Articles | Volume 33, issue 1
https://doi.org/10.5194/angeo-33-117-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-33-117-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Pc2-3 geomagnetic pulsations on the ground, in the ionosphere, and in the magnetosphere: MM100, CHAMP, and THEMIS observations
N. Yagova
CORRESPONDING AUTHOR
Schmidt Institute of Physics of the Earth, Moscow, Russia
B. Heilig
Tihany Geophysical Observatory MFGI, Tihany, Hungary
E. Fedorov
Schmidt Institute of Physics of the Earth, Moscow, Russia
Related authors
Nataliya Sergeevna Nosikova, Nadezda Viktorovna Yagova, Lisa Jane Baddeley, Dag Arne Lorentzen, and Dmitriy Anatolyevich Sormakov
Ann. Geophys., 40, 151–165, https://doi.org/10.5194/angeo-40-151-2022, https://doi.org/10.5194/angeo-40-151-2022, 2022
Short summary
Short summary
This paper presents a study of millihertz magnetic pulsations seen in the magnetosphere and on the Earth under quiet space weather conditions. We found that these fluctuations appear in the magnetosphere as soon as disturbances with the same frequency vanish in the solar wind. The results of this work show the possibility of a substorm developing under absolutely quiet external conditions and allow us to assume that these pulsations represent a substorm preparatory phase.
Nadezda Yagova, Alexander Kozlovsky, Evgeny Fedorov, and Olga Kozyreva
Ann. Geophys., 39, 549–562, https://doi.org/10.5194/angeo-39-549-2021, https://doi.org/10.5194/angeo-39-549-2021, 2021
Short summary
Short summary
We present a study of ultralow-frequency waves in the ionosphere and on the ground. These waves are very slow (their periods are about several minutes). They are registered on the ground as geomagnetic pulsations. No simple dependence exists between geomagnetic and ionospheric pulsations. Here we study not only selected pulsations with very high amplitudes but also usual pulsations and try to answer the question, which pulsation parameters are favorable for modulation of the ionosphere?
Nadezda Yagova, Alexander Kozlovsky, Evgeny Fedorov, and Olga Kozyreva
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-155, https://doi.org/10.5194/angeo-2019-155, 2019
Manuscript not accepted for further review
Short summary
Short summary
We present a study of ultra-low-frequency waves in the ionosphere and on the ground (geomagnetic pulsations). They can influence particle flux in the magnetosphere, which modify the ionosphere. However, there is no simple dependence between geomagnetic and ionospheric pulsations. We study not only selected pulsations with very high amplitudes but also usual pulsations and try to answer the question, which pulsations' parameters are favorable for modulation of the ionosphere.
Nadezda Yagova, Natalia Nosikova, Lisa Baddeley, Olga Kozyreva, Dag A. Lorentzen, Vyacheslav Pilipenko, and Magnar G. Johnsen
Ann. Geophys., 35, 365–376, https://doi.org/10.5194/angeo-35-365-2017, https://doi.org/10.5194/angeo-35-365-2017, 2017
Short summary
Short summary
A substorm is a dramatic phenomenon in the near-Earth space that is visualized as an aurora. Mostly substorms are caused by changes in the solar wind, but some of them can develop without any evident trigger. Such substorms together with undisturbed days were investigated using magnetometer and photometer data from Svalbard. Substorm precursors, i.e., specific features in 1–4 mHz geomagnetic and auroral luminosity pulsations, have been found at high geomagnetic latitudes.
Nataliya Sergeevna Nosikova, Nadezda Viktorovna Yagova, Lisa Jane Baddeley, Dag Arne Lorentzen, and Dmitriy Anatolyevich Sormakov
Ann. Geophys., 40, 151–165, https://doi.org/10.5194/angeo-40-151-2022, https://doi.org/10.5194/angeo-40-151-2022, 2022
Short summary
Short summary
This paper presents a study of millihertz magnetic pulsations seen in the magnetosphere and on the Earth under quiet space weather conditions. We found that these fluctuations appear in the magnetosphere as soon as disturbances with the same frequency vanish in the solar wind. The results of this work show the possibility of a substorm developing under absolutely quiet external conditions and allow us to assume that these pulsations represent a substorm preparatory phase.
Nadezda Yagova, Alexander Kozlovsky, Evgeny Fedorov, and Olga Kozyreva
Ann. Geophys., 39, 549–562, https://doi.org/10.5194/angeo-39-549-2021, https://doi.org/10.5194/angeo-39-549-2021, 2021
Short summary
Short summary
We present a study of ultralow-frequency waves in the ionosphere and on the ground. These waves are very slow (their periods are about several minutes). They are registered on the ground as geomagnetic pulsations. No simple dependence exists between geomagnetic and ionospheric pulsations. Here we study not only selected pulsations with very high amplitudes but also usual pulsations and try to answer the question, which pulsation parameters are favorable for modulation of the ionosphere?
Nadezda Yagova, Alexander Kozlovsky, Evgeny Fedorov, and Olga Kozyreva
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-155, https://doi.org/10.5194/angeo-2019-155, 2019
Manuscript not accepted for further review
Short summary
Short summary
We present a study of ultra-low-frequency waves in the ionosphere and on the ground (geomagnetic pulsations). They can influence particle flux in the magnetosphere, which modify the ionosphere. However, there is no simple dependence between geomagnetic and ionospheric pulsations. We study not only selected pulsations with very high amplitudes but also usual pulsations and try to answer the question, which pulsations' parameters are favorable for modulation of the ionosphere.
Balázs Heilig and Hermann Lühr
Ann. Geophys., 36, 595–607, https://doi.org/10.5194/angeo-36-595-2018, https://doi.org/10.5194/angeo-36-595-2018, 2018
Short summary
Short summary
This paper presents a statistical study of the equatorward boundary of small-scale field-aligned currents (SSFACs) as observed by ESA's Swarm satellites and investigates the relation between this boundary and NASA’s Van Allen probe observed plasmapause (PP). It is found that the two boundaries are closely coincident in the midnight LT sector, where the new PP is formed. Our results point to the role of SSFACs in the creation of the PP and offer a unique tool to monitor PP dynamics.
Nadezda Yagova, Natalia Nosikova, Lisa Baddeley, Olga Kozyreva, Dag A. Lorentzen, Vyacheslav Pilipenko, and Magnar G. Johnsen
Ann. Geophys., 35, 365–376, https://doi.org/10.5194/angeo-35-365-2017, https://doi.org/10.5194/angeo-35-365-2017, 2017
Short summary
Short summary
A substorm is a dramatic phenomenon in the near-Earth space that is visualized as an aurora. Mostly substorms are caused by changes in the solar wind, but some of them can develop without any evident trigger. Such substorms together with undisturbed days were investigated using magnetometer and photometer data from Svalbard. Substorm precursors, i.e., specific features in 1–4 mHz geomagnetic and auroral luminosity pulsations, have been found at high geomagnetic latitudes.
S. Lotz, B. Heilig, and P. Sutcliffe
Ann. Geophys., 33, 225–234, https://doi.org/10.5194/angeo-33-225-2015, https://doi.org/10.5194/angeo-33-225-2015, 2015
Short summary
Short summary
This paper describes the development of empirical models that are capable of predicting Pc3 pulsation intensity from solar wind parameters (e.g. plasma flow speed, proton density, and interplanetary magnetic field (IMF) orientation). We also calculate the typical timescales at which different solar wind parameters influence the excitation of these waves: solar wind speed influences pulsation intensity at much longer timescales (about 2 days) than IMF orientation (about 1 hour).
P. R. Sutcliffe, B. Heilig, and S. Lotz
Ann. Geophys., 31, 725–743, https://doi.org/10.5194/angeo-31-725-2013, https://doi.org/10.5194/angeo-31-725-2013, 2013
B. Heilig and H. Lühr
Ann. Geophys., 31, 529–539, https://doi.org/10.5194/angeo-31-529-2013, https://doi.org/10.5194/angeo-31-529-2013, 2013