Articles | Volume 32, issue 8
https://doi.org/10.5194/angeo-32-991-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-32-991-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Waves in high-speed plasmoids in the magnetosheath and at the magnetopause
H. Gunell
Belgian Institute for Space Aeronomy, Avenue Circulaire 3, 1180 Brussels, Belgium
G. Stenberg Wieser
Swedish Institute of Space Physics (IRF), P.O. Box 812, 981 28 Kiruna, Sweden
M. Mella
Swedish Institute of Space Physics (IRF), Box 537, 751 21 Uppsala, Sweden
R. Maggiolo
Belgian Institute for Space Aeronomy, Avenue Circulaire 3, 1180 Brussels, Belgium
H. Nilsson
Swedish Institute of Space Physics (IRF), P.O. Box 812, 981 28 Kiruna, Sweden
F. Darrouzet
Belgian Institute for Space Aeronomy, Avenue Circulaire 3, 1180 Brussels, Belgium
M. Hamrin
Department of Physics, Umeå University, 901 87 Umeå, Sweden
T. Karlsson
Space and Plasma Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
N. Brenning
Space and Plasma Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
J. De Keyser
Belgian Institute for Space Aeronomy, Avenue Circulaire 3, 1180 Brussels, Belgium
Swedish Institute of Space Physics (IRF), Box 537, 751 21 Uppsala, Sweden
I. Dandouras
Institut de Recherche en Astrophysique et Planétologie, UPS-CNRS, 31028 Toulouse, France
Related authors
Charlotte Goetz, Herbert Gunell, Fredrik Johansson, Kristie LLera, Hans Nilsson, Karl-Heinz Glassmeier, and Matthew G. G. T. Taylor
Ann. Geophys., 39, 379–396, https://doi.org/10.5194/angeo-39-379-2021, https://doi.org/10.5194/angeo-39-379-2021, 2021
Short summary
Short summary
Boundaries in the plasma around comet 67P separate regions with different properties. Many have been identified, including a new boundary called an infant bow shock. Here, we investigate how the plasma and fields behave at this boundary and where it can be found. The main result is that the infant bow shock occurs at intermediate activity and intermediate distances to the comet. Most plasma parameters behave as expected; however, some inconsistencies indicate that the boundary is non-stationary.
Herbert Gunell, Charlotte Goetz, Elias Odelstad, Arnaud Beth, Maria Hamrin, Pierre Henri, Fredrik L. Johansson, Hans Nilsson, and Gabriella Stenberg Wieser
Ann. Geophys., 39, 53–68, https://doi.org/10.5194/angeo-39-53-2021, https://doi.org/10.5194/angeo-39-53-2021, 2021
Short summary
Short summary
When the magnetised solar wind meets the plasma surrounding a comet, the magnetic field is enhanced in front of the comet, and the field lines are draped around it. This happens because electric currents are induced in the plasma. When these currents flow through the plasma, they can generate waves. In this article we present observations of ion acoustic waves, which is a kind of sound wave in the plasma, detected by instruments on the Rosetta spacecraft near comet 67P/Churyumov–Gerasimenko.
Audrey Schillings, Herbert Gunell, Hans Nilsson, Alexandre De Spiegeleer, Yusuke Ebihara, Lars G. Westerberg, Masatoshi Yamauchi, and Rikard Slapak
Ann. Geophys., 38, 645–656, https://doi.org/10.5194/angeo-38-645-2020, https://doi.org/10.5194/angeo-38-645-2020, 2020
Short summary
Short summary
The Earth's atmosphere is constantly losing molecules and charged particles, amongst them oxygen ions or O+. Quantifying this loss provides information about the evolution of the atmosphere on geological timescales. In this study, we investigate the final destination of O+ observed with Cluster satellites in a high-altitude magnetospheric region (plasma mantle) by tracing the particles forward in time using simulations. We find that approximately 98 % of O+ escapes the Earth's magnetosphere.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 1331–1342, https://doi.org/10.5194/angeo-33-1331-2015, https://doi.org/10.5194/angeo-33-1331-2015, 2015
Short summary
Short summary
In a simulation study of the downward current region of the aurora, i.e. where electrons are accelerated upward, double layers are seen to form at low altitude and move upward until they are disrupted at altitudes of ten thousand kilometres or thereabouts. When one double layer is disrupted a new one forms below, and the process repeats itself. The repeated demise and reformation allows ions to flow upward without passing through the double layers that otherwise would have kept them down.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 279–293, https://doi.org/10.5194/angeo-33-279-2015, https://doi.org/10.5194/angeo-33-279-2015, 2015
Short summary
Short summary
In this paper, we simulate the plasma on a magnetic field line above the aurora. Initially, about half of the acceleration voltage is concentrated in a thin double layer at a few thousand km altitude. When the voltage is lowered, electrons trapped between the double layer and the magnetic mirror are released. In the process we see formation of electron beams and phase space holes. A temporary reversal of the polarity of the double layer is also seen as well as hysteresis effects in its position.
H. Gunell, J. De Keyser, E. Gamby, and I. Mann
Ann. Geophys., 31, 1227–1240, https://doi.org/10.5194/angeo-31-1227-2013, https://doi.org/10.5194/angeo-31-1227-2013, 2013
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Adrian Pöppelwerth, Georg Glebe, Johannes Z. D. Mieth, Florian Koller, Tomas Karlsson, Zoltán Vörös, and Ferdinand Plaschke
Ann. Geophys., 42, 271–284, https://doi.org/10.5194/angeo-42-271-2024, https://doi.org/10.5194/angeo-42-271-2024, 2024
Short summary
Short summary
In the magnetosheath, a near-Earth region of space, we observe increases in plasma velocity and density, so-called jets. As they propagate towards Earth, jets interact with the ambient plasma. We study this interaction with three spacecraft simultaneously to infer their sizes. While previous studies have investigated their size almost exclusively statistically, we demonstrate a new method of determining the sizes of individual jets.
Tomas Karlsson, Ferdinand Plaschke, Austin N. Glass, and Jim M. Raines
Ann. Geophys., 42, 117–130, https://doi.org/10.5194/angeo-42-117-2024, https://doi.org/10.5194/angeo-42-117-2024, 2024
Short summary
Short summary
The solar wind interacts with the planets in the solar system and creates a supersonic shock in front of them. The upstream region of this shock contains many complicated phenomena. One such phenomenon is small-scale structures of strong magnetic fields (SLAMS). These SLAMS have been observed at Earth and are important in determining the properties of space around the planet. Until now, SLAMS have not been observed at Mercury, but we show for the first time that SLAMS also exist there.
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, and Magda Delva
Ann. Geophys., 41, 389–408, https://doi.org/10.5194/angeo-41-389-2023, https://doi.org/10.5194/angeo-41-389-2023, 2023
Short summary
Short summary
Freshly created ions in solar wind start gyrating around the interplanetary magnetic field. When they cross the bow shock, they get an extra kick, and this increases the plasma pressure against the magnetic pressure. This leads to the creation of so-called mirror modes, regions where the magnetic field decreases in strength and the plasma density increases. These structures help in exploring how energy is transferred from the ions to the magnetic field and where around Venus this is happening.
Henriette Trollvik, Tomas Karlsson, and Savvas Raptis
Ann. Geophys., 41, 327–337, https://doi.org/10.5194/angeo-41-327-2023, https://doi.org/10.5194/angeo-41-327-2023, 2023
Short summary
Short summary
The solar wind is in a plasma state and can exhibit a range of phenomena like waves and instabilities. One observed phenomenon in the solar wind is magnetic holes (MHs). They are localized depressions in the magnetic field. We studied the motion of MHs using the multispacecraft ESA Cluster mission. We derived their velocities in the solar wind frame and found that both linear and rotational MHs are convected with the solar wind.
Cyril Simon Wedlund, Martin Volwerk, Christian Mazelle, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Jasper Halekas, Diana Rojas-Castillo, César Bertucci, and Jared Espley
Ann. Geophys., 41, 225–251, https://doi.org/10.5194/angeo-41-225-2023, https://doi.org/10.5194/angeo-41-225-2023, 2023
Short summary
Short summary
Mirror modes are magnetic bottles found in the space plasma environment of planets contributing to the energy exchange with the solar wind. We use magnetic field measurements from the NASA Mars Atmosphere and Volatile EvolutioN mission to detect them around Mars and show how they evolve in time and space. The structures concentrate in two regions: one behind the bow shock and the other closer to the planet. They compete with other wave modes depending on the solar flux and heliocentric distance.
Tomas Karlsson, Henriette Trollvik, Savvas Raptis, Hans Nilsson, and Hadi Madanian
Ann. Geophys., 40, 687–699, https://doi.org/10.5194/angeo-40-687-2022, https://doi.org/10.5194/angeo-40-687-2022, 2022
Short summary
Short summary
Magnetic holes are curious localized dropouts of magnetic field strength in the solar wind (the flow of ionized gas continuously streaming out from the sun). In this paper we show that these magnetic holes can cross the bow shock (where the solar wind brake down to subsonic velocity) and enter the region close to Earth’s magnetosphere. These structures may therefore represent a new type of non-uniform solar wind–magnetosphere interaction.
Charlotte Goetz, Herbert Gunell, Fredrik Johansson, Kristie LLera, Hans Nilsson, Karl-Heinz Glassmeier, and Matthew G. G. T. Taylor
Ann. Geophys., 39, 379–396, https://doi.org/10.5194/angeo-39-379-2021, https://doi.org/10.5194/angeo-39-379-2021, 2021
Short summary
Short summary
Boundaries in the plasma around comet 67P separate regions with different properties. Many have been identified, including a new boundary called an infant bow shock. Here, we investigate how the plasma and fields behave at this boundary and where it can be found. The main result is that the infant bow shock occurs at intermediate activity and intermediate distances to the comet. Most plasma parameters behave as expected; however, some inconsistencies indicate that the boundary is non-stationary.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Herbert Gunell, Charlotte Goetz, Elias Odelstad, Arnaud Beth, Maria Hamrin, Pierre Henri, Fredrik L. Johansson, Hans Nilsson, and Gabriella Stenberg Wieser
Ann. Geophys., 39, 53–68, https://doi.org/10.5194/angeo-39-53-2021, https://doi.org/10.5194/angeo-39-53-2021, 2021
Short summary
Short summary
When the magnetised solar wind meets the plasma surrounding a comet, the magnetic field is enhanced in front of the comet, and the field lines are draped around it. This happens because electric currents are induced in the plasma. When these currents flow through the plasma, they can generate waves. In this article we present observations of ion acoustic waves, which is a kind of sound wave in the plasma, detected by instruments on the Rosetta spacecraft near comet 67P/Churyumov–Gerasimenko.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Audrey Schillings, Herbert Gunell, Hans Nilsson, Alexandre De Spiegeleer, Yusuke Ebihara, Lars G. Westerberg, Masatoshi Yamauchi, and Rikard Slapak
Ann. Geophys., 38, 645–656, https://doi.org/10.5194/angeo-38-645-2020, https://doi.org/10.5194/angeo-38-645-2020, 2020
Short summary
Short summary
The Earth's atmosphere is constantly losing molecules and charged particles, amongst them oxygen ions or O+. Quantifying this loss provides information about the evolution of the atmosphere on geological timescales. In this study, we investigate the final destination of O+ observed with Cluster satellites in a high-altitude magnetospheric region (plasma mantle) by tracing the particles forward in time using simulations. We find that approximately 98 % of O+ escapes the Earth's magnetosphere.
Martin Volwerk, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Heyner, and Brian Anderson
Ann. Geophys., 38, 51–60, https://doi.org/10.5194/angeo-38-51-2020, https://doi.org/10.5194/angeo-38-51-2020, 2020
Short summary
Short summary
The magnetic field that is carried by the solar wind slowly decreases in strength as it moves further from the Sun. However, there are sometimes localized decreases in the magnetic field strength, called magnetic holes. These are small structures where the magnetic field strength decreases to less than 50 % of the surroundings and the plasma density increases. This paper presents a statistical study of the behaviour of these holes between Mercury and Venus using MESSENGER data.
Johan De Keyser, Benoit Lavraud, Lubomir Přech, Eddy Neefs, Sophie Berkenbosch, Bram Beeckman, Andrei Fedorov, Maria Federica Marcucci, Rossana De Marco, and Daniele Brienza
Ann. Geophys., 36, 1285–1302, https://doi.org/10.5194/angeo-36-1285-2018, https://doi.org/10.5194/angeo-36-1285-2018, 2018
Short summary
Short summary
This paper describes "beam tracking", a new technology for measuring velocity distributions in the solar wind with a plasma spectrometer, that allows the order of magnitude speedup in data acquisition needed for studying ion-scale turbulence. The basic idea is that the spectrometer should only sample the energy–elevation–azimuth range where the solar wind is expected to reside. The paper shows how the technique can be implemented and illustrates its performance and robustness through simulation.
Minna Palmroth, Heli Hietala, Ferdinand Plaschke, Martin Archer, Tomas Karlsson, Xóchitl Blanco-Cano, David Sibeck, Primož Kajdič, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, and Lucile Turc
Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, https://doi.org/10.5194/angeo-36-1171-2018, 2018
Short summary
Short summary
Magnetosheath jets are high-velocity plasma structures that are commonly observed within the Earth's magnetosheath. Previously, they have mainly been investigated with spacecraft observations, which do not allow us to infer their spatial sizes, temporal evolution, or origin. This paper shows for the first time their dimensions, evolution, and origins within a simulation whose dimensions are directly comparable to the Earth's magnetosphere. The results are compared to previous observations.
Tomas Karlsson, Ferdinand Plaschke, Heli Hietala, Martin Archer, Xóchitl Blanco-Cano, Primož Kajdič, Per-Arne Lindqvist, Göran Marklund, and Daniel J. Gershman
Ann. Geophys., 36, 655–677, https://doi.org/10.5194/angeo-36-655-2018, https://doi.org/10.5194/angeo-36-655-2018, 2018
Short summary
Short summary
We have studied fast plasma jets outside of Earth’s magnetic environment. Such jets are small-scale structures with a limited lifetime, which may be important in determining the properties of the near-Earth space environment, due to their concentrated kinetic energy. We have used data from the NASA Magnetospheric MultiScale (MMS) satellites to study their properties in detail, to understand how these jets are formed. We have found evidence that there are at least two different types of jets.
Elisabet Liljeblad and Tomas Karlsson
Ann. Geophys., 35, 879–884, https://doi.org/10.5194/angeo-35-879-2017, https://doi.org/10.5194/angeo-35-879-2017, 2017
Short summary
Short summary
MESSENGER magnetic field data from the magnetosphere of Mercury have been investigated to identify ultra-low-frequency (ULF) waves. ULF waves in the Kelvin–Helmholtz (KH) wave frequency range are frequently observed in the magnetosphere. These ULF waves often have similar characteristics to previously identified, likely KH-driven ULF waves, indicating that ULF waves in a specific frequency band can be used as a detection tool for KH waves on Mercury.
Rikard Slapak, Maria Hamrin, Timo Pitkänen, Masatoshi Yamauchi, Hans Nilsson, Tomas Karlsson, and Audrey Schillings
Ann. Geophys., 35, 869–877, https://doi.org/10.5194/angeo-35-869-2017, https://doi.org/10.5194/angeo-35-869-2017, 2017
Short summary
Short summary
The ion total transports in the near-Earth plasma sheet have been investigated and quantified. Specifically, the net O+ transport is about 1024 s−1 in the earthward direction, which is 1 order of magnitude smaller than the typical O+ ionospheric outflows, strongly indicating that most outflow will eventually escape, leading to significant atmospheric loss. The study also shows that low-velocity flows (< 100 km s−1) dominate the mass transport in the near-Earth plasma sheet.
Lukas Maes, Romain Maggiolo, and Johan De Keyser
Ann. Geophys., 34, 961–974, https://doi.org/10.5194/angeo-34-961-2016, https://doi.org/10.5194/angeo-34-961-2016, 2016
Short summary
Short summary
Ion outflow from the ionospheric regions at the highest latitudes is mainly driven by solar illumination. It is an important factor affecting atmospheric escape and space weather. But this region rotates into and out of the sunlight on a daily and seasonal basis. This creates daily and seasonal variations in the outflow, even with both hemispheres combined. The north–south asymmetry in Earth's magnetic field causes extra variations and asymmetries. This was studied with a simple empirical model.
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 1331–1342, https://doi.org/10.5194/angeo-33-1331-2015, https://doi.org/10.5194/angeo-33-1331-2015, 2015
Short summary
Short summary
In a simulation study of the downward current region of the aurora, i.e. where electrons are accelerated upward, double layers are seen to form at low altitude and move upward until they are disrupted at altitudes of ten thousand kilometres or thereabouts. When one double layer is disrupted a new one forms below, and the process repeats itself. The repeated demise and reformation allows ions to flow upward without passing through the double layers that otherwise would have kept them down.
P. M. E. Décréau, S. Aoutou, A. Denazelle, I. Galkina, J.-L. Rauch, X. Vallières, P. Canu, S. Rochel Grimald, F. El-Lemdani Mazouz, and F. Darrouzet
Ann. Geophys., 33, 1285–1300, https://doi.org/10.5194/angeo-33-1285-2015, https://doi.org/10.5194/angeo-33-1285-2015, 2015
Short summary
Short summary
We present here cases of wide banded Non Thermal Continuum (NTC) observed from the multi-point Cluster observatory. We point out that a large portion of the plasmasphere boundary layer, covering magnetic latitudes from 0 to above 30°, is radiating these radio waves. The radiation is confined inside multiple beams of small cone angles. We show how the spectral signature evolves, from integer harmonics of the electron gyrofrequency, when the observatory moves away from their sources.
G. Verbanac, V. Pierrard, M. Bandić, F. Darrouzet, J.-L. Rauch, and P. Décréau
Ann. Geophys., 33, 1271–1283, https://doi.org/10.5194/angeo-33-1271-2015, https://doi.org/10.5194/angeo-33-1271-2015, 2015
Short summary
Short summary
Using Cluster data, we develop plasmapause Lpp models parameterized by solar wind coupling functions and geomagnetic activity indices. We show that the Lpp response to the changes in the interplanetary conditions depends on the magnetic local time. The faster plasmapause response is observed in the post-midnight sector. At low activity, Lpp exhibits the largest values on the dayside. For enhanced activity, displacements towards larger values on the evening side are identified.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 279–293, https://doi.org/10.5194/angeo-33-279-2015, https://doi.org/10.5194/angeo-33-279-2015, 2015
Short summary
Short summary
In this paper, we simulate the plasma on a magnetic field line above the aurora. Initially, about half of the acceleration voltage is concentrated in a thin double layer at a few thousand km altitude. When the voltage is lowered, electrons trapped between the double layer and the magnetic mirror are released. In the process we see formation of electron beams and phase space holes. A temporary reversal of the polarity of the double layer is also seen as well as hysteresis effects in its position.
A. Varsani, C. J. Owen, A. N. Fazakerley, C. Forsyth, A. P. Walsh, M. André, I. Dandouras, and C. M. Carr
Ann. Geophys., 32, 1093–1117, https://doi.org/10.5194/angeo-32-1093-2014, https://doi.org/10.5194/angeo-32-1093-2014, 2014
Y. V. Khotyaintsev, P.-A. Lindqvist, C. M. Cully, A. I. Eriksson, and M. André
Geosci. Instrum. Method. Data Syst., 3, 143–151, https://doi.org/10.5194/gi-3-143-2014, https://doi.org/10.5194/gi-3-143-2014, 2014
M. Yamauchi, Y. Ebihara, H. Nilsson, and I. Dandouras
Ann. Geophys., 32, 83–90, https://doi.org/10.5194/angeo-32-83-2014, https://doi.org/10.5194/angeo-32-83-2014, 2014
P. M. E. Décréau, S. Kougblénou, G. Lointier, J.-L. Rauch, J.-G. Trotignon, X. Vallières, P. Canu, S. Rochel Grimald, F. El-Lemdani Mazouz, and F. Darrouzet
Ann. Geophys., 31, 2097–2121, https://doi.org/10.5194/angeo-31-2097-2013, https://doi.org/10.5194/angeo-31-2097-2013, 2013
H. Gunell, J. De Keyser, E. Gamby, and I. Mann
Ann. Geophys., 31, 1227–1240, https://doi.org/10.5194/angeo-31-1227-2013, https://doi.org/10.5194/angeo-31-1227-2013, 2013