Articles | Volume 36, issue 5
https://doi.org/10.5194/angeo-36-1439-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-1439-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamics of a geomagnetic storm on 7–10 September 2015 as observed by TWINS and simulated by CIMI
Department of Physics, Auburn University, Auburn, AL 36849, USA
James Edmond
Department of Physics, Auburn University, Auburn, AL 36849, USA
Shannon Hill
Physics Department, Emory University, Atlanta, GA 30322, USA
Hanyun Xu
Department of Physics, Auburn University, Auburn, AL 36849, USA
Natalia Buzulukova
Geospace Physics, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Mei-Ching Fok
Geospace Physics, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Jerry Goldstein
Space Science and Engineering Department, Southwest Research Institute, San Antonio, TX 78228, USA
Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
David J. McComas
Department of Astrophysical Sciences, Princeton University, NJ 08540,
USA
Phil Valek
Space Science and Engineering Department, Southwest Research Institute, San Antonio, TX 78228, USA
Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
Related authors
No articles found.
Natalia Buzulukova, Jerry Goldstein, Mei-Ching Fok, Alex Glocer, Phil Valek, David McComas, Haje Korth, and Brian Anderson
Ann. Geophys., 36, 107–124, https://doi.org/10.5194/angeo-36-107-2018, https://doi.org/10.5194/angeo-36-107-2018, 2018
Short summary
Short summary
The paper presents a case study of Earth's magnetosphere dynamics during the geomagnetic storm of 14–16 November 2012. We use a recently developed global model of the magnetosphere that combines a 3-D magnetohydrodynamics model with a kinetic bounce-averaged model for a representation of the energetic ring current population (1–200 keV). We use the model together with multipoint measurements to understand the observations and provide insight into magnetosphere–ionosphere coupling aspects.
N. A. Schwadron, P. Frisch, F. C. Adams, E. R. Christian, P. Desiati, H. O. Funsten, J. R. Jokipii, D. J. McComas, E. Moebius, and G. Zank
ASTRA Proc., 2, 9–16, https://doi.org/10.5194/ap-2-9-2015, https://doi.org/10.5194/ap-2-9-2015, 2015
Short summary
Short summary
We develop a simple diffusive model of the propagation of cosmic rays and the associated cosmic ray anisotropy due to cosmic ray streaming against the local interstellar flow. We show that the local plasma and field conditions sampled by IBEX provide characteristics that consistently explain TeV cosmic ray anisotropies. These results support models that place the interstellar magnetic field direction near the center of the IBEX ribbon.
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Storms and substorms
Probabilistic modelling of substorm occurrences with an echo state network
The record of the magnetic storm on 15 May 1921 in Stará Ďala (present-day Hurbanovo) and its compliance with the global picture of this extreme event
Echo state network model for analyzing solar-wind effects on the AU and AL indices
Seasonal features of geomagnetic activity: a study on the solar activity dependence
Polar substorm on 7 December 2015: preonset phenomena and features of auroral breakup
Response of the low- to mid-latitude ionosphere to the geomagnetic storm of September 2017
Influence of the Earth's ring current strength on Størmer's allowed and forbidden regions of charged particle motion
Shin'ya Nakano, Ryuho Kataoka, Masahito Nosé, and Jesper W. Gjerloev
Ann. Geophys., 41, 529–539, https://doi.org/10.5194/angeo-41-529-2023, https://doi.org/10.5194/angeo-41-529-2023, 2023
Short summary
Short summary
Substorms are a phenomenon in the magnetosphere–ionosphere system, which are characterised by brightening of an auroral arc and enhancement of electric currents in the polar ionosphere. Since substorms are difficult to predict, this study treats a substorm occurrence as a stochastic phenomenon and represents the substorm occurrence rate with a machine learning model. We then analyse the response of substorm activity to solar wind conditions by feeding synthetic solar wind data into the model.
Eduard Koči and Fridrich Valach
Ann. Geophys., 41, 355–368, https://doi.org/10.5194/angeo-41-355-2023, https://doi.org/10.5194/angeo-41-355-2023, 2023
Short summary
Short summary
We dealt with the most intense magnetic storm of the 20th century, which took place on 13–15 May 1921. It was also observed at Stará Ďala (present-day Hurbanovo). However, the record was not complete. We estimated the missing sensitivity scale values and presented the resulting digitized Stará Ďala’s data for 13–15 May 1921. The data were compared with the records from other observatories. The analysis suggests that the auroral oval got close to Stará Ďala in the morning hours on 15 May 1921.
Shin'ya Nakano and Ryuho Kataoka
Ann. Geophys., 40, 11–22, https://doi.org/10.5194/angeo-40-11-2022, https://doi.org/10.5194/angeo-40-11-2022, 2022
Short summary
Short summary
The relationships between auroral activity and the solar-wind conditions are modeled with a machine-learning technique. The impact of various solar-wind parameters on the auroral activity is then evaluated by putting artificial inputs into the trained machine-learning model. One of the notable findings is that the solar-wind density effect on the auroral activity is emphasized under high solar-wind speed and weak solar-wind magnetic field.
Adriane Marques de Souza Franco, Rajkumar Hajra, Ezequiel Echer, and Mauricio José Alves Bolzan
Ann. Geophys., 39, 929–943, https://doi.org/10.5194/angeo-39-929-2021, https://doi.org/10.5194/angeo-39-929-2021, 2021
Short summary
Short summary
We used up-to-date substorms, HILDCAAs and geomagnetic storms of varying intensity along with all available geomagnetic indices during the space exploration era to explore the seasonal features of the geomagnetic activity and their drivers. As substorms, HILDCAAs and magnetic storms of varying intensity have varying solar/interplanetary drivers, such a study is important for acomplete understanding of the seasonal features of the geomagnetic response to the solar/interplanetary events.
Vladimir V. Safargaleev, Alexander E. Kozlovsky, and Valery M. Mitrofanov
Ann. Geophys., 38, 901–918, https://doi.org/10.5194/angeo-38-901-2020, https://doi.org/10.5194/angeo-38-901-2020, 2020
Short summary
Short summary
Comprehensive analysis of a moderate substorm was performed using optical observations inside the auroral oval and in the polar cap, combined with data from satellites, radars, and ground magnetometers. The onset took place near the poleward boundary of the auroral oval that is not typical for classical substorms. The data fit to the near-tail current disruption scenario of the substorm onset. The role of the 15 min oscillations in the IMF Bz component in the substorm initiation is discussed.
Nadia Imtiaz, Waqar Younas, and Majid Khan
Ann. Geophys., 38, 359–372, https://doi.org/10.5194/angeo-38-359-2020, https://doi.org/10.5194/angeo-38-359-2020, 2020
Short summary
Short summary
We study the impact of the geomagnetic storm of 7–9 September 2017 on the low- to mid-latitude ionosphere. The study is based on the analysis of data from the Global Positioning System (GPS) stations and magnetic observatories located at different longitudinal sectors corresponding to the Pacific, Asia, Africa and the Americas during the period 4–14 September 2017. The GPS data are used to derive the global, regional and vertical total electron content (vTEC) in the four selected regions.
Alexander S. Lavrukhin, Igor I. Alexeev, and Ilya V. Tyutin
Ann. Geophys., 37, 535–547, https://doi.org/10.5194/angeo-37-535-2019, https://doi.org/10.5194/angeo-37-535-2019, 2019
Short summary
Short summary
This paper concerns the question of whether the maximum Earth ring current strength exists and at which moment the ring current can start to break up, thus making a new mechanism of the ring current decrease during the magnetic storm. We study this effect using the Stormer theory of particle motion. After transition of critical strength, Stormer's inner trapping region opens up and the ring current charged particles get the opportunity to leave it, thus decreasing the current strength.
Cited articles
Angelopoulos, V.: The THEMIS mission, Space Sci. Rev., 141, 5–34,
https://doi.org/10.1007/s11214-008-9336-1, 2008.
Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson,
M. G., Pellat, R., Walker, R. J., Lühr, H., and Paschmann,
G.: Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res.,
97, 4027–4039, https://doi.org/10.1029/91JA02701, 1992.
Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson,
M. G., Pellat, R., Walker, R. J., Lühr, H., and Paschmann,
G.: Multi-point analysis of a bursty bulk flow event on April 11, 1985, J.
Geophys. Res., 101, 4967–4987, 1996.
Angelopoulos, V., Chapman, J. A., Mozer, F. S., Scudder, J. D., Russell, C.
T., Tsuruda, K. Mukai, T., Hughes, T. J., and Yumoto, K.: Plasma sheet
electromagnetic power generation and its dissipation along auroral field
lines, J. Geophys. Res., 107, 1181, https://doi.org/10.1029/2001JA900136, 2002a.
Angelopoulos, V., Temerin, M., Roth, I., and Mozer, F. S.: Testing global
storm-time electric field models using particle spectra on multiple
spacecraft, J. Geophys. Res., 107, 1194, https://doi.org/10.1029/2001JA900174, 2002b.
Bazell, D., Roelof, E. C., Sotirelis, T., Brandt, P. C., Nair, H., Valek, P.,
Goldstein, J., and McComas, D. J.: Comparison of TWINS images of low-altitude
emission of energetic neutral atoms with DMSP precipitating ion fluxes, J.
Geophys. Res., 115, A10204, https://doi.org/10.1029/2010JA015644, 2010.
Birn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., and
Belian, R. D.: Characteristic plasma properties during dispersionless
substorm injections at geosynchronous orbit, J. Geophys. Res., 102,
2309–2324, 1997.
Borovsky, J. E., Thomsen, M. F., and Elphic, R. C.: The driving of the plasma
sheet by the solar wind, J. Geophys. Res., 103, 17617–17639,
https://doi.org/10.1029/97JA02986, 1998.
Braginskii, S. I.: Transport Processes in a Plasma, Rev. Plasma
Phys., 1, 205–311, 1965.
Brandt, P. C., Mitchell, D. G., Roelof, E. C., and Burch, J. L.: Bastille Day
Storm: Global Response of the Terrestrial Ring Current, Sol. Phys., 204,
377–386, 2001.
Brandt, P. C., Roelof, E. C., Ohtani, S., Mitchell, D. G., and Anderson, B.:
IMAGE/HENA: pressure and current distributions during the 1 October 2002
storm, Adv. Space Res., 33, 719–722, 2004.
Burch, J. L.: Image mission review, Space Sci. Rev., 91, 1–14, 2000.
Buzulukova, N., Fok, M.-C., Moore, T. E., and Ober, D. M.: Generation of
plasmaspheric undulations, Geophys. Res. Lett., 35, L13105,
https://doi.org/10.1029/2008GL034164, 2008.
Buzulukova, N., Fok M.-C., Goldstein J., Valek P., McComas D. J., and Brandt
P. C.: Ring current dynamics in moderate and strong storms: Comparative
analysis of TWINS and IMAGE/HENA data with the Comprehensive Ring Current
Model, J. Geophys. Res., 115, A12234, https://doi.org/10.1029/2010JA015292, 2010.
Carlson, C. W., McFadden, J. P., Turin, P., Curtis, D. W., and Magonhcelli,
A.: The electron and ion plasma experiment for FAST, Space Sci. Rev., 98, 33–66,
2001.
CDAWeb: OMNI solar wind data, available at:
https://cdaweb.gsfc.nasa.gov/, last access: 11 October
2018.
Daglis, I. A., Thorne, R. M., Baumjohann, W., and Orsini, S.: “Fine
Structure” of the storm substorm relationship: ion injections during DST
decrease, Adv. Space Res., 25, 2369–2372, 2000.
Dassoulas J., Margolies, D. L., and Peterson, M. R.: The AMPTE/CCE
spacecraft, IEEE T. Geosci. Remote., GE-23, 182–191, 1985.
deBoor, C.: A Practical Guide to Splines, Springer, New York, USA, ISBN 0-387-90356-9, 1978.
De Michelis, P., Daglis, I. A., and Consolini, G.: An average
image of proton plasma pressure and of current systems in the equatorial plan
derived from AMPTE/CCE-CHEM measurements, J. Geophys. Res., 104,
28615–28624, 1999.
Dessler, A. J. and Parker, E. N.: Hydromagnetic theory of geomagnetic storms,
J. Geophys. Res., 64, 2239–2252, https://doi.org/10.1029/JZ064i012p02239, 1959.
Eastwood, J. P., Sibeck, D. G., Slavin, J. A., Goldstein, M. L., Lavraud, B.,
Sitnov, M., Imber, S., Balogh, A., Lucek, E. A., and Dandouras, I.:
Observations of multiple X-line structure in the Earth's magnetotail current
sheet: A Cluster case study, Geophys. Res. Lett., 32, L11105,
https://doi.org/10.1029/2005gl022509, 2005.
Ebihara, Y. and Ejiri, M.: Simulation study on fundamental properties of the
storm time ring current, J. Geophys. Res., 105, 15843–15859,
https://doi.org/10.1029/1999JA900493, 2000.
Ebihara, Y., Ejiri, M., Nilsson, H., Sandahl, I., Milillo, A., Grande, M.,
Fennell, J. F., and Roeder, J. L.: Statistical distribution of the storm-time
proton ring current: POLAR measurements, Geophys. Res. Lett., 29, 1969,
https://doi.org/10.1029/2002GL015430, 2002.
Ebihara, Y., Ejiri, M., Nilsson, H., Sandahl, I., Grande, M., Fennell, J. F.,
Roeder, J. L., Weimer, D. R., and Fritz, T. A.: Multiple discrete-energy ion
features in the inner magnetosphere: 9 February 1998, event, Ann. Geophys.,
22, 1297–1304, https://doi.org/10.5194/angeo-22-1297-2004, 2004.
Ebihara, Y., Fok, M.-C., Blake, J. B., and Fennell, J. F.: Magnetic coupling
of the ring current and the radiation belt, J. Geophys. Res., 113,
A07221, https://doi.org/10.1029/2008JA013267, 2008
Ebihara, Y., Nishitani, N., Kikuchi, T., Ogawa, T., Hosokawa, K., Fok, M.-C.,
and Thomsen, M. F.: Dynamical property of storm time subauroral rapid flows
as a manifestation of complex structures of the plasma pressure in the inner
magnetosphere, J. Geophys. Res., 114, A01306, https://doi.org/10.1029/2008JA013614,
2009.
Elfritz, J. G., Keesee, A. M., Buzulukova, N., Fok, M.-C., and Scime, E. E.:
First results using TWINS-derived ion temperature boundary conditions in
CRCM, J. Geophys. Res.-Space, 119, 3345–3361,
https://doi.org/10.1002/2013JA019555, 2014.
Fok, M.-C., Kozyra, J. U., Nagy, A. F., Rasmussen, C. E., and Khazanov, G.
V.: Decay of equatorial ring current ions and associated aeronomical
consequences, J. Geophys. Res., 98, 19381–19393, 1993.
Fok, M.-C., Moore, T. E., and Spjeldvik, T. E.: Rapid enhancement of
radiation belt electron fluxes due to substorm dipolarization of the
geomagnetic field, J. Geophys. Res., 106, 3873–3881,
https://doi.org/10.1029/2000JA000150, 2001a.
Fok, M.-C., Wolf, R. A., Spiro, R. W., and Moore, T. E.: Comprehensive
computational model of the Earth's ring current, J. Geophys. Res., 106,
8417–8424, https://doi.org/10.1029/2000JA000235, 2001b.
Fok, M.-C., Moore, T. E., Wilson, G. R., Perez, J. D., Zhang, X. X., Brandt,
P. C., Mitchell, D. G., Roelof, E. C., Jahn, J.-M., Pollock, C. J., and Wolf,
R. A.: Global ENA IMAGE simulations, Space Sci. Rev., 109, 77–103, 2003.
Fok, M.-C., Horne, R. B., Meredith, N. P., and Glauert, S. A.: The radiation
belt environment model: Application to space weather nowcasting, J. Geophys.
Res., 113, A03S08, https://doi.org/10.1029/2007JA012558, 2008.
Fok, M.-C., Buzulukova, N., Chen, S.-H., Valek, P. W., Goldstein, J., and
McComas, D. J.: Simulation and TWINS observations of the 22 July 2009 storm,
J. Geophys. Res., 115, A12231, https://doi.org/10.1029/2010JA015443, 2010.
Fok, M.-C., Buzulukova, N. Y., Chen, S.-H., Glocer, A., Nagai, Valek, P., and
Perez, J. D.: The Comprehensive Inner Magnetosphere-Ionosphere Model, J.
Geophys. Res.-Space, 119, 7522–7540, https://doi.org/10.1002/2014JA020239, 2014.
Glocer, A., Fok, M.-C., Nagai, T., Tóth, G., Guild, T., and Blake, J.:
Rapid rebuilding of the outer radiation belt, J. Geophys. Res., 116, A09213,
https://doi.org/10.1029/2011JA016516, 2011.
Gloeckler, G., Ipavich, L. S., Studemann, W., Wilken, B., Hamilton, D. C., Kremser, G., Hovestadt, D., Gliem, F.,
Lundgren, R. A., Rieck, W. , Tums, E. O., Cain, J. C., Masung, L. S., Weiss, W., and Winterhof, P.: The charge-energy-mass (CHEM) spectrometer for 0.3 to
300 keV/e ions on AMPTE-CCE, IEEE T. Geosci. Elect., GE-23, 234–240, 1985.
Goldstein, J. and McComas, D. J.: Five years of stereo magnetospheric
imaging by TWINS, Space Sci. Rev., 180, 39–70, https://doi.org/10.1007/s11214-013-0012-8, 2013.
Goldstein, J. and McComas, D. J.: The big picture: Imaging of the global
geospace environment by the TWINS mission, Rev. Geophys., 56, 1–27, https://doi.org/10.1002/2017RG000583, 2018.
Goldstein, J., Angelopoulos, V., De Paxcuale, S., Funsten, H. O., Kurth, W.
S., Llera, K., McComas, D. J., Perez, J. D., Reeves, G. D., Spencer, H. E.,
Thaller, S. A., Valek, P. W., and Wyant, J. R.: Cross-scale observations of
the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS,
J. Geophys. Res.-Space, 122, 368–392, https://doi.org/10.1002/2016JA023173,
2017.
Grimes, E. W., Perez, J. D., Goldstein, J., McComas, D. J., Valek, P., and
Turner, D.: Comparison of TWINS and THEMIS observations of proton pitch angle
distributions in the ring current during the 29 May 2010 geomagnetic storm,
J. Geophys. Res.-Space, 118, 4895–4905, https://doi.org/10.1002/jgra.50455,
2013.
Groth, C. P. T., Zeeuw, D. L., Gombosi, T. I., and Powell, K. G.: Global
three-dimensional MHD simulation of a space weather event: CME formation,
interplanetary propagation, and interaction with the magnetosphere, J.
Geophys. Res. 105, 25053–25078, 2000.
Hardy, D. A., Schmitt, L. K., Gussenhoven, M. S., Marshall, F. J., Yeh, H.
C., Schumaker, T. L., Huber, A., and Pantazis, J.: Precipitating electron and
ion detectors (SSJ 4) for the block 5D Flights 6–10 DMSP satellites:
Calibration and data presentation, Rep. AFGL TR 84 0317, Air Force Geophys.
Lab., Hanscom Air Force Base, MA, USA, 1984.
Hardy, D. A., Gussenhoven, M. S., Raistrick, R., and McNeil, W. J.:
Statistical and functional representations of the pattern of auroral energy
flux, number flux, and conductivity, J. Geophys. Res., 9,
12275–12294, https://doi.org/10.1029/JA092iA11p12275, 1987.
Harel, M., Wolf, R. A., Reiff, P. H., Spiro, R. W., Burke, W. J., Rich, F.
J., and Smiddy, M.: Quantitative simulation of a magnetospheric substorrn, 1,
Model logic and overview, J. Geophys. Res., 86, 2217–2241, 1981.
Imber, S. M., Slavin, J. A., Auster, H. U., and Angelopoulos, V.: A THEMIS
survey of flux ropes and traveling compression regions: Location of the near-Earth
reconnection site during solar minimum, J. Geophys. Res., 116, A02201,
https://doi.org/10.1029/2010ja016026, 2011.
Jaggi, R. K. and R. A. Wolf: Self-consistent calculation of the
motion of a sheet of ions in the magnetosphere, J. Geophys. Res., 78,
2852–2866, https://doi.org/10.1029/JA078i016p02852, 1973.
Kistler, L. M. and Larson, D. J.: Testing electric and magnetic field
models of the storm-time inner magnetosphere, J. Geophys. Res. 105, 25221–25231, 2000.
Kistler, L. M., Klecker, B., Jordanova, V. K., Möbius, E., Popecki, M. A.,
Patel, D., Sauvaud, J. A., Rème, H., Di Lellis, A. M., Korth, A., McCarthy,
M., Cerulli, R., Bavassano Cattaneo, M. B., Eliasson, L., Carlson, C. W.,
Parks, G. K., Paschmann, G., Baumjohann, W., and Haerendel, G.: Testing
electric field models using ring current ion energy spectra from the
Equator-S ion composition (ESIC) instrument, Ann. Geophys., 17, 1611–1621,
https://doi.org/10.1007/s00585-999-1611-2, 1999.
Korth, H., Thomsen, M. F., Borovsky, J. E., and McComas, D. J.: Plasma sheet
access to geosynchronous orbit, J. Geophys. Res, 104, 25045–25061, 1999.
Lin, Y., Wang, X. Y., Lu, S., Perez, J. D., and Lu, Q.: Investigation of
storm time magnetotail and ion injection using three-dimensional global
hybrid simulation, J. Geophys. Res.-Space, 119, 7413–7432,
https://doi.org/10.1002/2014JA020005, 2014.
Lui, A., McEntire, R., and Krimigis, S.: Evolution of the ring current during
two geomagnetic storms, J. Geophys. Res., 92, 7459–7470,
https://doi.org/10.1029/JA092iA07p07459, 1987.
Lui, A. T. Y., Hori, T., Ohtani, S., Zhang, Y., Zhou, X. Y., Henderson, M.
G., Mukai, T., Hayakawa, H., and Mende, S. B.: Magnetotail behavior during
storm time “sawtooth injections,” J. Geophys. Res., 109, A10215,
https://doi.org/10.1029/2004JA010543, 2004.
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and
Ukhorskiy, A.: Science objectives and rationale for the Radiation Belt Storm
Probes mission, Space Sci. Rev., 179, 3–27, https://doi.org/10.1007/s11214-012-9908-y,
2013.
McComas, D. J., Funsten, H. O., and Scime, E. E.: Advances in low energy neutral
atom imaging, in: Measurement Techniques in Space Plasmas-Fields, edited by:
Pfaff, R. F., Borovsky, J. E., and Young, D. T., Geophys. Monogr. Ser., 103, 275–280, 1998.
McComas, D. J., Allegrini, F., Baldonado, J., Blake, B., Brandt, P. C.,
Burch, J., Clemmons, J., Crain, W., Delapp, D., DeMajistre, R., Everett, D.,
Fahr, H., Friesen, L., Funsten, H., Goldstein, J., Gruntman, M., Harbaugh,
R., Harper, R., Henkel, H., Holmlund, C., Lay, G., Mabry, D., Mitchell, D.,
Nass, U., Pollock, C., Pope, S., Reno, M., Ritzau, S., Roelof, E., Scime, E.,
Sivjee, M., Skoug, R., Sotirelis, T. S., Thomsen, M., C. Urdiales, C., Valek,
P., Viherkanto, K., Weidner, S., Ylikorpi, T., Young, M., and Zoennchen, J.:
The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA
Mission-of-Opportunity, Space Sci. Rev., 142, 157B231,
https://doi.org/10.1007/s11214-008-9467-4, 2009a.
McComas, D. J., Allegrini, F., Bochsler, P., Bzowski, M., Christian, E. R.,
Crew, G. B., DeMajistre, R., Fahr, H., Fichtner, H., Frisch, P., Funsten,
H. O., Fuselier, S. A., Gloeckler, G., Gruntman, M., Heerikhuisen J.,
Izmodenov, V., Janzen, P., Knappenberger, P., Krimigis, S., Kucharek, H.,
Lee, M., Livadiotis, G., Livi, S., MacDowall, R. J., Mitchell, D., Möbius,
E., Moore, T., Pogorelov, N. V., Reisenfeld, D., Roelof, E., Saul, L.,
Schwadron, N. A., Valek, P. W., Vanderspek, R., Wurz, P., and Zank, G. P.:
Global observations of the interstellar interaction from the Interstellar
Boundary Explorer (IBEX), Science, 326, 959–962, https://doi.org/10.1126/science.1180906, 2009b.
McComas, D. J., Buzulukova, N., Connors, M. G., Dayeh, M. A., Goldstein, J.,
Funsten, H. O., Fuselier, S., Schwadron, N. A., and Valek, P.: Two Wide-Angle
Imaging Neutral-Atom Spectrometers and Interstellar Boundary Explorer
energetic neutral atom imaging of the 5 April 2010 substorm, J. Geophys.
Res., 117, A03225, https://doi.org/10.1029/2011JA017273, 2012.
McEntire, R. W., Keath, E. P., Fort, D. E., Lui, A. T. Y., and Krimigis, S.
M.: “The Medium-Energy Particle Analyzer (MEPA) on the AMPTE CCE
Spacecraft”, IEEE T. Geosci. Remote, GE-23, 230–233, https://doi.org/10.1109/TGRS.1985.289518,
1985.
McKenna-Lawlor, S., Li, L., Barabash, S., Kudela, K., Balaz, J., Strharsky,
I., Brinkfeldt, K., Gunell, H., Shen, C., Shi, J., Cao, J.-B., Zong, Q., Fu,
S.-Y., Roelof, E. C., Brandt, P. C., and Dandouras, I.: The NUADU experiment
on TC-2 and the first Energetic Neutral Atom (ENA) images recorded by this
instrument, Ann. Geophys., 23, 2825–2849,
https://doi.org/10.5194/angeo-23-2825-2005, 2005.
Mitchell, D. G., Jaskulek, S. E., Schlemm, C. E., Keath, E. P., Thompson, R.
E., Tossman, B. E., Boldt, J. D., Hayes, J. R., Andrews, G. B., Paschalidis,
N., Hamilton, D. C., Lundgren, R. A., Tums, E. O., Wilson IV, P., Voss, H.
D., Prentice, D., Hsieh, K. C., Curtis, C. C., and Powell, F. R.: High Energy
Neutral Atom (HENA) Imager for the IMAGE mission, Space Sci. Rev., 91, 67–112,
2000.
Mitchell, D. G., Lanzerotti, L. J., Kim, C. K., Stokes, M., Ho, G., Cooper,
S., Ukhorskiy, A. Manweller, J. W., Jaskulek, S., Haggerty, D. K., Brandt,
P., Sitnov, M., Keika, N., Hayes, J. F., Brown, L. E., Gurnce, R. S.,
Hutcheson, J. C., Nelson, K. S., Paschalldis, N., Rossano, E., and Kerem, S.:
Radiation Belt Storm Probes Ion Composition Experiment RBSPICE, Space Sci.
Rev., 179, 263–308, 2013.
Moore, T. E., Chornay, D. J., Collier, M. R., Herrero, F. A., Johnson, J.,
Johnson, M. A., Keller, J. W., Laudadio, J. F., Lobell, J. F., Ogilvie, K.
W., Rozmarynowski, J. P., Fuselier, S. A., Ghielmetti, A. G., Hertzberg, E.,
Hamilton, D. C., Lundgren, R., Wilson, P., Walpolle, P., Stephen, T. M., Peko,
B. L., Van Zyl, B., Wurz, P., Quinn, J. M., and Wilson, G. R.: The low-energy
neutral atom imager for IMAGE, Space Sci. Rev. 91, 155–195, 2000.
Nakamura, R., Baumjohann, W., Brittnacher, M., Sergeev, V. A., Kubyshkina,
M., Mukai, T., and Liou, K.: Flow bursts and auroral activations: Onset
timing and foot point location, J. Geophys. Res., 106, 10777–10789, 2001.
Ober, D. M., Horwitz, J. L., and Gallagher, D. L.: Formation of density
troughs embedded in the outer plasma sphere by subau roral ion drift events,
J. Geophys. Res., 102, 14595–14602, https://doi.org/10.1029/97JA01046, 1997.
Perez, J. D., Zhang, X.-X., Brandt, P. C., Mitchell, D. G., Jahn, J.-M., and
Pollock, C. J.: Dynamics of ring current ions as obtained from IMAGE HENA and
MENA ENA images, J. Geophys. Res. 109, A05208, https://doi.org/10.1029/2003JA010164,
2004.
Perez, J. D., Grimes, E. W., Goldstein, J., McComas, D. J., Valek, P., and
Billor, N.: Evolution of CIR storm on 22 July 2009, J. Geophys. Res., 117,
A09221, https://doi.org/10.1029/2012JA017572, 2012.
Perez, J. D., Goldstein, J., McComas, D. J., Valek, P., Buzulukova, N., Fok,
M.-C., and Singer, H. J.: TWINS stereoscopic imaging of multiple peaks in the
ring current, J. Geophys. Res.-Space, 120, 368–383,
https://doi.org/10.1002/2014JA020662, 2015.
Pollock, C. J., Asamura, K., Baldonaldo, J., Balkey, M. M., Barker, P., Burch,
J. L., Korpela, E. J., Cravens, J., Dirks, G., Fok, M.-C., Funsten, H. O.,
Grande, M., Gruntman, M., Hanley, J., Jahn, J.-M, Jenkins, M., Lampton, M.,
Marckwordt, M., McComas, D. J., Mukai, T., Penegor, G., Pope, S., Ritzal, S.,
Schattenburg, M. I., Scime, E., Skoug, R., Spurgeon, M., Stecklein, T.,
Storms, S., Urdiales, C., Valek, P., Van Bee, J. T. M., Weidner, S. E.,
Wüest, M., Young, M. K., and Zinsmeter, C.: Medium Energy Neutral Atom
(MENA) imager for the IMAGE mission, Space Sci. Rev. 91, 113–154, 2000.
Pollock, C. J., Asamura, K., Balkey, M. M., Burch, J. L., Funsten, H. O.,
Grande, M., Gruntman, M., Henderson, M., Jahn, J. M., Lampton, M., Liemohn,
M. W., McComas, D. J., Mukai, T., Ritanu, S., Schattenburg, M. L., Scime, E.,
Skoug, R., Valek, P., and Wüest, M.: First medium energy neutral atom
(MENA) images of Earth's magnetosphere during substorm and storm-time,
Geophys. Res. Lett., 28, 1147–1150, 2001.
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud,
J. A., Barthe, A., Bouyssou, J., Camus, Th., Coeur-Joly, O., Cros, A.,
Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier,
H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey, C., Mazelle,
C., d'Uston, C., Möbius, E., Kistler, L. M., Crocker, K., Granoff, M.,
Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek,
H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E.,
Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P., McFadden, J. P.,
Parks, G. K., Phan, T., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B.,
Baldetti, P., Bruno, R., Chionchio, G., Di Lellis, A., Marcucci, M. F.,
Pallocchia, G., Korth, A., Daly, P. W., Graeve, B., Rosenbauer, H.,
Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen,
S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G., Lennartsson, W.,
Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J.-B., Kovrazhkin, R. A.,
Papamastorakis, I., Pellat, R., Scudder, J., and Sonnerup, B.: First
multispacecraft ion measurements in and near the Earth's magnetosphere with
the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 19,
1303–1354, https://doi.org/10.5194/angeo-19-1303-2001, 2001.
Roelof, E. C.: ENA Emission from Nearly-Mirroring Magnetospheric Ions
Interacting with the Exosphere, Adv. Space Res. 20, 361–366, 1997.
Sckopke, N.: A general relation between the energy of trapped particles and
the disturbance field near the Earth, J. Geophys. Res., 71, 3125–3130, 1966.
Scudder, J., Hunsacker, F., Miller, G., Lobell, J., Zawistowski, T., Ogilvie, K., Keller, J., Chornay, D.,
Herrero, F., Fitzenreiter, R., Fairfield, D., Needell, J., Bodet, D., Googins, J., and Kletzing, C.: HYDRA: A 3-dimensional electron and ion hot plasma
instrument for the POLAR spacecraft of the GGS mission, Space Sci. Rev., 71,
459–495, 1995.
Slavin, J. A., Lepping, R. P., Gjerloev, J., Fairfield, D. H., Hesse, M.,
Owen, C. J., Moldwin, M. B., Nagai, T., Ieda, A., and Mukai, T.: Geotail
observations of magnetic flux ropes in the plasma sheet, J. Geophys. Res.,
108, 1015, https://doi.org/10.1029/2002ja009557, 2003.
Smith, P. and Hoffman, R.: Ring current particle distributions during the
magnetic storms of December 16–18, 1971, J. Geophys. Res., 78,
4731–4737, https://doi.org/10.1029/JA078i022p04731, 1973.
Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M.,
Bourdarie, S., Chan, A. A., Claudepherre, S. G., Clemmons, J. H., Cravens, J.
P., Elkington, S. R., Fennell, J. F., Friedel, R. H. W., Funsten, H. O.,
Goldstein, J., Green, J. C., Guthrie, A., Henderson, M. G., Horne, R. B.,
Hudson, M. K., Jahn, J.-M, Jordanova, V. K., Kanekal, S. G., Klatt, B. W. L,
Larsen, B. A., Li, X, MacDonald, E. A., Mann, I. R., Niehof, J., O'Brien, T.
P., Onsaga, T. G., Salvaggio, D., Skoug, R. M., Smith, S. S., Suther, L. L.,
Thomsen, M. F., Thorne, R. M.: Science goals and overview of the Radiation
Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma
(ECT) suite on NASA's Van Allen Probes mission, Space Sci. Rev., 179,
311–336, https://doi.org/10.1007/s11214-013-0007-5, 2013.
Stern, D. P.: The motion of a proton in the equatorial magnetosphere, J.
Geophys. Res., 80, 595–599, 1975.
Toffoletto, F., Sazykin, S., Spiro, R., and Wolf, R.: Inner magnetospheric
modeling with the Rice convection model, Space Sci. Rev., 107, 175–196,
2003.
Tsyganenko, N. A.: A magnetospheric magnetic field model with a warped tail
current sheet, Planet. Space Sci., 37, 5–20, 1989.
Tsyganenko, N. A. and Mukai, T.: Tail plasma sheet models derived from
Geotail particle data, J. Geophys. Res., 108, 1136,
https://doi.org/10.1029/2002JA009707, 2003.
Tsyganenko, N. A. and Stern, D. P.: Modeling the global magnetic field of
the large scale Birkeland current systems, J. Geophys. Res., 101,
27187–27198, https://doi.org/10.1029/96JA02735, 1996.
Tsyganenko, N. A. and Sitnov, M. I.: Modeling the dynamics of the inner
magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110,
A03208, https://doi.org/10.1029/2004JA010798, 2005.
TWINS: TWINS data, available at: http://twins.swri.edu, last access: 11 October
2018.
Vallat, C., Dandouras, I., Brandt, P. C., DeMajistre, R., Mitchell, D. G.,
Roelof, E. C., Reme, H., Sauvaud, J.-A., Kistler, L., Mouikis, C., Dunlop,
M., and Balgh, A.: First comparisons of local ion measurements in the inner
magnetosphere with energetic neutral atom magnetospheric image inversions:
Cluster-CIS and IMAGE-HENA observations, J. Geophys. Res., 109, A04213,
https://doi.org/10.1029/2003JA010224, 2004.
Volland, H.: A semiempirical model of large-scale magnetospheric electric
fields, J. Geophys. Res., 78, 171–180, 1973.
Wahba, G.: Spline Models for Observational Data, Soc. for Ind. and Appl.
Math., Philadelphia, PA, USA, https://doi.org/10.1137/1.9781611970128, 1990.
Wang, C.-P., Gkioulidou, M., Lyons, L. R., Wolf, R. A., Angelopoulos, V.,
Nagai, T., Weygand, J. M., and Lui, A. T. Y.: Spatial distributions of ions
and electrons from the plasma sheet to the inner magnetosphere: Comparisons
between THEMIS-Geotail statistical results and the Rice convection model, J.
Geophys. Res., 116, A11216, https://doi.org/10.1029/2011JA016809, 2011.
WDC: Geomagnetic activity indices, available at: http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html, last access: 11 October
2018.
Weimer, D. R.: A flexible, IMF dependent model of high-latitude electric
potentials having “space weather” applications, Geophys. Res. Lett., 23,
2549–2552, 1996.
Weimer, D. R.: An improved model of ionospheric electric potentials including
substorm perturbations and applications to the Geospace environment modeling
November 24, 1996, event, J. Geophys. Res., 106, 407–416,
https://doi.org/10.1029/2000JA000604, 2001.
Wilken, B., Weiss, W., Hall, D., Grande, M., Sorass, F., and Fennell, J. F.: Magnetospheric ion composition spectrometer onboard the
CRRES spacecraft, J. Spacecraft Rockets, 29, 585–591, 1992.
Zheng, Y., Lui, A. T. Y., and Fok, M.-C.: Effects of plasma sheet properties
on storm-time ring current, J. Geophys. Res., 115, A08220,
https://doi.org/10.1029/2009JA014806, 2010.
Zoennchen, J. H., Nass, U., and Fahr, H. J.: Terrestrial exospheric hydrogen
density distributions under solar minimum and solar maximum conditions
observed by the TWINS stereo mission, Ann. Geophys., 33, 413–426,
https://doi.org/10.5194/angeo-33-413-2015, 2015.
Short summary
Pressure and anisotropy profiles from trapped ions in the ring current as observed from energetic neutral atom images are compared to numerical simulations for the first time. The results show evidence for short time and spatially localized injections from the plasma sheet.
Pressure and anisotropy profiles from trapped ions in the ring current as observed from...