Articles | Volume 35, issue 3
https://doi.org/10.5194/angeo-35-583-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-35-583-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Solar 27-day rotational period detected in wide-area lightning activity in Japan
Hiroko Miyahara
CORRESPONDING AUTHOR
Humanities and Sciences/Museum Carriers, Musashino Art University, Tokyo,
187-8505, Japan
Chika Higuchi
Tokyo Institute of Technology, Tokyo, 152-8550, Japan
Toshio Terasawa
iTHES, RIKEN, Saitama, 351-0198, Japan
ICRR, University of Tokyo, Chiba, 277-8582, Japan
Ryuho Kataoka
National Institute of Polar Research, Tokyo, 190-8518, Japan
Department of Polar Science, SOKENDAI, Tokyo, 190-8518, Japan
Mitsuteru Sato
Hokkaido University, Hokkaidō, 060-0810, Japan
Yukihiro Takahashi
Hokkaido University, Hokkaidō, 060-0810, Japan
Related authors
Hiroko Miyahara, Ryuho Kataoka, Takehiko Mikami, Masumi Zaiki, Junpei Hirano, Minoru Yoshimura, Yasuyuki Aono, and Kiyomi Iwahashi
Ann. Geophys., 36, 633–640, https://doi.org/10.5194/angeo-36-633-2018, https://doi.org/10.5194/angeo-36-633-2018, 2018
Short summary
Short summary
Old diaries kept in Japan tell us a surprising fact. The 27-day solar rotational period in thunder and lightning activities had been persistent for the past 300 years. The intensity is found to be more prominent as solar activity increases. The physical mechanism of the Sun–Climate connection is yet uncertain, an important link surely exists between the solar activity and terrestrial climate even at a meteorological timescale.
Hiroko Miyahara, Yasuyuki Aono, and Ryuho Kataoka
Ann. Geophys., 35, 1195–1200, https://doi.org/10.5194/angeo-35-1195-2017, https://doi.org/10.5194/angeo-35-1195-2017, 2017
Short summary
Short summary
Solar activity and climate show correlations over a wide range of timescales. It is important to understand the behavior of the 27-day solar rotational period in lightning activities because it provides an opportunity to understand how the sun influences weather and climate. We analyzed lightning data extracted from diaries written in Kyoto, Japan from the mid-17th to the mid-18th century. Lightning shows the signal of the 27-day period; however, it disappeared during the Maunder Minimum.
R. Kataoka, Y. Miyoshi, K. Shigematsu, D. Hampton, Y. Mori, T. Kubo, A. Yamashita, M. Tanaka, T. Takahei, T. Nakai, H. Miyahara, and K. Shiokawa
Ann. Geophys., 31, 1543–1548, https://doi.org/10.5194/angeo-31-1543-2013, https://doi.org/10.5194/angeo-31-1543-2013, 2013
Shin'ya Nakano, Ryuho Kataoka, Masahito Nosé, and Jesper W. Gjerloev
Ann. Geophys., 41, 529–539, https://doi.org/10.5194/angeo-41-529-2023, https://doi.org/10.5194/angeo-41-529-2023, 2023
Short summary
Short summary
Substorms are a phenomenon in the magnetosphere–ionosphere system, which are characterised by brightening of an auroral arc and enhancement of electric currents in the polar ionosphere. Since substorms are difficult to predict, this study treats a substorm occurrence as a stochastic phenomenon and represents the substorm occurrence rate with a machine learning model. We then analyse the response of substorm activity to solar wind conditions by feeding synthetic solar wind data into the model.
Shin'ya Nakano and Ryuho Kataoka
Ann. Geophys., 40, 11–22, https://doi.org/10.5194/angeo-40-11-2022, https://doi.org/10.5194/angeo-40-11-2022, 2022
Short summary
Short summary
The relationships between auroral activity and the solar-wind conditions are modeled with a machine-learning technique. The impact of various solar-wind parameters on the auroral activity is then evaluated by putting artificial inputs into the trained machine-learning model. One of the notable findings is that the solar-wind density effect on the auroral activity is emphasized under high solar-wind speed and weak solar-wind magnetic field.
Hiroko Miyahara, Ryuho Kataoka, Takehiko Mikami, Masumi Zaiki, Junpei Hirano, Minoru Yoshimura, Yasuyuki Aono, and Kiyomi Iwahashi
Ann. Geophys., 36, 633–640, https://doi.org/10.5194/angeo-36-633-2018, https://doi.org/10.5194/angeo-36-633-2018, 2018
Short summary
Short summary
Old diaries kept in Japan tell us a surprising fact. The 27-day solar rotational period in thunder and lightning activities had been persistent for the past 300 years. The intensity is found to be more prominent as solar activity increases. The physical mechanism of the Sun–Climate connection is yet uncertain, an important link surely exists between the solar activity and terrestrial climate even at a meteorological timescale.
Hiroko Miyahara, Yasuyuki Aono, and Ryuho Kataoka
Ann. Geophys., 35, 1195–1200, https://doi.org/10.5194/angeo-35-1195-2017, https://doi.org/10.5194/angeo-35-1195-2017, 2017
Short summary
Short summary
Solar activity and climate show correlations over a wide range of timescales. It is important to understand the behavior of the 27-day solar rotational period in lightning activities because it provides an opportunity to understand how the sun influences weather and climate. We analyzed lightning data extracted from diaries written in Kyoto, Japan from the mid-17th to the mid-18th century. Lightning shows the signal of the 27-day period; however, it disappeared during the Maunder Minimum.
R. Kataoka, Y. Fukuda, H. A. Uchida, H. Yamada, Y. Miyoshi, Y. Ebihara, H. Dahlgren, and D. Hampton
Ann. Geophys., 34, 41–44, https://doi.org/10.5194/angeo-34-41-2016, https://doi.org/10.5194/angeo-34-41-2016, 2016
Short summary
Short summary
Stereoscopy of aurora was performed at the record fast sampling rate of 100 fps to measure the emission altitude of rapidly varying fine-scale structures. The new method unveiled that very different types of aurora appear in the same direction at different altitudes.
R. Kataoka, Y. Nakagawa, and T. Sato
Ann. Geophys., 33, 75–78, https://doi.org/10.5194/angeo-33-75-2015, https://doi.org/10.5194/angeo-33-75-2015, 2015
Short summary
Short summary
Using a new air-shower simulation driven by the proton flux data obtained from GOES satellites, we show the possibility of significant enhancement of the effective dose rate of up to 4.5 µSv/hr at a conventional flight altitude of 12 km during the largest solar proton event that did not cause a ground-level enhancement. As a result, a new GOES-driven model is proposed to give an estimate of the contribution from the isotropic component of the radiation dose in the stratosphere.
H. Fujiwara, S. Nozawa, Y. Ogawa, R. Kataoka, Y. Miyoshi, H. Jin, and H. Shinagawa
Ann. Geophys., 32, 831–839, https://doi.org/10.5194/angeo-32-831-2014, https://doi.org/10.5194/angeo-32-831-2014, 2014
R. Kataoka, Y. Miyoshi, K. Shigematsu, D. Hampton, Y. Mori, T. Kubo, A. Yamashita, M. Tanaka, T. Takahei, T. Nakai, H. Miyahara, and K. Shiokawa
Ann. Geophys., 31, 1543–1548, https://doi.org/10.5194/angeo-31-1543-2013, https://doi.org/10.5194/angeo-31-1543-2013, 2013
Short summary
Detailed analyses of the 27-day solar rotational period in cloud and lightning activities may help in untangling the process of solar influence on weather and climate. We analyzed the lightning data in Japan for AD 1989–2015 and found that the 27-day solar rotational period is seen in wide-area lightning activity. The signal was stronger at the maxima of solar decadal cycles. It was also found that the signal of the 27-day period migrates from the southwest to the northeast in Japan.
Detailed analyses of the 27-day solar rotational period in cloud and lightning activities may...