Articles | Volume 36, issue 2
https://doi.org/10.5194/angeo-36-459-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/angeo-36-459-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wavenumber-4 structures observed in the low-latitude ionosphere during low and high solar activity periods using FORMOSAT/COSMIC observations
Amelia Naomi Onohara
CORRESPONDING AUTHOR
Brazilian Space Agency, SPO Sul, Area 5, Quadra 3, Bloco A,
70610-200, Brasilia, DF, Brazil
Inez Staciarini Batista
National Institute for Space Research, Av dos Astronautas, 1758, Jd da
Granja, 12227-010, Sao Jose dos Campos, SP, Brazil
Paulo Prado Batista
National Institute for Space Research, Av dos Astronautas, 1758, Jd da
Granja, 12227-010, Sao Jose dos Campos, SP, Brazil
Related authors
No articles found.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Ana Roberta Paulino, Delis Otildes Rodrigues, Igo Paulino, Lourivaldo Mota Lima, Ricardo Arlen Buriti, Paulo Prado Batista, Aaron Ridley, and Chen Wu
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2023-23, https://doi.org/10.5194/angeo-2023-23, 2023
Revised manuscript under review for ANGEO
Short summary
Short summary
Comparisons of wind measurements using two different techniques (ground based radar and satellite) in Brasil during 2006 were made in order to point out the advantage of each instrument for studies in the mesosphere and upper thermosphere. (i) For short period variations, the measurements of the satellite was more advantageous. (ii) The month climatology using the radar were more appropriate. (iii) If the long period (longer than few months), both instruments responded satisfactorily.
Pedro Alves Fontes, Marcio Tadeu de Assis Honorato Muella, Laysa Cristina Araújo Resende, Vânia Fátima Andrioli, Paulo Roberto Fagundes, Valdir Gil Pillat, Paulo Prado Batista, and Alexander Jose Carrasco
Ann. Geophys., 41, 209–224, https://doi.org/10.5194/angeo-41-209-2023, https://doi.org/10.5194/angeo-41-209-2023, 2023
Short summary
Short summary
In the terrestrial ionosphere, sporadic (metallic) layers are formed. The formation of these layers are related to the action of atmospheric waves. These waves, also named tides, are due to the absorption of solar radiation in the atmosphere. We investigated the role of the tides with 8 h period in the formation of the sporadic layers. The study was conducted using ionosonde and meteor radar data, as well as computing simulations. The 8 h tides intensified the density of the sporadic layers.
Ângela M. Santos, Christiano G. M. Brum, Inez S. Batista, José H. A. Sobral, Mangalathayil A. Abdu, and Jonas R. Souza
Ann. Geophys., 40, 259–269, https://doi.org/10.5194/angeo-40-259-2022, https://doi.org/10.5194/angeo-40-259-2022, 2022
Short summary
Short summary
Using the Digisonde data this paper shows that the small variation in the geomagnetic activity during low solar activity can affect both the parameter of height and the frequency of the intermediate layer (ILs) over the low-latitude Brazilian sector. The most expressive responses of the ILs to geomagnetic activity were observed during the summer when the height of the ILs suffered a significant decrease with the increase of the magnetic activity magnetic in the first hours of the day.
Xiao Liu, Jiyao Xu, Jia Yue, You Yu, Paulo P. Batista, Vania F. Andrioli, Zhengkuan Liu, Tao Yuan, Chi Wang, Ziming Zou, Guozhu Li, and James M. Russell III
Earth Syst. Sci. Data, 13, 5643–5661, https://doi.org/10.5194/essd-13-5643-2021, https://doi.org/10.5194/essd-13-5643-2021, 2021
Short summary
Short summary
Based on the gradient balance wind theory and the SABER observations, a dataset of monthly mean zonal wind has been developed at heights of 18–100 km and latitudes of 50° Sndash;50° N from 2002 to 2019. The dataset agrees with the zonal wind from models (MERRA2, UARP, HWM14) and observations by meteor radar and lidar at seven stations. The dataset can be used to study seasonal and interannual variations and can serve as a background for wave studies of tides and planetary waves.
Ana Roberta Paulino, Fabiano da Silva Araújo, Igo Paulino, Cristiano Max Wrasse, Lourivaldo Mota Lima, Paulo Prado Batista, and Inez Staciarini Batista
Ann. Geophys., 39, 151–164, https://doi.org/10.5194/angeo-39-151-2021, https://doi.org/10.5194/angeo-39-151-2021, 2021
Short summary
Short summary
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere derived from the total electron content were investigated over Brazil from 2011 to 2014. The results showed annual, semiannual and triannual oscillations as the dominant components. Additionally, the most pronounced short-period oscillations were observed between 7 and 11 d, which suggest a possible coupling of the lunar tide and planetary waves.
Jianyuan Wang, Wen Yi, Jianfei Wu, Tingdi Chen, Xianghui Xue, Robert A. Vincent, Iain M. Reid, Paulo P. Batista, Ricardo A. Buriti, Toshitaka Tsuda, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-33, https://doi.org/10.5194/acp-2021-33, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we report the climatology of migrating and non-migrating tides in mesopause winds estimated using multiyear observations from three meteor radars in the southern equatorial region. The results reveal that the climatological patterns of tidal amplitudes by meteor radars is similar to the Climatological Tidal Model of the Thermosphere (CTMT) results and the differences are mainly due to the effect of the stratospheric sudden warming (SSW) event.
Ricardo A. Buriti, Wayne Hocking, Paulo P. Batista, Igo Paulino, Ana R. Paulino, Marcial Garbanzo-Salas, Barclay Clemesha, and Amauri F. Medeiros
Ann. Geophys., 38, 1247–1256, https://doi.org/10.5194/angeo-38-1247-2020, https://doi.org/10.5194/angeo-38-1247-2020, 2020
Short summary
Short summary
Solar atmospheric tides are natural oscillations of 24, 12, 8... hours that contribute to the circulation of the atmosphere from low to high altitudes. The Sun heats the atmosphere periodically because, mainly, water vapor and ozone absorb solar radiation between the ground and 50 km height during the day. Tides propagate upward and they can be observed in, for example, the wind field. This work presents diurnal tides observed by meteor radars which measure wind between 80 and 100 km height.
Igo Paulino, Ana Roberta Paulino, Ricardo Y. C. Cueva, Ebenezer Agyei-Yeboah, Ricardo Arlen Buriti, Hisao Takahashi, Cristiano Max Wrasse, Ângela M. Santos, Amauri Fragoso de Medeiros, and Inez S. Batista
Ann. Geophys., 38, 437–443, https://doi.org/10.5194/angeo-38-437-2020, https://doi.org/10.5194/angeo-38-437-2020, 2020
Short summary
Short summary
In this paper, an extensive study has been done in order to investigate periodic oscillations in the start times of equatorial plasma bubbles observed over Brazil. Using OI6300 airglow images and ionograms, it was possible to detect semimonthly oscillations in the start times of equatorial plasma bubbles (EPBs) and equatorial Spread-F. This semimonthly oscillation is likely related to the lunar tide, which represents an important mechanism acting in the day-to-day variability of EPBs.
Ângela Machado dos Santos, Inez Staciarini Batista, Mangalathayil Ali Abdu, José Humberto Andrade Sobral, Jonas Rodrigues de Souza, and Christiano Garnett Marques Brum
Ann. Geophys., 37, 1005–1024, https://doi.org/10.5194/angeo-37-1005-2019, https://doi.org/10.5194/angeo-37-1005-2019, 2019
Short summary
Short summary
For the first time, the climatology of intermediate descending layers (~150 km) over Brazilian equatorial and low-latitude regions during the extreme solar minimum period of 2009 was investigated. The results are interesting and innovative. For this analysis we used data of height and top frequency of intermediate layers collected from a digisonde located at São Luis and Cachoreira Paulista.
Claudia M. N. Candido, Jiankui Shi, Inez S. Batista, Fabio Becker-Guedes, Emília Correia, Mangalathayil A. Abdu, Jonathan Makela, Nanan Balan, Narayan Chapagain, Chi Wang, and Zhengkuan Liu
Ann. Geophys., 37, 657–672, https://doi.org/10.5194/angeo-37-657-2019, https://doi.org/10.5194/angeo-37-657-2019, 2019
Short summary
Short summary
This study concerns postmidnight ionospheric irregularities observed during low solar activity conditions. We analyze data from digisondes and optical imaging systems located in an equatorial region over Brazil. The results show that they occur under unfavorable and unexpected conditions. This work can be useful for space weather forecasting during low solar activity.
Mangalathayil A. Abdu, Paulo A. B. Nogueira, Angela M. Santos, Jonas R. de Souza, Inez S. Batista, and Jose H. A. Sobral
Ann. Geophys., 36, 609–620, https://doi.org/10.5194/angeo-36-609-2018, https://doi.org/10.5194/angeo-36-609-2018, 2018
Short summary
Short summary
Equatorial ionospheric irregularities have a significant detrimental impact on a variety of space application systems in navigation and communication areas that utilize satellites, especially the Global Navigation Satellite Systems (GNSS) network. The development of these irregularities in the nighttime ionosphere is controlled primarily by ionospheric electric fields and instabilities. The effect of magnetic disturbance on these electric fields and on the irregularities is investigated here.
Laysa C. A. Resende, Christina Arras, Inez S. Batista, Clezio M. Denardini, Thainá O. Bertollotto, and Juliano Moro
Ann. Geophys., 36, 587–593, https://doi.org/10.5194/angeo-36-587-2018, https://doi.org/10.5194/angeo-36-587-2018, 2018
Short summary
Short summary
We present new results on the behavior of sporadic E layers (Es layers) using GPS (global positioning system) radio occultation (RO) measurements obtained from the FORMOSAT-3/COSMIC satellites and digisonde data over Cachoeira Paulista, a low-latitude station in Brazil.
Gabriel Augusto Giongo, José Valentin Bageston, Paulo Prado Batista, Cristiano Max Wrasse, Gabriela Dornelles Bittencourt, Igo Paulino, Neusa Maria Paes Leme, David C. Fritts, Diego Janches, Wayne Hocking, and Nelson Jorge Schuch
Ann. Geophys., 36, 253–264, https://doi.org/10.5194/angeo-36-253-2018, https://doi.org/10.5194/angeo-36-253-2018, 2018
Short summary
Short summary
This work presents four events of mesosphere fronts observed on King George Island, Antarctic Peninsula, in the year 2011. The atmospheric background environment was analyzed to investigate the propagation conditions for all cases. To investigate the sources for such cases, satellite images were used. In two cases, we found that strong tropospheric instabilities were potential sources, and in the other two cases, it was not possible to associate them with tropospheric sources.
Ângela M. Santos, Mangalathayil A. Abdu, Jonas R. Souza, Inez S. Batista, and José H. A. Sobral
Ann. Geophys., 35, 1219–1229, https://doi.org/10.5194/angeo-35-1219-2017, https://doi.org/10.5194/angeo-35-1219-2017, 2017
Short summary
Short summary
This paper analyzes the influence of the recent deep and prolonged solar minimum on the daytime zonal and vertical plasma drift velocities during quiet time over Jicamarca, Peru. Our results show that an anomalously low zonal wind was mainly responsible for the observed anomalous behavior in the zonal drift followed by a decrease in the E-region conductivity and the dynamo electric field during 2008.
Cosme Alexandre O. B. Figueiredo, Ricardo A. Buriti, Igo Paulino, John W. Meriwether, Jonathan J. Makela, Inez S. Batista, Diego Barros, and Amauri F. Medeiros
Ann. Geophys., 35, 953–963, https://doi.org/10.5194/angeo-35-953-2017, https://doi.org/10.5194/angeo-35-953-2017, 2017
Amitava Guharay, Paulo Prado Batista, Barclay Robert Clemesha, Ricardo Arlen Buriti, and Nelson Jorge Schuch
Ann. Geophys., 34, 411–419, https://doi.org/10.5194/angeo-34-411-2016, https://doi.org/10.5194/angeo-34-411-2016, 2016
Short summary
Short summary
A comparative study of the quasi-16-day wave in the middle from three Brazilian stations, indicates multiple modes of the concerned wave component. The wave amplitude shows maxima in summer and winter. A potential coupling of the concerned wave with other short period planetary waves is found. The dominant wave components vary from the westward to eastward from the tropical to mid-latitude in the stratosphere. The prevailing westerly wind may favor the wave filtering of westward waves.
V. F. Andrioli, P. P. Batista, B. R. Clemesha, N. J. Schuch, and R. A. Buriti
Ann. Geophys., 33, 1183–1193, https://doi.org/10.5194/angeo-33-1183-2015, https://doi.org/10.5194/angeo-33-1183-2015, 2015
Short summary
Short summary
Multi-year observations of gravity wave momentum fluxes have been analyzed at three different sites using meteor radar data. This is a first, as no such experimental results on the latitudinal dependence of these parameters at low latitudes had been derived with ground-based instruments in the MLT region before. Until now similar studies had been carried out with satellites and circulation models. Therefore this thematic can be lead to a valuable scientific contribution.
L. R. Araújo, L. M. Lima, P. P. Batista, B. R. Clemesha, and H. Takahashi
Ann. Geophys., 32, 519–531, https://doi.org/10.5194/angeo-32-519-2014, https://doi.org/10.5194/angeo-32-519-2014, 2014
V. F. Andrioli, D. C. Fritts, P. P. Batista, B. R. Clemesha, and D. Janches
Ann. Geophys., 31, 2123–2135, https://doi.org/10.5194/angeo-31-2123-2013, https://doi.org/10.5194/angeo-31-2123-2013, 2013
V. F. Andrioli, D. C. Fritts, P. P. Batista, and B. R. Clemesha
Ann. Geophys., 31, 889–908, https://doi.org/10.5194/angeo-31-889-2013, https://doi.org/10.5194/angeo-31-889-2013, 2013
A. N. Onohara, I. S. Batista, and H. Takahashi
Ann. Geophys., 31, 209–215, https://doi.org/10.5194/angeo-31-209-2013, https://doi.org/10.5194/angeo-31-209-2013, 2013
Short summary
Global coverage measurements made by satellites have provided observational studies which have shown the presence of four peaks in global longitudinal structures from global local time observations of equatorial ionization anomalies. The structures seen in the ionosphere are related to the diurnal non-migrating wave that comes from the troposphere and can be noticed in periods of low and high solar activity in the low-latitude ionosphere regions, mainly at altitudes from ~ 250 km up to ~ 800 km.
Global coverage measurements made by satellites have provided observational studies which have...
Special issue