Articles | Volume 34, issue 9
https://doi.org/10.5194/angeo-34-739-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-34-739-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Current sheet flapping in the near-Earth magnetotail: peculiarities of propagation and parallel currents
Egor V. Yushkov
CORRESPONDING AUTHOR
Space Research Institute, 84/32 Profsoyuznaya st., Moscow, 117997, Russia
Faculty of Physics, Lomonosov University, Leninskie Gory, Moscow, 119991, Russia
Anton V. Artemyev
Space Research Institute, 84/32 Profsoyuznaya st., Moscow, 117997, Russia
Department of Earth, Planetary, and Space Sciences and Institute of Geophysics and Planetary Physics, University of
California, Los Angeles, California, USA
Anatoly A. Petrukovich
Space Research Institute, 84/32 Profsoyuznaya st., Moscow, 117997, Russia
Rumi Nakamura
Space Research Institute (IWF), AAS, Graz, Austria
Related authors
No articles found.
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Weijie Sun, James A. Slavin, Rumi Nakamura, Daniel Heyner, Karlheinz J. Trattner, Johannes Z. D. Mieth, Jiutong Zhao, Qiu-Gang Zong, Sae Aizawa, Nicolas Andre, and Yoshifumi Saito
Ann. Geophys., 40, 217–229, https://doi.org/10.5194/angeo-40-217-2022, https://doi.org/10.5194/angeo-40-217-2022, 2022
Short summary
Short summary
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's Earth flyby. FTE-type flux ropes are a well-known feature of magnetic reconnection on the magnetopause, and they can be used to constrain the location of reconnection X-lines. Our study suggests that the magnetopause X-line passed BepiColombo from the north as it traversed the magnetopause. Moreover, our results also strongly support coalescence creating larger flux ropes by combining smaller ones.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Alexander Lukin, Anton Artemyev, Evgeny Panov, Rumi Nakamura, Anatoly Petrukovich, Robert Ergun, Barbara Giles, Yuri Khotyaintsev, Per Arne Lindqvist, Christopher Russell, and Robert Strangeway
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-76, https://doi.org/10.5194/angeo-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
We have collected statistics of 81 fast plasma flow events in the magnetotail with clear MMS observations of kinetic Alfven waves (KAWs). We show that KAWs electric field magnitudes correlates with thermal/subthermal electron flux anisotropy: wider energy range of electron anisotropic population corresponds to higher KAWs’ electric field intensity. These results indicate on an important role of KAWs in production of thermal field-aligned electron population of the Earth’s magnetotail.
Marina A. Evdokimova and Anatoli A. Petrukovich
Ann. Geophys., 38, 109–121, https://doi.org/10.5194/angeo-38-109-2020, https://doi.org/10.5194/angeo-38-109-2020, 2020
Anatoli A. Petrukovich, Olga M. Chugunova, and Pavel I. Shustov
Ann. Geophys., 37, 877–889, https://doi.org/10.5194/angeo-37-877-2019, https://doi.org/10.5194/angeo-37-877-2019, 2019
Short summary
Short summary
Earth's bow shock in solar wind with high thermal and low magnetic pressure is a rare phenomenon. However, such an object is ubiquitous in astrophysical plasmas.
We surveyed statistics of such shock observations since 1995. About 100 crossings were initially identified. In this report 22 crossings from the Cluster project were studied using multipoint analysis, which allowed for the determination of the spatial scales of the shock transition and of the dominant magnetic variations
Anatoli A. Petrukovich, Olga M. Chugunova, and Pavel I. Shustov
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-110, https://doi.org/10.5194/angeo-2018-110, 2018
Manuscript not accepted for further review
Short summary
Short summary
Earth's bow shock in high beta (beta is ratio of thermal
to magnetic pressure) solar wind environment is rare phenomenon.
We survey statistics of beta > 10 shock observations.
Typical solar wind parameters related with high beta are: low speed, high density and very low IMF 1–2 nT.
In this report 22 crossings are studied with spacecraft
separation within 30–200 km. Dominating magnetic waves have frequency 0.1–0.5 Hz Polarization has no stable phase
and is closer to linear.
Sudong Xiao, Tielong Zhang, Guoqiang Wang, Martin Volwerk, Yasong Ge, Daniel Schmid, Rumi Nakamura, Wolfgang Baumjohann, and Ferdinand Plaschke
Ann. Geophys., 35, 1015–1022, https://doi.org/10.5194/angeo-35-1015-2017, https://doi.org/10.5194/angeo-35-1015-2017, 2017
David Fischer, Werner Magnes, Christian Hagen, Ivan Dors, Mark W. Chutter, Jerry Needell, Roy B. Torbert, Olivier Le Contel, Robert J. Strangeway, Gernot Kubin, Aris Valavanoglou, Ferdinand Plaschke, Rumi Nakamura, Laurent Mirioni, Christopher T. Russell, Hannes K. Leinweber, Kenneth R. Bromund, Guan Le, Lawrence Kepko, Brian J. Anderson, James A. Slavin, and Wolfgang Baumjohann
Geosci. Instrum. Method. Data Syst., 5, 521–530, https://doi.org/10.5194/gi-5-521-2016, https://doi.org/10.5194/gi-5-521-2016, 2016
Short summary
Short summary
This paper describes frequency and timing calibration, modeling and data processing and calibration for MMS magnetometers, resulting in a merged search choil and fluxgate data product.
Takuma Nakamura, Rumi Nakamura, and Hiroshi Haseagwa
Ann. Geophys., 34, 357–367, https://doi.org/10.5194/angeo-34-357-2016, https://doi.org/10.5194/angeo-34-357-2016, 2016
Short summary
Short summary
Magnetic reconnection is a key process in space and laboratory plasmas which transfers energies through the magnetic field topology change. The topology change in this process takes place in a small scale region called the electron diffusion region (EDR). In this paper, using high-resolution fully kinetic simulations, we successfully obtained the firm scaling laws of spatial dimensions of the EDR. The obtained scalings allow us to precisely predict observable dimensions of the EDR in real space.
Sudong Xiao, Tielong Zhang, Yasong Ge, Guoqiang Wang, Wolfgang Baumjohann, and Rumi Nakamura
Ann. Geophys., 34, 303–311, https://doi.org/10.5194/angeo-34-303-2016, https://doi.org/10.5194/angeo-34-303-2016, 2016
Y. Narita, R. Nakamura, W. Baumjohann, K.-H. Glassmeier, U. Motschmann, and H. Comişel
Ann. Geophys., 34, 85–89, https://doi.org/10.5194/angeo-34-85-2016, https://doi.org/10.5194/angeo-34-85-2016, 2016
Short summary
Short summary
Four-spacecraft Cluster observations of turbulent fluctuations in the magnetic reconnection region in the geomagnetic tail show for the first time an indication of ion Bernstein waves, electromagnetic waves that propagate nearly perpendicular to the mean magnetic field and are in resonance with ions. Bernstein waves may influence current sheet dynamics in the reconnection outflow such as a bifurcation of the current sheet.
H. Breuillard, O. Agapitov, A. Artemyev, V. Krasnoselskikh, O. Le Contel, C. M. Cully, V. Angelopoulos, Y. Zaliznyak, and G. Rolland
Ann. Geophys., 32, 1477–1485, https://doi.org/10.5194/angeo-32-1477-2014, https://doi.org/10.5194/angeo-32-1477-2014, 2014
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, and H. V. Malova
Ann. Geophys., 32, 1349–1360, https://doi.org/10.5194/angeo-32-1349-2014, https://doi.org/10.5194/angeo-32-1349-2014, 2014
A. V. Artemyev, I. Y. Vasko, V. N. Lutsenko, and A. A. Petrukovich
Ann. Geophys., 32, 1233–1246, https://doi.org/10.5194/angeo-32-1233-2014, https://doi.org/10.5194/angeo-32-1233-2014, 2014
R. Wang, R. Nakamura, T. Zhang, A. Du, W. Baumjohann, Q. Lu, and A. N. Fazakerley
Ann. Geophys., 32, 239–248, https://doi.org/10.5194/angeo-32-239-2014, https://doi.org/10.5194/angeo-32-239-2014, 2014
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 32, 133–146, https://doi.org/10.5194/angeo-32-133-2014, https://doi.org/10.5194/angeo-32-133-2014, 2014
R. Nakamura, F. Plaschke, R. Teubenbacher, L. Giner, W. Baumjohann, W. Magnes, M. Steller, R. B. Torbert, H. Vaith, M. Chutter, K.-H. Fornaçon, K.-H. Glassmeier, and C. Carr
Geosci. Instrum. Method. Data Syst., 3, 1–11, https://doi.org/10.5194/gi-3-1-2014, https://doi.org/10.5194/gi-3-1-2014, 2014
Y. Narita, R. Nakamura, and W. Baumjohann
Ann. Geophys., 31, 1605–1610, https://doi.org/10.5194/angeo-31-1605-2013, https://doi.org/10.5194/angeo-31-1605-2013, 2013
H. Breuillard, Y. Zaliznyak, O. Agapitov, A. Artemyev, V. Krasnoselskikh, and G. Rolland
Ann. Geophys., 31, 1429–1435, https://doi.org/10.5194/angeo-31-1429-2013, https://doi.org/10.5194/angeo-31-1429-2013, 2013
A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 31, 1109–1114, https://doi.org/10.5194/angeo-31-1109-2013, https://doi.org/10.5194/angeo-31-1109-2013, 2013
M. Volwerk, N. André, C. S. Arridge, C. M. Jackman, X. Jia, S. E. Milan, A. Radioti, M. F. Vogt, A. P. Walsh, R. Nakamura, A. Masters, and C. Forsyth
Ann. Geophys., 31, 817–833, https://doi.org/10.5194/angeo-31-817-2013, https://doi.org/10.5194/angeo-31-817-2013, 2013
A. V. Artemyev, D. Mourenas, O. V. Agapitov, and V. V. Krasnoselskikh
Ann. Geophys., 31, 599–624, https://doi.org/10.5194/angeo-31-599-2013, https://doi.org/10.5194/angeo-31-599-2013, 2013
A. Alexandrova, R. Nakamura, V. S. Semenov, I. V. Kubyshkin, S. Apatenkov, E. V. Panov, D. Korovinskiy, H. Biernat, W. Baumjohann, K.-H. Glassmeier, and J. P. McFadden
Ann. Geophys., 30, 1727–1741, https://doi.org/10.5194/angeo-30-1727-2012, https://doi.org/10.5194/angeo-30-1727-2012, 2012
Short summary
In the paper we study flapping wave structures, generated in the neutral plane of the Earth magnetotail. Investigated flapping is an important process of magnetosphere dynamics, connected with magnetic energy transformation and magnetic storm formation. Large separation of Cluster spacecraft allows us to estimate both local and global properties of flapping current sheets, the typical flapping times and propagation directions.
In the paper we study flapping wave structures, generated in the neutral plane of the Earth...