Articles | Volume 36, issue 3
https://doi.org/10.5194/angeo-36-781-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-781-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Van Allen Probes observation of plasmaspheric hiss modulated by injected energetic electrons
Run Shi
CORRESPONDING AUTHOR
Center for Space Physics, Boston University, Boston, Massachusetts,
USA
Wen Li
Center for Space Physics, Boston University, Boston, Massachusetts,
USA
Qianli Ma
Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, Los Angeles, California, USA
Center for Space Physics, Boston University, Boston, Massachusetts,
USA
Seth G. Claudepierre
Space Science Department, The Aerospace Corporation, El Segundo,
California, USA
Craig A. Kletzing
Department of Physics and Astronomy, University of Iowa, Iowa City,
Iowa, USA
William S. Kurth
Department of Physics and Astronomy, University of Iowa, Iowa City,
Iowa, USA
George B. Hospodarsky
Department of Physics and Astronomy, University of Iowa, Iowa City,
Iowa, USA
Harlan E. Spence
Institute for the Study of Earth, Oceans, and Space, University of New
Hampshire, Durham, New Hampshire, USA
Geoff D. Reeves
Space Science and Applications Group, Los Alamos National Laboratory,
Los Alamos, New Mexico, USA
Joseph F. Fennell
Space Science Department, The Aerospace Corporation, El Segundo,
California, USA
J. Bernard Blake
Space Science Department, The Aerospace Corporation, El Segundo,
California, USA
Scott A. Thaller
School of Physics and Astronomy, University of Minnesota, Twin Cities,
Minneapolis, Minnesota, USA
John R. Wygant
School of Physics and Astronomy, University of Minnesota, Twin Cities,
Minneapolis, Minnesota, USA
Related authors
No articles found.
Haimeng Li, Wen Li, Qianli Ma, Yukitoshi Nishimura, Zhigang Yuan, Alex J. Boyd, Xiaochen Shen, Rongxin Tang, and Xiaohua Deng
Ann. Geophys., 39, 461–470, https://doi.org/10.5194/angeo-39-461-2021, https://doi.org/10.5194/angeo-39-461-2021, 2021
Short summary
Short summary
We report an event where hiss wave intensity decreased, associated with the enhanced convection and a substorm. We suggest that the enhanced magnetospheric electric field causes the outward and sunward motion of energetic electrons. This leads to the decrease of energetic electron fluxes on the duskside, which provide free energy for hiss amplification. The study reveals the important role of magnetospheric electric field in the variation of the energetic electron flux and hiss wave intensity.
Galina Korotova, David Sibeck, Mark Engebretson, Michael Balikhin, Scott Thaller, Craig Kletzing, Harlan Spence, and Robert Redmon
Ann. Geophys., 38, 1267–1281, https://doi.org/10.5194/angeo-38-1267-2020, https://doi.org/10.5194/angeo-38-1267-2020, 2020
Short summary
Short summary
We used multipoint magnetic field, electric field, plasma, and energetic particle observations to study the spatial, temporal, and spectral characteristics of compressional Pc5 pulsations observed deep within the magnetosphere at the end of a strong magnetic storm. We investigated the mode of the waves and their nodal structure. The energetic particles responded directly to the compressional Pc5 pulsations. We interpret the compressional Pc5 waves in terms of drift-mirror instability.
David M. Miles, B. Barry Narod, David K. Milling, Ian R. Mann, David Barona, and George B. Hospodarsky
Geosci. Instrum. Method. Data Syst., 7, 265–276, https://doi.org/10.5194/gi-7-265-2018, https://doi.org/10.5194/gi-7-265-2018, 2018
Short summary
Short summary
We present a proof-of-concept space-flight instrument that can simultaneously make measurements of both the low- and high-frequency local magnetic field. Previously, this would have required two separate instruments that would normally have had to be mounted separately on long deployable booms to keep them from interfering. This new hybrid instrument is expected to be particularly useful on extremely small spacecraft, such as CubeSats, which can only accommodate a few instruments.
Galina Korotova, David Sibeck, Scott Thaller, John Wygant, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 36, 1319–1333, https://doi.org/10.5194/angeo-36-1319-2018, https://doi.org/10.5194/angeo-36-1319-2018, 2018
Short summary
Short summary
We employ multipoint observations of the Van Allen Probes, THEMIS, GOES and Cluster to present case and statistical studies of the electromagnetic field, plasma and particle response to interplanetary (IP) shocks observed by Wind. We perform a statistical study of Ey variations of the electric field and associated plasma drift flow velocities for 60 magnetospheric events during the passage of interplanetary shocks.
Shangchun Teng, Xin Tao, Wen Li, Yi Qi, Xinliang Gao, Lei Dai, Quanming Lu, and Shui Wang
Ann. Geophys., 36, 867–878, https://doi.org/10.5194/angeo-36-867-2018, https://doi.org/10.5194/angeo-36-867-2018, 2018
Short summary
Short summary
This paper performs a statistical study of the spatial distribution and source region size along a filed line of both rising tone and falling tone whistler waves based on the Van Allen Probes data. The results suggest that both types of chorus waves are generated near the equatorial plane, roughly consistent with previous theoretical estimates. The work should be useful to further understand the generation mechanism of chorus waves.
Galina Korotova, David Sibeck, Mark Engebretson, John Wygant, Scott Thaller, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 34, 985–998, https://doi.org/10.5194/angeo-34-985-2016, https://doi.org/10.5194/angeo-34-985-2016, 2016
Zheng Xiang, Binbin Ni, Chen Zhou, Zhengyang Zou, Xudong Gu, Zhengyu Zhao, Xianguo Zhang, Xiaoxin Zhang, Shenyi Zhang, Xinlin Li, Pingbing Zuo, Harlan Spence, and Geoffrey Reeves
Ann. Geophys., 34, 493–509, https://doi.org/10.5194/angeo-34-493-2016, https://doi.org/10.5194/angeo-34-493-2016, 2016
Short summary
Short summary
We used 14 satellites(GOES, POES, THEMIS, RBSP, FENGYUN, REPTile) measurement to investigate the loss mechanisms of a electron dropout event during a intense solar wind dynamic pressure pulse. The observations demonstrated that magnetopause shadowing and atmospheric loss both play important roles in electron flux dropout. Moreover, substrom injections and convection strongly enhanced the energetic electron fluxes, which may delay other than avoid the occurrence of electron flux dropout.
G. I. Korotova, D. G. Sibeck, K. Tahakashi, L. Dai, H. E. Spence, C. A. Kletzing, J. R. Wygant, J. W. Manweiler, P. S. Moya, K.-J. Hwang, and R. J. Redmon
Ann. Geophys., 33, 955–964, https://doi.org/10.5194/angeo-33-955-2015, https://doi.org/10.5194/angeo-33-955-2015, 2015
Short summary
Short summary
We studied localized Pc 4 pulsations in the pre-midnight inner magnetosphere observed by Van Allen Probe B on May 1 2013. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes result from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.
G. Fischer, S.-Y. Ye, J. B. Groene, A. P. Ingersoll, K. M. Sayanagi, J. D. Menietti, W. S. Kurth, and D. A. Gurnett
Ann. Geophys., 32, 1463–1476, https://doi.org/10.5194/angeo-32-1463-2014, https://doi.org/10.5194/angeo-32-1463-2014, 2014
Short summary
Short summary
In this paper we show that the large thunderstorm called the "Great White Spot", which raged for about 9 months in Saturn's troposphere in 2010/2011, was accompanied by changes in the periodicity and phasing of auroral radio emissions. We suggest that the thunderstorm was a source of intense gravity waves causing a global change in Saturn’s ionospheric winds via energy and momentum deposition. This supports the theory that Saturn’s magnetospheric periodicities are driven by the upper atmosphere.
M. Volwerk, X. Jia, C. Paranicas, W. S. Kurth, M. G. Kivelson, and K. K. Khurana
Ann. Geophys., 31, 45–59, https://doi.org/10.5194/angeo-31-45-2013, https://doi.org/10.5194/angeo-31-45-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Radiation belts
Comparison of radiation belt electron fluxes simultaneously measured with PROBA-V/EPT and RBSP/MagEIS instruments
Electron radiation belt safety indices based on the SafeSpace modelling pipeline and dedicated to the internal charging risk
The “SafeSpace” database of ULF power spectral density and radial diffusion coefficients: dependencies and application to simulations
Quantifying the non-linear dependence of energetic electron fluxes in the Earth's radiation belts with radial diffusion drivers
On the semi-annual variation of relativistic electrons in the outer radiation belt
Seasonal dependence of the Earth's radiation belt – new insights
Distribution of Earth's radiation belts' protons over the drift frequency of particles
Outer Van Allen belt trapped and precipitating electron flux responses to two interplanetary magnetic clouds of opposite polarity
Outer radiation belt and inner magnetospheric response to sheath regions of coronal mass ejections: a statistical analysis
Energetic electron enhancements under the radiation belt (L < 1.2) during a non-storm interval on 1 August 2008
GREEN: the new Global Radiation Earth ENvironment model (beta version)
Alexandre Winant, Viviane Pierrard, and Edith Botek
Ann. Geophys., 41, 313–325, https://doi.org/10.5194/angeo-41-313-2023, https://doi.org/10.5194/angeo-41-313-2023, 2023
Short summary
Short summary
In this work, we analyzed and compared measurements of electron fluxes in the radiation belts from two instruments with different orbits. In the outer belt, where the altitude difference is the largest between the two instruments, we find that the observations are in good agreement, except during geomagnetic storms, during which fluxes at low altitudes are much lower than at high altitudes. In general, both at low and high altitudes, the correlation between the instruments was found to be good.
Nour Dahmen, Antoine Brunet, Sebastien Bourdarie, Christos Katsavrias, Guillerme Bernoux, Stefanos Doulfis, Afroditi Nasi, Ingmar Sandberg, Constantinos Papadimitriou, Jesus Oliveros Fernandez, and Ioannis Daglis
Ann. Geophys., 41, 301–312, https://doi.org/10.5194/angeo-41-301-2023, https://doi.org/10.5194/angeo-41-301-2023, 2023
Short summary
Short summary
Earth’s space environment is populated with charged particles. The energetic ones are trapped around Earth in radiation belts. Orbiting spacecraft that cross their region can accumulate charges on their internal surfaces, leading to hazardous electrostatic discharges. This paper showcases the SafeSpace safety prototype, which aims to warn satellite operators of probable incoming hazardous events by simulating the dynamics of the electron radiation belts from their origin at the Sun.
Christos Katsavrias, Afroditi Nasi, Ioannis A. Daglis, Sigiava Aminalragia-Giamini, Nourallah Dahmen, Constantinos Papadimitriou, Marina Georgiou, Antoine Brunet, and Sebastien Bourdarie
Ann. Geophys., 40, 379–393, https://doi.org/10.5194/angeo-40-379-2022, https://doi.org/10.5194/angeo-40-379-2022, 2022
Short summary
Short summary
The radial diffusion mechanism is of utmost importance to both the acceleration and loss of relativistic electrons in the outer radiation belt and, consequently, for physics-based models, which provide nowcasting and forecasting of the electron population. In the framework of the "SafeSpace" project, we have created a database of calculated radial diffusion coefficients, and, furthermore, we have exploited it to provide insights for future modelling efforts.
Adnane Osmane, Mikko Savola, Emilia Kilpua, Hannu Koskinen, Joseph E. Borovsky, and Milla Kalliokoski
Ann. Geophys., 40, 37–53, https://doi.org/10.5194/angeo-40-37-2022, https://doi.org/10.5194/angeo-40-37-2022, 2022
Short summary
Short summary
It has long been known that particles get accelerated close to the speed of light in the near-Earth space environment. Research in the last decades has also clarified what processes and waves are responsible for the acceleration of particles. However, it is difficult to quantify the scale of the impact of various processes competing with one another. In this study we present a methodology to quantify the impact waves can have on energetic particles.
Christos Katsavrias, Constantinos Papadimitriou, Sigiava Aminalragia-Giamini, Ioannis A. Daglis, Ingmar Sandberg, and Piers Jiggens
Ann. Geophys., 39, 413–425, https://doi.org/10.5194/angeo-39-413-2021, https://doi.org/10.5194/angeo-39-413-2021, 2021
Short summary
Short summary
The nature of the semi-annual variation in the relativistic electron fluxes in the Earth's outer radiation belt has been a debate for over 30 years. Our work shows that it is primarily driven by the Russell–McPherron effect, which indicates that reconnection is responsible not only for the short-scale but also the seasonal variability of the electron belt as well. Moreover, it is more pronounced during the descending phase of the solar cycles and coexists with periods of fast solar wind speed.
Rajkumar Hajra
Ann. Geophys., 39, 181–187, https://doi.org/10.5194/angeo-39-181-2021, https://doi.org/10.5194/angeo-39-181-2021, 2021
Short summary
Short summary
Geomagnetic activity is known to exhibit semi-annual variation with larger occurrences during equinoxes. A similar seasonal feature was reported for relativistic (∼ MeV) electrons throughout the entire outer zone radiation belt. Present work, for the first time reveals that electron fluxes increase with an ∼ 6-month periodicity in a limited L-shell only with large dependence in solar activity cycle. In addition, flux enhancements are not essentially equinoctial.
Alexander S. Kovtyukh
Ann. Geophys., 39, 171–179, https://doi.org/10.5194/angeo-39-171-2021, https://doi.org/10.5194/angeo-39-171-2021, 2021
Short summary
Short summary
This is a continuation of work published in Annales Gephysicae between 2016 and 2020. In this paper, a new method for analyzing experimental data is proposed, calculations are carried out, and a new class of distributions of particles of radiation belts is constructed. As a result of this work, new, finer physical regularities of the structure of the Earth's proton radiation belt and its solar-cyclic variations have been obtained, which cannot be obtained by other methods.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
Alla V. Suvorova, Alexei V. Dmitriev, and Vladimir A. Parkhomov
Ann. Geophys., 37, 1223–1241, https://doi.org/10.5194/angeo-37-1223-2019, https://doi.org/10.5194/angeo-37-1223-2019, 2019
Short summary
Short summary
The Earth's radiation belts control the space environment, often affecting the GPS signal propagation and satellite operations. Intense fluxes of energetic particles can penetrate even below the inner belt near the Equator. We analysed electron penetrations under geomagnetic quiet conditions and found in the solar wind an external driver cause. Satellite observations prove that disturbance of the inner belt was associated with impact of plasma jets formed in the solar wind nearby the Earth.
Angélica Sicard, Daniel Boscher, Sébastien Bourdarie, Didier Lazaro, Denis Standarovski, and Robert Ecoffet
Ann. Geophys., 36, 953–967, https://doi.org/10.5194/angeo-36-953-2018, https://doi.org/10.5194/angeo-36-953-2018, 2018
Short summary
Short summary
GREEN (Global Radiation Earth ENvironment) is a new model providing particle fluxes at any location in the radiation belts, for energy between 1 keV
and 10 MeV for electrons and between 1 keV and 800 MeV for protons. This model is composed of global models (AE8 and AP8, and SPM) and
local models (SLOT model, OZONE and IGE-2006 for electrons; OPAL and IGP for protons).
Cited articles
Albert, J. M.: Evaluation of quasi-linear diffusion coefficients for whistler
mode waves in a plasma with arbitrary density ratio, J. Geophys. Res., 110,
A03218, https://doi.org/10.1029/2004JA010844, 2005.
Anderson, R. R. and Maeda, K.: VLF emissions associated with enhanced
magnetospheric electrons, J. Geophys. Res., 82, 135–146,
https://doi.org/10.1029/JA082i001p00135, 1977.
Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain Jr., W. R., Dotan, Y., Fennell, J. F., Fuentes, F. H., Galvan, R. M., George, F. H., Henderson, M. G.,
Lalic, M., Lin, A. Y., Looper, M. D., Mabry, D. J., Mazur, J. E., McCarthy, B., Nguyen, C. Q., O'Brien, T. P., Perez, M. A., Redding, M. T.,
Roeder, J. L., Salvaggio, D. J., Sorensen, G. A., Spence, H. E., Yi, S., and Zakrzewski, M. P.: The Magnetic
Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt
Storm Probes (RBSP) spacecraft, Space. Sci. Rev.,
https://doi.org/10.1007/s11214-013-9991-8, 2013.
Bortnik, J., Thorne, R. M., and Meredith, N. P.: The unexpected origin of
plasmaspheric hiss from discrete chorus emissions, Nature, 452, 62–66,
https://doi.org/10.1038/nature06741, 2008.
Bortnik, J., Li, W., Thorne, R. M., Angelopoulos, V., Cully, C., Bonnell, J.,
Le Contel, O., and Roux, A.: An Observation linking the origin of
plasmaspheric hiss to discrete chorus emissions, Science, 324, 775–778,
https://doi.org/10.1126/science.1171273, 2009.
Breneman, A. W., Halford, A., Millan, R., McCarthy, M., Fennell, J., Sample, J.,
Woodger, L., Hospodarsky, G., Wygant, J. R., Cattell, C. A., Goldstein, J.,
Malaspina, D., and Kletzing, C. A.:
Global-scale coherence modulation of radiation-belt electron loss from
plasmaspheric hiss, Nature, 523, 193–195, https://doi.org/10.1038/nature14515, 2015.
Chen, M. W., Roeder, J. L., Fennell, J. F., Lyons, L. R., Lambour, R. L., and
Schulz, M.: Proton ring current pitch angle distributions: Comparison of
simulations with CRRES observations, J. Geophys. Res., 104, 17379–17389,
1999.
Chen, L., Bortnik, J., Li, W., Thorne, R. M., and Horne, R. B.: Modeling the
properties of plasmaspheric hiss: 1. Dependence on chorus wave emission, J.
Geophys. Res., 117, A05201, https://doi.org/10.1029/2011JA017201, 2012a.
Chen, L., Bortnik, J., Li, W., Thorne, R. M., and Horne, R. B.: Modeling the
properties of plasmaspheric hiss: 2. Dependence on the plasma density
distribution, J. Geophys. Res., 117, A05202, https://doi.org/10.1029/2011JA017202, 2012b.
Chen, L., Thorne, R. M., Li, W., Bortnik, J., Turner, D., and Angelopoulos,
V.: Modulation of plasmaspheric hiss intensity by thermal plasma density
structure, Geophys. Res. Lett., 39, L14103, https://doi.org/10.1029/2012GL052308, 2012c.
Chen, L., Thorne, R. M., Bortnik, J., Li, W., Horne, R., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Blake, J. B., and Fennell, J. F.: Generation of
unusually low frequency plasmaspheric hiss, Geophys. Res. Lett., 41,
5702–5709, https://doi.org/10.1002/2014GL060628, 2014.
Chen, X.-R., Zong, Q.-G., Zhou, X.-Z., Blake, J. B., Wygant, J. R., and
Kletzing, C. A.: Van allen probes observation of a 360∘ phase shift
in the flux modulation of injected electrons by ULF waves, Geophys. Res.
Lett., 44, 1614–1624, https://doi.org/10.1002/2016GL071252, 2016.
Church, S. R. and Thorne, R. M.: On the origin of plasmaspheric hiss –
Raypath integrated amplification, J. Geophys. Res., 88, 7941–7957,
https://doi.org/10.1029/JA088iA10p07941, 1983.
Huang, C. Y., Goertz, C. K., and Anderson, R. R.: A theoretial study of
plasmaspheric hiss generation, J. Geophys. Res., 88, 7927–7940,
https://doi.org/10.1029/JA088iA10p07927, 1983.
Claudepierre, S. G., Mann, I. R., Takahashi, K., Fennell, J. F., Hudson, M. K., Blake, J. B., Roeder, J. L., Clemmons, J. H.,
Spence, H. E., Reeves, G. D., Baker, D. N., Funsten, H. O., Friedel, R. H. W., Henderson, M. G., Kletzing, C. A., Kurth, W. S., MacDowall, R. J., Smith, C. W., and Wygant, J. R.: Van
Allen Probes observation of localized drift resonance between poloidal mode
ultra-low frequency waves and 60 keV electrons, Geophys. Res. Lett., 40,
4491–4497, https://doi.org/10.1002/grl.50901, 2013.
Dai, L., Takahashi, K., Wygant, J. R., Chen, L., Bonnell, J., Cattell, C. A., Thaller, S., Kletzing, C.,
Smith, C. W., MacDowall, R. J., Baker, D. N., Blake, J. B., Fennell, J., Claudepierre, S., Funsten, H. O., Reeves, G. D., and Spence, H. E.: Excitation of
poloidal standing Alfven waves through drift resonance wave-particle
interaction, Geophys. Res. Lett., 40, 4127–4132, https://doi.org/10.1002/grl.50800,
2013.
Green, J. L., Boardsen, S., Garcia, L., Taylor, W. W. L., Fung, S. F., and
Reinisch, B. W.: On the origin of whistler mode radiation in the
plasmasphere, J. Geophys. Res., 110, A03201, https://doi.org/10.1029/2004JA010495, 2005.
Hao, Y. X., Zong, Q.-G., Wang, Y. F., Zhou, X.-Z., Zhang, H., Fu, S. Y., Pu, Z. Y., Spence, H. E., Blake, J. B., Bonnell, J., Wygant, J. R., and Kletzing, C. A.: Interactions
of energetic electrons with ULF waves triggered by interplanetary shock: Van
Allen Probes observations in the magnetotail, J. Geophys.
Res.-Space, 119, 8262–8273, https://doi.org/10.1002/2014JA020023, 2014.
Jaynes, A. N., Lessard, M. R., Takahashi, K., Ali, A. F., Malaspina, D. M., Michell, R. G., Spanswick, E. L., Baker, D. N., Blake, J. B., Cully, C., Donovan, E. F., Kletzing, C. A., Reeves, G. D.,
Samara, M., Spence, H. E., and Wygant, J. R.: Correlated
Pc4–5 ULF waves, whistler-mode chorus, and pulsating aurora observed by the
Van Allen Probes and ground-based systems, J. Geophys. Res.-Space, 120,
8749–8761, https://doi.org/10.1002/2015JA021380, 2015.
Kennel, C. F. and Petschek, H. E.: Limit on stably trapped particle fluxes,
J. Geophys. Res., 71, 1–28, https://doi.org/10.1029/JZ071i001p00001, 1966.
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T.,
Bodet, D., Bounds, S. R., Chutter, M., Connerney, J., Crawford, D., Dolan, J. S., Dvorsky, R.,
Hospodarsky, G. B., Howard, J., Jordanova, V., Johnson, R. A., Kirchner, D. L., Mokrzycki, B., Needell, G., Odom, J.,
Mark, D., Pfaff Jr., R., Phillips, J. R., Piker, C. W., Remington, S. L., Rowland, D., Santolik, O., Schnurr, R., Sheppard, D., Smith, C. W., Thorne, R. M., and Tyler, J.: The
Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS)
on RBSP, Space Sci. Rev., 179, 127–181, https://doi.org/10.1007/s11214-013-9993-6, 2013.
Kurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G.
B., Thaller, S., and Wygant, J. R.: Electron densities inferred from plasma
wave spectra obtained by the Waves instrument on Van Allen Probes. J.
Geophys. Res.-Space, 120, 904–914, https://doi.org/10.1002/2014JA020857, 2015.
Li, L., Zhou, X.-Z., Zong, Q.-G., Rankin, R., Zou, H., Liu, Y., Chen, X.-R.,
and Hao, Y.-X.: Charged particle behavior in localized ultralow frequency
waves: Theory and observations, Geophys. Res. Lett., 44, 5900–5908,
https://doi.org/10.1002/2017GL073392, 2017.
Li, W., Thorne, R. M., Angelopoulos, V., Bonnell, J. W., McFadden, J. P.,
Carlson, C. W., LeContel, O., Roux, A., Glassmeier, K. H., and Auster, H. U.:
Evaluation of whistler-mode chorus intensification on the nightside during an
injection event observed on the THEMIS spacecraft, J. Geophys. Res., 114,
A00C14, https://doi.org/10.1029/2008JA013554, 2009.
Li, W., Thorne, R. M., Bortnik, J., Nishimura, Y., and Angelopoulos, V.:
Modulation of whistler mode chorus waves: 1. Role of compressional Pc4–5
pulsations, J. Geophys. Res., 116, A06205, https://doi.org/10.1029/2010JA016312, 2011.
Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Blake, J. B., Fennell, J. F., Claudepierre, S. G., Wygant, J. R., and Thaller, S. A.: An unusual
enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere
associated with substorm-injected electrons, Geophys. Res. Lett., 40,
3798–3803, https://doi.org/10.1002/grl.50787, 2013.
Li, W., Ma, Q., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S.,
Hospodarsky, G. B., and Nishimura, Y.: Statistical properties of
plasmaspheric hiss derived from Van Allen Probes data and their effects on
radiation belt electron dynamics, J. Geophys. Res.-Space, 120, 3393–3405,
https://doi.org/10.1002/2015JA021048, 2015a.
Li, W., Chen, L., Bortnik, J., Thorne, R. M., Angelopoulos, V., Kletzing, C.
A., Kurth, W. S., and Hospodarsky, G. B.: First evidence for chorus at a
large geocentric distance as a source of plasmaspheric hiss: Coordinated
THEMIS and Van Allen Probes observation, Geophys. Res. Lett., 42, 241–248,
https://doi.org/10.1002/2014GL062832, 2015b.
Lyons, L. R. and Thorne, R. M.: Equilibrium structure of radiation belt
electrons, J. Geophys. Res., 78, 2142–2149, https://doi.org/10.1029/JA078i013p02142,
1973.
Lyons, L. R., Thorne, R. M., and Kennel, C. F.: Pitch-angle diffusion of
radiation belt electrons within the plasmasphere, J. Geophys. Res., 77,
3455–3474, https://doi.org/10.1029/JA077i019p03455, 1972.
Ma, Q., Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C. A., Kurth, W. S.,
Hospodarsky, G. B., Spence, H. E., Baker, D. N., Blake, J. B., Fennell, J. F., Claudepierre, S. G., and Angelopoulos, V.: Characteristic
energy range of electron scattering due to plasmaspheric hiss, J. Geophys.
Res.-Space, 121, 11737–11749, https://doi.org/10.1002/2016JA023311, 2016.
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and
Ukhorskiy, A.: Science Objectives and Rationale for the Radiation Belt Storm
Probes Mission, Space Sci. Rev., 1–15, https://doi.org/10.1007/s11214-012-9908-y, 2012.
Meredith, N. P., Horne, R. B., and Anderson, R. R.: Substorm dependence of
chorus amplitudes: Implications for the acceleration of electrons to
relativistic energies,J. Geophys. Res., 106, 13165–13178,
https://doi.org/10.1029/2000JA900156, 2001.
Meredith, N. P., Horne, R. B., Clilverd, M. A., Horsfall, D., Thorne, R. M.,
and Anderson, R. R.: Origins of plasmaspheric hiss, J. Geophys. Res., 111,
A09217, https://doi.org/10.1029/2006JA011707, 2006.
Meredith, N. P., Horne, R. B., Glauert, S. A., and Anderson, R. R.: Slot
region electron loss timescales due to plasmaspheric hiss and lightning
generated whistlers, J. Geophys. Res., 112, A08214, https://doi.org/10.1029/2007JA012413,
2007.
Meredith, N. P., Horne, R. B., Glauert, S. A., Baker, D. N., Kanekal, S. G.,
and Albert, J. M.: Relativistic electron loss timescales in the slot region,
J. Geophys. Res., 114, A03222, https://doi.org/10.1029/2008JA013889, 2009.
Meredith, N. P., Horne, R. B., Bortnik, J., Thorne, R. M., Chen, L., Li, W.,
and Sicard-Piet, A.: Global statistical evidence for chorus as the embryonic
source of plasmaspheric hiss, Geophys. Res. Lett., 40, 2891–2896,
https://doi.org/10.1002/grl.50593, 2013.
Ni, B., Bortnik, J., Thorne, R. M., Ma, Q., and Chen, L.: Resonant scattering
and resultant pitch angle evolution of relativistic electrons by
plasmaspheric hiss, J. Geophys. Res.-Space, 118, 7740–7751,
https://doi.org/10.1002/2013JA019260, 2013.
Ni, B., Li, W., Thorne, R. M., Bortnik, J., Ma, Q., Chen, L., Kletzing, C. A., Kurth, W. S.,
Hospodarsky, G. B., Reeves, G. D., Spence, H. E., Blake, J. B., Fennell, J. F., and Claudepierre, S. G.: Resonant
scattering of energetic electrons by unusual low-frequency hiss, Geophys.
Res. Lett., 40, 3798–3803, https://doi.org/10.1002/2014GL059389, 2014.
Shi, R., Li, W., Ma, Q., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Blake, J. B., Fennell, J. F., and Claudepierre, S. G.:
Systematic evaluation of low-frequency hiss and energetic electron
injections, J. Geophys. Res.-Space, 122, 10263–10274,
https://doi.org/10.1002/2017JA024571, 2017.
Southwood, D. J. and Kivelson, M. G.: Charged particle behavior in
low-frequency geomagnetic pulsations. I Transverse waves, J. Geophys.
Res., 86 , 5643–5655, https://doi.org/10.1029/JA086iA07p05643, 1981.
Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S., Chan, A. A., Claudepierre, S. G., Clemmons, J. H.,
Cravens, J. P., Elkington, S. R., Fennell, J. F., Friedel, R. H. W., Funsten, H. O., Goldstein, J., Green, J. C., Guthrie, A., Henderson, M. G.,
Horne, R. B., Hudson, M. K., Jahn, J.-M., Jordanova, V. K., Kanekal, S. G., Klatt, B. W.,
Larsen, B. A., Li, X., MacDonald, E. A., Mann, I. R., Niehof, J., O'Brien, T. P., Onsager, T. G., Salvaggio, D., Skoug, R. M., Smith, S. S., Suther, L. L., Thomsen, M. F., and Thorne, R. M.: Science
Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma
(ECT) Suite on NASA's Radiation Belt Storm Probes (RBSP) Mission, Space Sci.
Rev., 179, 311–336, https://doi.org/10.1007/s11214-013-0007-5, 2013.
Summers, D., Ni, B., Meredith, N. P., Horne, R. B., Thorne, R. M.,
Moldwin, M. B., and Anderson, R. R.: Electron scattering by whistler-mode ELF
hiss in plasmaspheric plumes, J. Geophys. Res., 113, A04219,
https://doi.org/10.1029/2007JA012678, 2008.
Summers, D., Tang, R., and Thorne, R. M.: Limit on stably trapped particle
fluxes in planetary magnetospheres, J. Geophys. Res., 114, A10210,
https://doi.org/10.1029/2009JA014428, 2009.
Thorne, R. M., Smith, E. J., Burton, R. K., and Holzer, R. E.: Plasmaspheric
hiss, J. Geophys. Res., 78, 1581–1596, https://doi.org/10.1029/JA078i010p01581, 1973.
Thorne, R. M., Church, S. R., and Gorney, D. J.: On the origin of
plasmaspheric hiss – The importance of wave propagation and the plasmapause,
J. Geophys. Res., 84, 5241–5247, https://doi.org/10.1029/JA084iA09p05241, 1979.
Wang, C., Zong, Q., Xiao, F., Su, Z., Wang, Y., and Yue, C.: The relations
between magnetospheric chorus and hiss inside and outside the plasmasphere
boundary layer: Cluster observation, J. Geophys. Res., 116, A07221,
https://doi.org/10.1029/2010JA016240, 2011.
Wygant J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D., Ludlam, M., Turin, P., Harvey, P. R., Hochmann, R., Harps, K., Dalton, G., McCauley, J., Rachelson, W., Gordon, D.,
Donakowski, B., Shultz, C., Smith, C., Diaz-Aguado, M., Fischer, J., Heavner, S., Berg, P., Malsapina, D. M., Bolton, M. K., Hudson, M., Strangeway, R. J., Baker, D. N., Li, X., Albert, J.,
Foster, J. C., Chaston, C. C., Mann, I., Donovan, E., Cully, C. M., Cattell, C. A.,
Krasnoselskikh, V., Kersten, K., Brenneman, A., and Tao, J. B.: The Electric
Field and Waves Instruments on the Radiation Belt Storm Probes Mission, Space
Sci. Rev., 179, 183–220, https://doi.org/10.1007/s11214-013-0013-7, 2013.
Zhou, X.-Z., Wang, Z.-H., Zong, Q.-G., Claudepierre, S. G., Mann, I. R.,
Kivelson, M. G., Angelopoulos, V., Hao, Y.-X., Wang, Y.-F., and Pu, Z.-Y.:
Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen
radiation belts, Geophys. Res. Lett., 42, 6199–6204,
https://doi.org/10.1002/2015GL064988, 2015.
Zhou, X.-Z., Wang, Z.-H., Zong, Q.-G., Rankin, R., Kivelson, M. G.,
Chen, X.-R., Blake, J. B., Wygant, J. R., and Kletzing, C. A.: Charged
particle behavior in the growth and damping stages of ultralow frequency
waves: Theory and Van Allen Probes observations, J. Geophys. Res.-Space, 121,
3254–3263, https://doi.org/10.1002/2016JA022447, 2016.
Zong, Q.-G., Zhou, X.-Z., Wang, Y. F., Li, X., Song, P., Baker, D. N., Fritz, T. A., Daly, P. W., Dunlop, M., and Pedersen, A.: Energetic
electron response to ULF waves induced by interplanetary shocks in the outer
radiation belt, J. Geophys. Res., 114, A10204, https://doi.org/10.1029/2009JA014393,
2009.