Articles | Volume 34, issue 5
https://doi.org/10.5194/angeo-34-493-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-34-493-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an intense solar wind dynamic pressure pulse
Zheng Xiang
CORRESPONDING AUTHOR
Department of Space Physics, School of Electronic Information, Wuhan
University, Wuhan, Hubei, China
State Key Laboratory of Space Weather, National Space Science Center,
Chinese Academy of Sciences, Beijing, China
Binbin Ni
CORRESPONDING AUTHOR
Department of Space Physics, School of Electronic Information, Wuhan
University, Wuhan, Hubei, China
State Key Laboratory of Space Weather, National Space Science Center,
Chinese Academy of Sciences, Beijing, China
Chen Zhou
Department of Space Physics, School of Electronic Information, Wuhan
University, Wuhan, Hubei, China
Zhengyang Zou
Department of Space Physics, School of Electronic Information, Wuhan
University, Wuhan, Hubei, China
Xudong Gu
Department of Space Physics, School of Electronic Information, Wuhan
University, Wuhan, Hubei, China
Zhengyu Zhao
Department of Space Physics, School of Electronic Information, Wuhan
University, Wuhan, Hubei, China
Xianguo Zhang
State Key Laboratory of Space Weather, National Space Science Center,
Chinese Academy of Sciences, Beijing, China
Xiaoxin Zhang
National Space Weather Monitoring and Warning Center, China
Meteorological Administration, Beijing, China
Shenyi Zhang
State Key Laboratory of Space Weather, National Space Science Center,
Chinese Academy of Sciences, Beijing, China
Xinlin Li
Laboratory for Atmospheric and Space Physics, University of
Colorado,
Boulder, Colorado, USA
Pingbing Zuo
State Key Laboratory of Space Weather, National Space Science Center,
Chinese Academy of Sciences, Beijing, China
Harlan Spence
Institute for the Study of Earth, Oceans, and Space and Department of
Physics, University of New Hampshire, Durham, New Hampshire, USA
Geoffrey Reeves
Space Science and Applications Group, Los Alamos National Laboratory,
Los Alamos, New Mexico, USA
Related authors
No articles found.
Mei Li, Zhuangkai Wang, Chen Zhou, Handong Tan, and Meng Cao
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-94, https://doi.org/10.5194/nhess-2024-94, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
In order to check the relationship between ground-based electromagnetic anomaly and ionospheric effect before the famous Wenchuan MS 8.0 earthquake, three physical models have been established to simulate the communication process of electromagnetic energy from the Wenchuan hypocenter to the Earth’s surface, via the atmosphere to the ionosphere to cause ionospheric variations.
Luyao Wang, Hua Zhang, Xiaoxin Zhang, Guangshuai Peng, Zheng Li, and Xiaojun Xu
Ann. Geophys., 42, 91–101, https://doi.org/10.5194/angeo-42-91-2024, https://doi.org/10.5194/angeo-42-91-2024, 2024
Short summary
Short summary
The temporal convolutional network (TCN) approach in deep learning is used to predict the daily value of F10.7. The prediction results for 1–3 d ahead during solar cycle 24 have a high correlation coefficient (R) of 0.98 and a root mean square error (RMSE) of only 5.04–5.18 sfu.
Qiong Tang, Chen Zhou, Huixin Liu, Yi Liu, Jiaqi Zhao, Zhibin Yu, Zhengyu Zhao, and Xueshang Feng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-534, https://doi.org/10.5194/acp-2022-534, 2022
Preprint withdrawn
Short summary
Short summary
The geomagnetic and solar effect on Es is studied. The negative correlation between Es and geomagnetic activity at mid-latitude is related to the decreased meteor rate during storm period. The increased Es occurrence in high latitude relates to the changing electric field. The positive correlation between Es and solar activity at high latitude is due to the enhanced IMF in solar maximum. The negative correlation in mid and low latitudes relates to the decreased meteor rate during solar activity.
Yungang Wang, Liping Fu, Fang Jiang, Xiuqing Hu, Chengbao Liu, Xiaoxin Zhang, Jiawei Li, Zhipeng Ren, Fei He, Lingfeng Sun, Ling Sun, Zhongdong Yang, Peng Zhang, Jingsong Wang, and Tian Mao
Atmos. Meas. Tech., 15, 1577–1586, https://doi.org/10.5194/amt-15-1577-2022, https://doi.org/10.5194/amt-15-1577-2022, 2022
Short summary
Short summary
Far-ultraviolet (FUV) airglow radiation is particularly well suited for space-based remote sensing. The Ionospheric Photometer (IPM) instrument carried aboard the Feng Yun 3-D satellite measures the spectral radiance of the Earth FUV airglow. IPM is a tiny, highly sensitive, and robust remote sensing instrument. Initial results demonstrate that the performance of IPM meets the designed requirement and therefore can be used to study the thermosphere and ionosphere in the future.
Galina Korotova, David Sibeck, Mark Engebretson, Michael Balikhin, Scott Thaller, Craig Kletzing, Harlan Spence, and Robert Redmon
Ann. Geophys., 38, 1267–1281, https://doi.org/10.5194/angeo-38-1267-2020, https://doi.org/10.5194/angeo-38-1267-2020, 2020
Short summary
Short summary
We used multipoint magnetic field, electric field, plasma, and energetic particle observations to study the spatial, temporal, and spectral characteristics of compressional Pc5 pulsations observed deep within the magnetosphere at the end of a strong magnetic storm. We investigated the mode of the waves and their nodal structure. The energetic particles responded directly to the compressional Pc5 pulsations. We interpret the compressional Pc5 waves in terms of drift-mirror instability.
Shufan Zhao, XuHui Shen, Zeren Zhima, and Chen Zhou
Ann. Geophys., 38, 969–981, https://doi.org/10.5194/angeo-38-969-2020, https://doi.org/10.5194/angeo-38-969-2020, 2020
Short summary
Short summary
We use satellite data to analyze precursory anomalies of the western China Ms 7.1 Yushu earthquake by analyzing the signal-to-noise ratio (SNR) and using the full-wave model to illustrate a possible mechanism for how the anomalies occurred. The results show that very low-frequency (VLF) radio wave SNR in the ionosphere decreased before the Yushu earthquake. The full-wave simulation results confirm that electron density variation in the lower ionosphere will affect VLF radio signal SNR.
Yi Liu, Chen Zhou, Qiong Tang, Guanyi Chen, and Zhengyu Zhao
Ann. Geophys., 37, 337–345, https://doi.org/10.5194/angeo-37-337-2019, https://doi.org/10.5194/angeo-37-337-2019, 2019
Short summary
Short summary
Underground nuclear explosion (UNE) can produce ionospheric disturbances through a lithosphere–atmosphere–ionosphere coupling mechanism, which is very similar with earthquakes. By using the total electron content observations and Swarm ionospheric current data, we have investigated the geomagnetic conjugate ionospheric disturbances. We proposed that the electric field generated during the UNE test can be an important mechanism for ionospheric disturbance.
Jiaqi Zhao and Chen Zhou
Ann. Geophys., 37, 263–271, https://doi.org/10.5194/angeo-37-263-2019, https://doi.org/10.5194/angeo-37-263-2019, 2019
Galina Korotova, David Sibeck, Scott Thaller, John Wygant, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 36, 1319–1333, https://doi.org/10.5194/angeo-36-1319-2018, https://doi.org/10.5194/angeo-36-1319-2018, 2018
Short summary
Short summary
We employ multipoint observations of the Van Allen Probes, THEMIS, GOES and Cluster to present case and statistical studies of the electromagnetic field, plasma and particle response to interplanetary (IP) shocks observed by Wind. We perform a statistical study of Ey variations of the electric field and associated plasma drift flow velocities for 60 magnetospheric events during the passage of interplanetary shocks.
Moran Liu, Chen Zhou, Xiang Wang, Bin Bin Ni, and Zhengyu Zhao
Ann. Geophys., 36, 855–866, https://doi.org/10.5194/angeo-36-855-2018, https://doi.org/10.5194/angeo-36-855-2018, 2018
Run Shi, Wen Li, Qianli Ma, Seth G. Claudepierre, Craig A. Kletzing, William S. Kurth, George B. Hospodarsky, Harlan E. Spence, Geoff D. Reeves, Joseph F. Fennell, J. Bernard Blake, Scott A. Thaller, and John R. Wygant
Ann. Geophys., 36, 781–791, https://doi.org/10.5194/angeo-36-781-2018, https://doi.org/10.5194/angeo-36-781-2018, 2018
Theodore E. Sarris and Xinlin Li
Ann. Geophys., 35, 629–638, https://doi.org/10.5194/angeo-35-629-2017, https://doi.org/10.5194/angeo-35-629-2017, 2017
Short summary
Short summary
In this paper we describe a novel way to approximate the decomposition of magnetospheric ultra low-frequency (ULF) wave power in key azimuthal wavenumbers m, which is a parameter describing the number of azimuthal wavelengths that fit within a particle drift orbit. This is a critical parameter that is required in estimates of the rates of radial diffusion, and we show for the first time that there is a local time and geomagnetic activity dependence in the distribution of power in wavenumbers m.
Galina Korotova, David Sibeck, Mark Engebretson, John Wygant, Scott Thaller, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 34, 985–998, https://doi.org/10.5194/angeo-34-985-2016, https://doi.org/10.5194/angeo-34-985-2016, 2016
Xiang Xu, Chen Zhou, Run Shi, Binbin Ni, Zhengyu Zhao, and Yuannong Zhang
Ann. Geophys., 34, 815–829, https://doi.org/10.5194/angeo-34-815-2016, https://doi.org/10.5194/angeo-34-815-2016, 2016
Short summary
Short summary
ULF waves can be generated by modulated HF heating in the ionospheric F region, which has long been considered for secure communication with submarines. In this paper we study the effects of background parameters on the process of ULF wave generation and propagation by using a numerical simulation. We find that wave radiation efficiency is higher in the daytime ionosphere at lower latitudes, while ground wave intensity is larger in the nighttime ionosphere with lower modulation frequency.
Theodore E. Sarris and Xinlin Li
Ann. Geophys., 34, 565–571, https://doi.org/10.5194/angeo-34-565-2016, https://doi.org/10.5194/angeo-34-565-2016, 2016
G. I. Korotova, D. G. Sibeck, K. Tahakashi, L. Dai, H. E. Spence, C. A. Kletzing, J. R. Wygant, J. W. Manweiler, P. S. Moya, K.-J. Hwang, and R. J. Redmon
Ann. Geophys., 33, 955–964, https://doi.org/10.5194/angeo-33-955-2015, https://doi.org/10.5194/angeo-33-955-2015, 2015
Short summary
Short summary
We studied localized Pc 4 pulsations in the pre-midnight inner magnetosphere observed by Van Allen Probe B on May 1 2013. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes result from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.
C. Zhou, H. Qing, G. Chen, X. Gu, B. Ni, G. Yang, Y. Zhang, and Z. Zhao
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-7-11901-2014, https://doi.org/10.5194/amtd-7-11901-2014, 2014
Revised manuscript not accepted
Short summary
Short summary
Wuhan atmosphere radio exploration (WARE) radar is the first Mesosphere- -Stratosphere-Troposphere (MST) radar that becomes operative in the mainland of China and is dedicated to real-time atmospheric observations. We present the main configurations and initial results in this paper.The results can be very significant for analyzing the atmospheric characteristics in mid-latitude China and contributing to the worldwide MST community.
S. S. Chang, B. B. Ni, J. Bortnik, C. Zhou, Z. Y. Zhao, J. X. Li, and X. D. Gu
Ann. Geophys., 32, 507–518, https://doi.org/10.5194/angeo-32-507-2014, https://doi.org/10.5194/angeo-32-507-2014, 2014
J. J. Zhao, C. Zhou, G. B. Yang, C. H. Jiang, S. S. Chang, P. Zhu, X. D. Gu, B. B. Ni, and Z. Y. Zhao
Ann. Geophys., 32, 465–472, https://doi.org/10.5194/angeo-32-465-2014, https://doi.org/10.5194/angeo-32-465-2014, 2014
Short summary
We used 14 satellites(GOES, POES, THEMIS, RBSP, FENGYUN, REPTile) measurement to investigate the loss mechanisms of a electron dropout event during a intense solar wind dynamic pressure pulse. The observations demonstrated that magnetopause shadowing and atmospheric loss both play important roles in electron flux dropout. Moreover, substrom injections and convection strongly enhanced the energetic electron fluxes, which may delay other than avoid the occurrence of electron flux dropout.
We used 14 satellites(GOES, POES, THEMIS, RBSP, FENGYUN, REPTile) measurement to investigate the...