner, W. S., Sokolovskiy, S. V., Syndergaard, S., Wee, T-K., Zeng, Z., Bernhardt, P. A., Dymond, K. F., Chen, Y., Liu, H., Manning, K., Randel, W. J., Trenberth, K. E., Cucurull, L., Healy, S. B., Ho, S-P., McCormick, C., Meehan, T. K., Thompson, D. C., and Yen, N. L.: The COSMIC/FORMOSAT-3 Mission: Early Results, B. Am. Meteorol. Soc., 89, 313–333, https://doi.org/10.1175/BAMS-89-3-313, 2008.
Batista, I. S., de Paula, E. R., Abdu, M. A., and Trivedi, N. B.: Ionospheric effects of the March 13, 1989 magnetic storm at low and equatorial latitudes, J. Geophys. Res., 96, 13943–13952, 1991.
Batista, I. S., Sastri, J. H., deMedeiros, R. T., and Abdu, M. A.: Nighttime thermospheric meridional winds at Cachoeira Paulista (23° S, 45° W): Evidence for effects of the equatorial midnight pressure bulge, J. Geophys. Res., 102, 20059–20062, https://doi.org/10.1029/97JA01387, 1997.
Bilitza, D.: International reference ionosphere-status 1995/96, Adv. Space Res., 20, 1751–1754, https://doi.org/10.1016/S0273-1177(97)00584-X, 1997.
Broadfoot, A. L. and Gardner, J. A.: Hyperspectral imaging of the night airglow layer from the shuttle: A study of temporal variability, J. Geophys. Res., 106, 24795–24812, 2001.
Chakraborty, S. K. and Hajra, R.: Electrojet control of ambient ionization near the crest of the equatorial anomaly in the Indian zone, Ann. Geophys., 27, 93–105, https://doi.org/10.5194/angeo-27-93-2009, 2009.
Cocks, T. D.: Dual Fabry-Perot spectrometer measurements of daytime thermospheric temperature and wind velocity – Data analysis procedures, Appl. Optics, 22, 726–732, https://doi.org/10.1364/AO.22.000726, 1983.
Danilov, A. D. and Vanina-Dart, L. B.: Behavior of foF2 and hmF2 after sunset, Geomagn. Aeronomy, 50, 796–803, https://doi.org/10.1134/S0016793210060113, 2010.
Espy, P. J., Ochoa Fernández, S., Forkman, P., Murtagh, D., and Stegman, J.: The role of the QBO in the inter-hemispheric coupling of summer mesospheric temperatures, Atmos. Chem. Phys., 11, 495–502, https://doi.org/10.5194/acp-11-495-2011, 2011.
Fagundes, P. R., Sahai, Y., and Bittencourt, J. A.: Thermospheric zonal temperature gradients observed at low latitudes, Ann. Geophys., 19, 1133–1139, https://doi.org/10.5194/angeo-19-1133-2001, 2001.
Figueiredo, C. A. O. B., Buriti, R. A., Paulino, I., Meriwether, J. W., Makela, J. J., Batista, I. S., Barros, D., and Medeiros, A. F.: Effects of the midnight temperature maximum observed in the thermosphere–ionosphere over the northeast of Brazil, Ann. Geophys., 35, 953–963, https://doi.org/10.5194/angeo-35-953-2017, 2017.
Ford, E. A. K., Aruliah, A. L., Griffin, E. M., and McWhirter, I.: Thermospheric gravity waves in Fabry-Perot Interferometer measurements of the 630.0 nm OI line, Ann. Geophys., 24, 555–566, https://doi.org/10.5194/angeo-24-555-2006, 2006.
Ford, E. A. K., Aruliah, A. L., Griffin, E. M., and McWhirter, I.: Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen, Ann. Geophys., 26, 29–45, https://doi.org/10.5194/angeo-26-29-2008, 2008.
Hays, P. B., Kafkalidis, J. F., Skinner, W. R., and Roble, R. G.: A global view of the molecular oxygen night airglow, J. Geophys. Res., 108, D204646, https://doi.org/10.1029/2003JD003400, 2003.
Hedin, A. E.: MSIS-86 Thermospheric Model, J. Geophys. Res., 92, 4649–4662, https://doi.org/10.1029/JA092iA0p04649, 1987.
Holmen, S. E., Dyrland, M. E., and Sigernes, F.: Long-term trends and the effect of solar cycle variations on mesospheric winter temperatures over Longyearbyen, Svalbard (78° N), J. Geophys. Res., 119, 6596–6608, https://doi.org/10.1002/2013JD021195, 2014.
Hu, L., Ning, B., Liu, L., Zhao, B., Li, G., Wu, B., Huang, Z., Hao, X., Chang, S., and Wu, Z.: Validation of COSMIC ionospheric peak parameters by the measurements of an ionosonde chain in China, Ann. Geophys., 32, 1311–1319, https://doi.org/10.5194/angeo-32-1311-2014, 2014.
Innis, J. L., Phillips, F. A., Burns, G. B., Greet, P. A., French, W. J. R., and Dyson, P. L.: Mesospheric temperatures from observations of the hydroxyl (6–2) emission above Davis, Antarctica: A comparison of rotational and Doppler measurements, Ann. Geophys., 19, 359–365, https://doi.org/10.5194/angeo-19-359-2001, 2001.
Klausner, V., Fagundes, P. R., Sahai, Y., Wrasse, C. M., Pillat, V. G., and Becker-Guedes, F.: Observations of GW/TID oscillations in the F2 layer at low latitude during high and low solar activity, geomagnetic quiet and disturbed periods, J. Geophys. Res., 114, A02313, https://doi.org/10.1029/2008JA013448, 2009.
Lednyts'kyy, O., von Savigny, C., Eichmann, K.-U., and Mlynczak, M. G.: Atomic oxygen retrievals in the MLT region from SCIAMACHY nightglow limb measurements, Atmos. Meas. Tech., 8, 1021–1041, https://doi.org/10.5194/amt-8-1021-2015, 2015.
Limberger, M., Hernández-Pajares, M., Aragón-Ángel, A., Altadill, D., and Dettering, D.: Long-term comparison of the ionospheric F2 layer electron density peak derived from ionosonde data and Formosat-3/COSMIC occultations, J. Space Weather Spac., 5, 1–13, https://doi.org/10.1051/swsc/2015023, 2015.
Lin, C. H., Liu, J. Y., Fang, T. W., Chang, P. Y., Tsai, H. F., Chen, C. H., and Hsiao, C. C.: Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC, Geophys. Res. Lett., 34, L19101, https://doi.org/10.1029/2007GL030741, 2007.
Link, R. and Cogger, L. L.: A reexamination of the O I 6300-Å nightglow, J. Geophys. Res., 93, 9883–9892, https://doi.org/10.1029/JA093iA09p09883, 1988.
Lloyd, N., Manson, A. H., McEwen, D. J., and Meek, C. E.: A comparison of middle atmospheric dynamics at Saskatoon (52° N, 107° W) as measured by a medium-frequency radar and a Fabry-Perot interferometer, J. Geophys. Res., 95, 7653–7660, https://doi.org/10.1029/JD095iD06p07653, 1990.
López-González, M. J., Rodríguez, E., García-Comas, M., Costa, V., Shepherd, M. G., Shepherd, G. G., Aushev, V. M., and Sargoytchev, S.: Climatology of planetary wave type oscillations with periods of 2–20 days derived from O2 atmospheric and OH(6–2) airglow observations at mid-latitude with SATI, Ann. Geophys., 27, 3645–3662, https://doi.org/10.5194/angeo-27-3645-2009, 2009.
Luan, X., Wang, P., Dou, X., and Liu, Y. C.-M.: Interhemispheric asymmetry of the equatorial ionization anomaly in solstices observed by COSMIC during 2007–2012, J. Geophys. Res., 120, 3059–3073, https://doi.org/10.1002/2014JA020820, 2015.
Makela, J. J., Kelley, M. C., González, S. A., Aponte, N., and McCoy, R. P.: Ionospheric topography maps using multiple-wavelength all-sky images, J. Geophys. Res., 106, 29161–29174, https://doi.org/10.1029/2000JA000449, 2001.
Makela, J. J., Ledvina, B. M., Kelley, M. C., and Kintner, P. M.: Analysis of the seasonal variations of equatorial plasma bubble occurrence observed from Haleakala, Hawaii, Ann. Geophys., 22, 3109–3121, https://doi.org/10.5194/angeo-22-3109-2004, 2004.
Mukherjee, G. K., Carlo, L., and Mahajan, S. H.: 630 nm nightglow observations from 17° N latitude, Earth Planet. Space, 52, 105–110, https://doi.org/10.1186/BF03351618, 2000.
Mukherjee, G. K., Parihar, N., Niranjan, K., and Manju, G.: Signature of midnight temperature maximum (MTM) using OI 630 nm airglow, Indian J. Radio Space Phys., 35, 14–21, 2006.
Nakamura, Y., Shiokawa, K., Otsuka, Y., Oyama, S., Nozawa, S., Komolmis, T., Komonjida, S., Neudegg, D., Yuile, C., Meriwether, J., Shinagawa, H., and Jin, H.: Measurement of thermospheric temperatures using OMTI Fabry-Perot interferometers with 70-mm etalon, Earth Planet. Space, 69, 1–13, https://doi.org/10.1186/s40623-017-0643-1, 2017.
Parihar, N. and Taori, A.: An investigation of long-distance propagation of gravity waves under CAWSES India Phase II Programme, Ann. Geophys., 33, 547–560, https://doi.org/10.5194/angeo-33-547-2015, 2015.
Parihar, N., Taori, A., Gurubaran, S., and Mukherjee, G. K.: Simultaneous measurement of OI 557.7 nm, O2 (0, 1) Atmospheric Band and OH (6, 2) Meinel Band nightglow at Kolhapur (17° N), India, Ann. Geophys., 31, 197–208, https://doi.org/10.5194/angeo-31-197-2013, 2013.
Parihar, N., Singh, D., and Gurubaran, S.: A comparison of ground-based hydroxyl airglow temperatures with SABER/TIMED measurements over 23° N, India, Ann. Geophys., 35, 353–363, https://doi.org/10.5194/angeo-35-353-2017, 2017.
Paulino, I., Medeiros, A. F., Vadas, S. L., Wrasse, C. M., Takahashi, H., Buriti, R. A., Leite, D., Filgueira, S., Bageston, J. V., Sobral, J. H. A., and Gobbi, D.: Periodic waves in the lower thermosphere observed by OI630 nm airglow images, Ann. Geophys., 34, 293–301, https://doi.org/10.5194/angeo-34-293-2016, 2016.
Pavlov, A. V.: The role of the zonal E × B plasma drift in the low-latitude ionosphere at high solar activity near equinox from a new three-dimensional theoretical model, Ann. Geophys., 24, 2553–2572, https://doi.org/10.5194/angeo-24-2553-2006, 2006.
Piggott, W. R. and Rawer, K.: URSI Handbook of Ionogram Interpretation and Reduction, World Data Center A for Solar-Terrestrial Physics, Report UAG-23, 2nd Edn., 1972.
Rama Rao, P. V. S., Srirama Rao, M., and Satyam, M.: Diurnal and seasonal trends in TEC values observed at Waltair, Indian J. Radio Space Phys., 6, 233–235, 1997.
Rao, C. S. R. and Malthotra, P. L.: A study of geomagnetic anomaly during I.G.Y., J. Atmos. Terr. Phys., 26, 1075–1085, 1964.
Rao, H. N. R. and Sastri, J. H.: Characteristics of the equatorial midnight temperature maximum in the Indian sector, Ann. Geophys., 12, 276–278, 1994.
Rastogi, R. G. and Klobuchar, J. A.: Ionospheric electron content within the equatorial F2 layer anomaly belt, J. Geophys. Res., 95, 19045–19052, https://doi.org/10.1029/JA095iA11p19045, 1990.
Russell, J. P., Ward, W. E., Lowe, R. P., Roble, R. G., Shepherd, G. G., and Solheim, B.: Atomic oxygen profiles (80 to 115 km) derived from wind imaging interferometer/upper atmospheric research satellite measurements of the hydroxyl and greenline airglow: local time – latitude dependence, J. Geophys. Res., 110, D15305, https://doi.org/10.1029/2004JD005570, 2005.
Sahai, Y., Bittencourt, J. A., Teixeira, N. R., and Takahashi, H.: Simultaneous observations of OI 7774-Å and forbidden OI 6300-Å emissions and correlative study with ionospheric parameters, J. Geophys. Res., 86, 3657–3660, https://doi.org/10.1029/JA086iA05p03657, 1981.
Scheer, J. and Reisin, E. R.: Is there an influence of short-term solar activity variations on mesopause region airglow?, Adv. Space Res., 39, 1248–1255, 2007.
Semenov, A. I.: Seasonal variations of hydroxyl rotational temperature, Geomagnetizm i Aeronomiia, 28, 333–334, 1988.
Sethi, N. K., Dabas, R. S., and Vohra, V. K.: Diurnal and seasonal variations of hmF2 deduced from digital ionosonde over New Delhi and its comparison with IRI 2001, Ann. Geophys., 22, 453–458, https://doi.org/10.5194/angeo-22-453-2004, 2004.
Shepherd, M. G.: WINDII observations of thermospheric O(1D) nightglow emission rates, temperature, and wind: 1. The northern hemisphere midnight temperature maximum and the wave 4, J. Geophys. Res., 121, 11450–11473, https://doi.org/10.1002/2016JA022703, 2016.
Shiokawa, K., Kadota, T., Otsuka, Y., Ogawa, T., Nakamura, T., and Fukao, S.: A two-channel Fabry-Perot interferometer with thermoelectric-cooled CCD detectors for neutral wind measurement in the upper atmosphere, Earth Planet. Space, 55, 271–275, 2003.
Takahashi, H., Nakamura, T., Shiokawa, K., Tsuda, T., Lima, L. M., and Gobbi, D.: Atmospheric density and pressure inferred from the meteor diffusion coefficient and airglow O2b temperature in the MLT region, Earth Planet. Space, 56, 249–258, 2004.
Tinsley, B. A. and Bittencourt, J. A.: Determination of F region height and peak electron density at night using airglow emissions from atomic oxygen, J. Geophys. Res., 80, 2333–2337, https://doi.org/10.1029/JA080i016p02333, 1975.
Tinsley, B. A., Christensen, A. B., Bittencourt, J., Gouveia, H., Angreji, P. D., and Takahashi, H.: Excitation of oxygen permitted line emissions in the tropical nightglow, J. Geophys. Res., 78, 1174–1186, https://doi.org/10.1029/JA078i007p01174, 1973.
Vila, P., Rees, D., Merrien, P., and Kone, E.: Fabry-Perot interferometer measurements of neutral winds and F2 layer variations at the magnetic equator, Ann. Geophys., 16, 731–737, https://doi.org/10.1007/s00585-998-0731-4, 1998.
Yadav, S., Dabas, R. S., Das, Rupesh M., Upadhayaya, A. K., Sharma, K., and Gwal, A. K.: Diurnal and seasonal variation of F2-layer ionospheric parameters at equatorial ionization anomaly crest region and their comparison with IRI-2001, Adv. Space Res., 45, 361–367, https://doi.org/10.1016/j.asr.2009.08.018, 2010.
Yao, D. and Makela, J. J.: Analysis of equatorial plasma bubble zonal drift velocities in the Pacific sector by imaging techniques, Ann. Geophys., 25, 701–709, https://doi.org/10.5194/angeo-25-701-2007, 2007.
Zhao, B., Wan, W., Liu, L., and Ren, Z.: Characteristics of the ionospheric total electron content of the equatorial ionization anomaly in the Asian-Australian region during 1996–2004, Ann. Geophys., 27, 3861–3873, https://doi.org/10.5194/angeo-27-3861-2009, 2009.
Short summary
Using an empirical approach put forward by Makela et al. (2001), firstly, we propose a novel technique to calibrate OI 777.4 and 630.0 nm emission intensities using COSMIC/FORMOSAT-3 electron density profiles. Next, electron density maximum (Nm) and its height (hmF2) of the F layer are derived from the information of two calibrated intensities. Sample Nm and hmF2 maps are also generated to show the usefulness of this technique in studying ionospheric processes.
Using an empirical approach put forward by Makela et al. (2001), firstly, we propose a novel...