Articles | Volume 33, issue 5
https://doi.org/10.5194/angeo-33-583-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-33-583-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Field-aligned chorus wave spectral power in Earth's outer radiation belt
H. Breuillard
CORRESPONDING AUTHOR
LPC2E/CNRS-University of Orléans, Orléans, France
Max-Planck Institut für Sonnensystemforschung, Göttingen, Germany
O. Agapitov
National Taras Shevchenko University of Kyiv, Kyiv, Ukraine
Space Sciences Laboratory, University of California, Berkeley, USA
A. Artemyev
Space Research Institute, RAS, Moscow, Russia
E. A. Kronberg
Max-Planck Institut für Sonnensystemforschung, Göttingen, Germany
S. E. Haaland
Max-Planck Institut für Sonnensystemforschung, Göttingen, Germany
P. W. Daly
Max-Planck Institut für Sonnensystemforschung, Göttingen, Germany
V. V. Krasnoselskikh
LPC2E/CNRS-University of Orléans, Orléans, France
D. Boscher
ONERA the French Aerospace Lab, Toulouse, France
S. Bourdarie
ONERA the French Aerospace Lab, Toulouse, France
Y. Zaliznyak
Institute for Nuclear Research, Kyiv, Ukraine
G. Rolland
CNES, Toulouse, France
Related authors
H. Breuillard, O. Agapitov, A. Artemyev, V. Krasnoselskikh, O. Le Contel, C. M. Cully, V. Angelopoulos, Y. Zaliznyak, and G. Rolland
Ann. Geophys., 32, 1477–1485, https://doi.org/10.5194/angeo-32-1477-2014, https://doi.org/10.5194/angeo-32-1477-2014, 2014
H. Breuillard, Y. Zaliznyak, O. Agapitov, A. Artemyev, V. Krasnoselskikh, and G. Rolland
Ann. Geophys., 31, 1429–1435, https://doi.org/10.5194/angeo-31-1429-2013, https://doi.org/10.5194/angeo-31-1429-2013, 2013
Nour Dahmen, Antoine Brunet, Sebastien Bourdarie, Christos Katsavrias, Guillerme Bernoux, Stefanos Doulfis, Afroditi Nasi, Ingmar Sandberg, Constantinos Papadimitriou, Jesus Oliveros Fernandez, and Ioannis Daglis
Ann. Geophys., 41, 301–312, https://doi.org/10.5194/angeo-41-301-2023, https://doi.org/10.5194/angeo-41-301-2023, 2023
Short summary
Short summary
Earth’s space environment is populated with charged particles. The energetic ones are trapped around Earth in radiation belts. Orbiting spacecraft that cross their region can accumulate charges on their internal surfaces, leading to hazardous electrostatic discharges. This paper showcases the SafeSpace safety prototype, which aims to warn satellite operators of probable incoming hazardous events by simulating the dynamics of the electron radiation belts from their origin at the Sun.
Christos Katsavrias, Afroditi Nasi, Ioannis A. Daglis, Sigiava Aminalragia-Giamini, Nourallah Dahmen, Constantinos Papadimitriou, Marina Georgiou, Antoine Brunet, and Sebastien Bourdarie
Ann. Geophys., 40, 379–393, https://doi.org/10.5194/angeo-40-379-2022, https://doi.org/10.5194/angeo-40-379-2022, 2022
Short summary
Short summary
The radial diffusion mechanism is of utmost importance to both the acceleration and loss of relativistic electrons in the outer radiation belt and, consequently, for physics-based models, which provide nowcasting and forecasting of the electron population. In the framework of the "SafeSpace" project, we have created a database of calculated radial diffusion coefficients, and, furthermore, we have exploited it to provide insights for future modelling efforts.
Yuriy Rapoport, Vladimir Grimalsky, Viktor Fedun, Oleksiy Agapitov, John Bonnell, Asen Grytsai, Gennadi Milinevsky, Alex Liashchuk, Alexander Rozhnoi, Maria Solovieva, and Andrey Gulin
Ann. Geophys., 38, 207–230, https://doi.org/10.5194/angeo-38-207-2020, https://doi.org/10.5194/angeo-38-207-2020, 2020
Short summary
Short summary
The paper analytically and numerically treats the new theoretical basis for ground-based and satellite monitoring of the most powerful processes in the lower atmosphere and Earth (hurricanes, earthquakes, etc.), solar-wind magnetosphere (magnetic storms) and ionosphere (lightning discharges, thunderstorms, etc.). This can be provided by the determination of phases and amplitudes of radio waves in the Earth and ionosphere. In perspective, damage from the natural disasters can be decreased.
Andrei Y. Malykhin, Elena E. Grigorenko, Elena A. Kronberg, Patrick W. Daly, and Ludmila V. Kozak
Ann. Geophys., 37, 549–559, https://doi.org/10.5194/angeo-37-549-2019, https://doi.org/10.5194/angeo-37-549-2019, 2019
Short summary
Short summary
In this work we present an analysis of the dynamics of suprathermal ions of different masses (H+, He+, O+) during prolonged dipolarizations in the near-Earth magnetotail according to Cluster/RAPID observations in 2001–2005. All dipolarizations from our database were associated with fast flow braking and consisted of multiple dipolarization fronts (DFs). We found statistically that fluxes of suprathermal ions started to increase ~ 1 min before the dipolarization onset and continued.
Liudmyla V. Kozak, Bohdan A. Petrenko, Anthony T. Y. Lui, Elena A. Kronberg, Elena E. Grigorenko, and Andrew S. Prokhorenkov
Ann. Geophys., 36, 1303–1318, https://doi.org/10.5194/angeo-36-1303-2018, https://doi.org/10.5194/angeo-36-1303-2018, 2018
Short summary
Short summary
We analysed the turbulent processes in the Earth's magnetotail in the regions of magnetic field dipolarization and compared them with known models. We used spectral and statistical methods for analysis measurements from the Cluster-II mission. We have obtained a significant difference for turbulent processes depending on observed scales. Our results can be interesting for classification of the turbulent processes in both hydrodynamics and magnetohydrodynamics environments.
Angélica Sicard, Daniel Boscher, Sébastien Bourdarie, Didier Lazaro, Denis Standarovski, and Robert Ecoffet
Ann. Geophys., 36, 953–967, https://doi.org/10.5194/angeo-36-953-2018, https://doi.org/10.5194/angeo-36-953-2018, 2018
Short summary
Short summary
GREEN (Global Radiation Earth ENvironment) is a new model providing particle fluxes at any location in the radiation belts, for energy between 1 keV
and 10 MeV for electrons and between 1 keV and 800 MeV for protons. This model is composed of global models (AE8 and AP8, and SPM) and
local models (SLOT model, OZONE and IGE-2006 for electrons; OPAL and IGP for protons).
Andrey Y. Malykhin, Elena E. Grigorenko, Elena A. Kronberg, Rositza Koleva, Natalia Y. Ganushkina, Ludmila Kozak, and Patrick W. Daly
Ann. Geophys., 36, 741–760, https://doi.org/10.5194/angeo-36-741-2018, https://doi.org/10.5194/angeo-36-741-2018, 2018
Remi Benacquista, Sandrine Rochel, and Guy Rolland
Ann. Geophys., 35, 147–159, https://doi.org/10.5194/angeo-35-147-2017, https://doi.org/10.5194/angeo-35-147-2017, 2017
Short summary
Short summary
The Earth's magnetic field creates a magnetic bulk all around it called the magnetosphere. This bulk a priori protects us from the particles coming from the sun but sometimes undergoes violent events such as interplanetary coronal mass ejections. These cause the entry of particles into the magnetosphere, which can be harmful for satellites. In this paper, we performed a statistical study to characterize the interplanetary coronal mass ejections and their ability to disturb the magnetosphere.
Filomena Catapano, Gaetano Zimbardo, Silvia Perri, Antonella Greco, and Anton V. Artemyev
Ann. Geophys., 34, 917–926, https://doi.org/10.5194/angeo-34-917-2016, https://doi.org/10.5194/angeo-34-917-2016, 2016
Short summary
Short summary
Spacecraft observations show that energetic ions are found in the Earth’s magnetotail, with energies ranging from tens of keV to a few hundreds of keV. In this paper we carry out test particle simulations in which protons and other ion species are injected in the Vlasov magnetic field configurations obtained by Catapano et al. (2015). Three-dimensional time-dependent stochastic electromagnetic perturbations are included in the simulation box, so that the ion acceleration process is studied.
H. Breuillard, O. Agapitov, A. Artemyev, V. Krasnoselskikh, O. Le Contel, C. M. Cully, V. Angelopoulos, Y. Zaliznyak, and G. Rolland
Ann. Geophys., 32, 1477–1485, https://doi.org/10.5194/angeo-32-1477-2014, https://doi.org/10.5194/angeo-32-1477-2014, 2014
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, and H. V. Malova
Ann. Geophys., 32, 1349–1360, https://doi.org/10.5194/angeo-32-1349-2014, https://doi.org/10.5194/angeo-32-1349-2014, 2014
A. Sicard-Piet, D. Boscher, R. B. Horne, N. P. Meredith, and V. Maget
Ann. Geophys., 32, 1059–1071, https://doi.org/10.5194/angeo-32-1059-2014, https://doi.org/10.5194/angeo-32-1059-2014, 2014
E. A. Kronberg and P. W. Daly
Geosci. Instrum. Method. Data Syst., 2, 257–261, https://doi.org/10.5194/gi-2-257-2013, https://doi.org/10.5194/gi-2-257-2013, 2013
A. V. Artemyev, K. G. Orlova, D. Mourenas, O. V. Agapitov, and V. V. Krasnoselskikh
Ann. Geophys., 31, 1485–1490, https://doi.org/10.5194/angeo-31-1485-2013, https://doi.org/10.5194/angeo-31-1485-2013, 2013
H. Breuillard, Y. Zaliznyak, O. Agapitov, A. Artemyev, V. Krasnoselskikh, and G. Rolland
Ann. Geophys., 31, 1429–1435, https://doi.org/10.5194/angeo-31-1429-2013, https://doi.org/10.5194/angeo-31-1429-2013, 2013
A. Voshchepynets and V. Krasnoselskikh
Ann. Geophys., 31, 1379–1385, https://doi.org/10.5194/angeo-31-1379-2013, https://doi.org/10.5194/angeo-31-1379-2013, 2013
C. P. Escoubet, J. Berchem, K. J. Trattner, F. Pitout, R. Richard, M. G. G. T. Taylor, J. Soucek, B. Grison, H. Laakso, A. Masson, M. Dunlop, I. Dandouras, H. Reme, A. Fazakerley, and P. Daly
Ann. Geophys., 31, 713–723, https://doi.org/10.5194/angeo-31-713-2013, https://doi.org/10.5194/angeo-31-713-2013, 2013
A. V. Artemyev, D. Mourenas, O. V. Agapitov, and V. V. Krasnoselskikh
Ann. Geophys., 31, 599–624, https://doi.org/10.5194/angeo-31-599-2013, https://doi.org/10.5194/angeo-31-599-2013, 2013