Articles | Volume 36, issue 2
https://doi.org/10.5194/angeo-36-633-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-633-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Solar rotational cycle in lightning activity in Japan during the 18–19th centuries
Hiroko Miyahara
CORRESPONDING AUTHOR
Humanities and Sciences/Museum Careers, Musashino Art University, 1-736 Ogawa-cho, Kodaira-city, Tokyo 187-8505, Japan
Ryuho Kataoka
National Institute of Polar Research, 10-3, Midori-cho, Tachikawa-city, Tokyo 190-8518, Japan
Department of Polar Science, School of Multidisciplinary Sciences, Sokendai 10-3 Midori-cho, Tachikawa-city, Tokyo 190-8518, Japan
Takehiko Mikami
Faculty of Liberal Arts, Teikyo University, 359 Ohtsuka, Hachioji city, Tokyo 192-0395, Japan
Masumi Zaiki
Faculty of Economics, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-city, Tokyo 180-8633, Japan
Junpei Hirano
Faculty of Liberal Arts, Teikyo University, 359 Ohtsuka, Hachioji city, Tokyo 192-0395, Japan
Minoru Yoshimura
Faculty of Education, University of Yamanashi, 4-4-37 Takeda, Kofu-city, Yamanashi 400-8510, Japan
Yasuyuki Aono
Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-city, Osaka 599-8531, Japan
Kiyomi Iwahashi
National Institute of Japanese Literature, 10-3, Midori-cho, Tachikawa-city, Tokyo 190-0014, Japan
Related authors
Hiroko Miyahara, Yasuyuki Aono, and Ryuho Kataoka
Ann. Geophys., 35, 1195–1200, https://doi.org/10.5194/angeo-35-1195-2017, https://doi.org/10.5194/angeo-35-1195-2017, 2017
Short summary
Short summary
Solar activity and climate show correlations over a wide range of timescales. It is important to understand the behavior of the 27-day solar rotational period in lightning activities because it provides an opportunity to understand how the sun influences weather and climate. We analyzed lightning data extracted from diaries written in Kyoto, Japan from the mid-17th to the mid-18th century. Lightning shows the signal of the 27-day period; however, it disappeared during the Maunder Minimum.
Hiroko Miyahara, Chika Higuchi, Toshio Terasawa, Ryuho Kataoka, Mitsuteru Sato, and Yukihiro Takahashi
Ann. Geophys., 35, 583–588, https://doi.org/10.5194/angeo-35-583-2017, https://doi.org/10.5194/angeo-35-583-2017, 2017
Short summary
Short summary
Detailed analyses of the 27-day solar rotational period in cloud and lightning activities may help in untangling the process of solar influence on weather and climate. We analyzed the lightning data in Japan for AD 1989–2015 and found that the 27-day solar rotational period is seen in wide-area lightning activity. The signal was stronger at the maxima of solar decadal cycles. It was also found that the signal of the 27-day period migrates from the southwest to the northeast in Japan.
R. Kataoka, Y. Miyoshi, K. Shigematsu, D. Hampton, Y. Mori, T. Kubo, A. Yamashita, M. Tanaka, T. Takahei, T. Nakai, H. Miyahara, and K. Shiokawa
Ann. Geophys., 31, 1543–1548, https://doi.org/10.5194/angeo-31-1543-2013, https://doi.org/10.5194/angeo-31-1543-2013, 2013
Shin'ya Nakano, Ryuho Kataoka, Masahito Nosé, and Jesper W. Gjerloev
Ann. Geophys., 41, 529–539, https://doi.org/10.5194/angeo-41-529-2023, https://doi.org/10.5194/angeo-41-529-2023, 2023
Short summary
Short summary
Substorms are a phenomenon in the magnetosphere–ionosphere system, which are characterised by brightening of an auroral arc and enhancement of electric currents in the polar ionosphere. Since substorms are difficult to predict, this study treats a substorm occurrence as a stochastic phenomenon and represents the substorm occurrence rate with a machine learning model. We then analyse the response of substorm activity to solar wind conditions by feeding synthetic solar wind data into the model.
Junpei Hirano, Takehiko Mikami, and Masumi Zaiki
Clim. Past, 18, 327–339, https://doi.org/10.5194/cp-18-327-2022, https://doi.org/10.5194/cp-18-327-2022, 2022
Short summary
Short summary
The East Asian winter monsoon causes orographic snowfall over the windward side of the Japanese islands (facing the Sea of Japan and the northwesterly winter monsoon flow) and negative temperature anomalies around Japan. In this study, we reconstruct the outbreak of the winter monsoon around Japan for the winter from the 1840s to the early 1850s by using daily weather information recorded in old Japanese diaries and early daily instrumental temperature data.
Shin'ya Nakano and Ryuho Kataoka
Ann. Geophys., 40, 11–22, https://doi.org/10.5194/angeo-40-11-2022, https://doi.org/10.5194/angeo-40-11-2022, 2022
Short summary
Short summary
The relationships between auroral activity and the solar-wind conditions are modeled with a machine-learning technique. The impact of various solar-wind parameters on the auroral activity is then evaluated by putting artificial inputs into the trained machine-learning model. One of the notable findings is that the solar-wind density effect on the auroral activity is emphasized under high solar-wind speed and weak solar-wind magnetic field.
Yuichi S. Hayakawa, Hidetsugu Yoshida, Hiroyuki Obanawa, Ryutaro Naruhashi, Koji Okumura, Masumi Zaiki, and Ryoichi Kontani
Nat. Hazards Earth Syst. Sci., 18, 429–444, https://doi.org/10.5194/nhess-18-429-2018, https://doi.org/10.5194/nhess-18-429-2018, 2018
Short summary
Short summary
This study assesses the applicability of the RPAS-based photogrammetric approach for a high-definition geomorphometry of hummocks, i.e., characteristic morphological features in the surface of debris avalanche deposits caused by a gigantic sector collapse of a volcanic mountain body. Satellite-based topographic data were also utilized to estimate the source volume of the sector collapse. We provide new, detailed insights into the characteristics of the debris avalanche and potential hazards.
Hiroko Miyahara, Yasuyuki Aono, and Ryuho Kataoka
Ann. Geophys., 35, 1195–1200, https://doi.org/10.5194/angeo-35-1195-2017, https://doi.org/10.5194/angeo-35-1195-2017, 2017
Short summary
Short summary
Solar activity and climate show correlations over a wide range of timescales. It is important to understand the behavior of the 27-day solar rotational period in lightning activities because it provides an opportunity to understand how the sun influences weather and climate. We analyzed lightning data extracted from diaries written in Kyoto, Japan from the mid-17th to the mid-18th century. Lightning shows the signal of the 27-day period; however, it disappeared during the Maunder Minimum.
Hiroko Miyahara, Chika Higuchi, Toshio Terasawa, Ryuho Kataoka, Mitsuteru Sato, and Yukihiro Takahashi
Ann. Geophys., 35, 583–588, https://doi.org/10.5194/angeo-35-583-2017, https://doi.org/10.5194/angeo-35-583-2017, 2017
Short summary
Short summary
Detailed analyses of the 27-day solar rotational period in cloud and lightning activities may help in untangling the process of solar influence on weather and climate. We analyzed the lightning data in Japan for AD 1989–2015 and found that the 27-day solar rotational period is seen in wide-area lightning activity. The signal was stronger at the maxima of solar decadal cycles. It was also found that the signal of the 27-day period migrates from the southwest to the northeast in Japan.
R. Kataoka, Y. Fukuda, H. A. Uchida, H. Yamada, Y. Miyoshi, Y. Ebihara, H. Dahlgren, and D. Hampton
Ann. Geophys., 34, 41–44, https://doi.org/10.5194/angeo-34-41-2016, https://doi.org/10.5194/angeo-34-41-2016, 2016
Short summary
Short summary
Stereoscopy of aurora was performed at the record fast sampling rate of 100 fps to measure the emission altitude of rapidly varying fine-scale structures. The new method unveiled that very different types of aurora appear in the same direction at different altitudes.
R. Kataoka, Y. Nakagawa, and T. Sato
Ann. Geophys., 33, 75–78, https://doi.org/10.5194/angeo-33-75-2015, https://doi.org/10.5194/angeo-33-75-2015, 2015
Short summary
Short summary
Using a new air-shower simulation driven by the proton flux data obtained from GOES satellites, we show the possibility of significant enhancement of the effective dose rate of up to 4.5 µSv/hr at a conventional flight altitude of 12 km during the largest solar proton event that did not cause a ground-level enhancement. As a result, a new GOES-driven model is proposed to give an estimate of the contribution from the isotropic component of the radiation dose in the stratosphere.
H. Fujiwara, S. Nozawa, Y. Ogawa, R. Kataoka, Y. Miyoshi, H. Jin, and H. Shinagawa
Ann. Geophys., 32, 831–839, https://doi.org/10.5194/angeo-32-831-2014, https://doi.org/10.5194/angeo-32-831-2014, 2014
R. Kataoka, Y. Miyoshi, K. Shigematsu, D. Hampton, Y. Mori, T. Kubo, A. Yamashita, M. Tanaka, T. Takahei, T. Nakai, H. Miyahara, and K. Shiokawa
Ann. Geophys., 31, 1543–1548, https://doi.org/10.5194/angeo-31-1543-2013, https://doi.org/10.5194/angeo-31-1543-2013, 2013
Short summary
Old diaries kept in Japan tell us a surprising fact. The 27-day solar rotational period in thunder and lightning activities had been persistent for the past 300 years. The intensity is found to be more prominent as solar activity increases. The physical mechanism of the Sun–Climate connection is yet uncertain, an important link surely exists between the solar activity and terrestrial climate even at a meteorological timescale.
Old diaries kept in Japan tell us a surprising fact. The 27-day solar rotational period in...