Articles | Volume 36, issue 2
https://doi.org/10.5194/angeo-36-287-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-287-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An initial ULF wave index derived from 2 years of Swarm observations
Constantinos Papadimitriou
Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Athens, Greece
Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Athens, Greece
Ioannis A. Daglis
Section of Astrophysics, Astronomy and Mechanics, Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Athens, Greece
Omiros Giannakis
Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Athens, Greece
Related authors
G. Balasis, I. A. Daglis, I. R. Mann, C. Papadimitriou, E. Zesta, M. Georgiou, R. Haagmans, and K. Tsinganos
Ann. Geophys., 33, 1237–1252, https://doi.org/10.5194/angeo-33-1237-2015, https://doi.org/10.5194/angeo-33-1237-2015, 2015
C. Katsavrias, I. A. Daglis, W. Li, S. Dimitrakoudis, M. Georgiou, D. L. Turner, and C. Papadimitriou
Ann. Geophys., 33, 1173–1181, https://doi.org/10.5194/angeo-33-1173-2015, https://doi.org/10.5194/angeo-33-1173-2015, 2015
Nour Dahmen, Antoine Brunet, Sebastien Bourdarie, Christos Katsavrias, Guillerme Bernoux, Stefanos Doulfis, Afroditi Nasi, Ingmar Sandberg, Constantinos Papadimitriou, Jesus Oliveros Fernandez, and Ioannis Daglis
Ann. Geophys., 41, 301–312, https://doi.org/10.5194/angeo-41-301-2023, https://doi.org/10.5194/angeo-41-301-2023, 2023
Short summary
Short summary
Earth’s space environment is populated with charged particles. The energetic ones are trapped around Earth in radiation belts. Orbiting spacecraft that cross their region can accumulate charges on their internal surfaces, leading to hazardous electrostatic discharges. This paper showcases the SafeSpace safety prototype, which aims to warn satellite operators of probable incoming hazardous events by simulating the dynamics of the electron radiation belts from their origin at the Sun.
Christos Katsavrias, Afroditi Nasi, Ioannis A. Daglis, Sigiava Aminalragia-Giamini, Nourallah Dahmen, Constantinos Papadimitriou, Marina Georgiou, Antoine Brunet, and Sebastien Bourdarie
Ann. Geophys., 40, 379–393, https://doi.org/10.5194/angeo-40-379-2022, https://doi.org/10.5194/angeo-40-379-2022, 2022
Short summary
Short summary
The radial diffusion mechanism is of utmost importance to both the acceleration and loss of relativistic electrons in the outer radiation belt and, consequently, for physics-based models, which provide nowcasting and forecasting of the electron population. In the framework of the "SafeSpace" project, we have created a database of calculated radial diffusion coefficients, and, furthermore, we have exploited it to provide insights for future modelling efforts.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Christos Katsavrias, Constantinos Papadimitriou, Sigiava Aminalragia-Giamini, Ioannis A. Daglis, Ingmar Sandberg, and Piers Jiggens
Ann. Geophys., 39, 413–425, https://doi.org/10.5194/angeo-39-413-2021, https://doi.org/10.5194/angeo-39-413-2021, 2021
Short summary
Short summary
The nature of the semi-annual variation in the relativistic electron fluxes in the Earth's outer radiation belt has been a debate for over 30 years. Our work shows that it is primarily driven by the Russell–McPherron effect, which indicates that reconnection is responsible not only for the short-scale but also the seasonal variability of the electron belt as well. Moreover, it is more pronounced during the descending phase of the solar cycles and coexists with periods of fast solar wind speed.
Stelios M. Potirakis, Yiannis Contoyiannis, Nikolaos S. Melis, John Kopanas, George Antonopoulos, Georgios Balasis, Charalampos Kontoes, Constantinos Nomicos, and Konstantinos Eftaxias
Nonlin. Processes Geophys., 23, 223–240, https://doi.org/10.5194/npg-23-223-2016, https://doi.org/10.5194/npg-23-223-2016, 2016
Short summary
Short summary
Based on the methods of critical fluctuations and natural time, we have shown that the fracture-induced MHz electromagnetic emissions recorded by two stations in our network prior to two recent significant earthquakes that occurred in Cephalonia present criticality characteristics, implying that they emerge from a system in critical state.
C. Tsironis, A. Anastasiadis, C. Katsavrias, and I. A. Daglis
Ann. Geophys., 34, 171–185, https://doi.org/10.5194/angeo-34-171-2016, https://doi.org/10.5194/angeo-34-171-2016, 2016
M. Georgiou, I. A. Daglis, E. Zesta, G. Balasis, I. R. Mann, C. Katsavrias, and K. Tsinganos
Ann. Geophys., 33, 1431–1442, https://doi.org/10.5194/angeo-33-1431-2015, https://doi.org/10.5194/angeo-33-1431-2015, 2015
Short summary
Short summary
Our study demonstrates a remarkable association between the earthward penetration of ULF waves and radiation belt electron enhancements during four magnetic storms that occurred in 2001. In the past, ULF waves had been observed at unusual depths during rare superstorms. But ULF wave activity, reaching magnetic shells as low as 2, was also observed during relatively intense storms when it played a key role in diffusing electrons radially inward and thereby accelerating them to higher energies.
N. Y. Ganushkina, M. W. Liemohn, S. Dubyagin, I. A. Daglis, I. Dandouras, D. L. De Zeeuw, Y. Ebihara, R. Ilie, R. Katus, M. Kubyshkina, S. E. Milan, S. Ohtani, N. Ostgaard, J. P. Reistad, P. Tenfjord, F. Toffoletto, S. Zaharia, and O. Amariutei
Ann. Geophys., 33, 1369–1402, https://doi.org/10.5194/angeo-33-1369-2015, https://doi.org/10.5194/angeo-33-1369-2015, 2015
Short summary
Short summary
A number of current systems exist in the Earth's magnetosphere. It is very difficult to identify local measurements as belonging to a specific current system. Therefore, there are different definitions of supposedly the same current, leading to unnecessary controversy. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques.
G. Balasis, I. A. Daglis, I. R. Mann, C. Papadimitriou, E. Zesta, M. Georgiou, R. Haagmans, and K. Tsinganos
Ann. Geophys., 33, 1237–1252, https://doi.org/10.5194/angeo-33-1237-2015, https://doi.org/10.5194/angeo-33-1237-2015, 2015
C. Katsavrias, I. A. Daglis, W. Li, S. Dimitrakoudis, M. Georgiou, D. L. Turner, and C. Papadimitriou
Ann. Geophys., 33, 1173–1181, https://doi.org/10.5194/angeo-33-1173-2015, https://doi.org/10.5194/angeo-33-1173-2015, 2015
S. M. Potirakis, K. Eftaxias, G. Balasis, J. Kopanas, G. Antonopoulos, and A. Kalimeris
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-2981-2014, https://doi.org/10.5194/nhessd-2-2981-2014, 2014
Preprint withdrawn
T. M. Giannaros, D. Melas, I. A. Daglis, and I. Keramitsoglou
Nat. Hazards Earth Syst. Sci., 14, 347–358, https://doi.org/10.5194/nhess-14-347-2014, https://doi.org/10.5194/nhess-14-347-2014, 2014
R. V. Donner and G. Balasis
Nonlin. Processes Geophys., 20, 965–975, https://doi.org/10.5194/npg-20-965-2013, https://doi.org/10.5194/npg-20-965-2013, 2013
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(4171 KB) - Full-text XML
Short summary
Swarm is the fourth Earth Explorer mission of the European Space Agency (ESA), launched on 23 November 2013. The mission provides an opportunity for better knowledge of the near-Earth electromagnetic environment. This study presents an initial attempt to derive an ultra low-frequency (ULF) wave index from low-Earth orbit satellite data. The technique can be potentially used to define a new product from the mission, the Swarm ULF wave index, which would be suitable for space weather applications.
Swarm is the fourth Earth Explorer mission of the European Space Agency (ESA), launched on 23...